MoCap °

for Artists

Workflow and Techniques
for Motion Capture

Midori Kitagawa
Brian Windsor

INCLUDES

NG

MoCap for Artists

This page intentionally left blank

MoCap for Artists

Workflow and Techniques for Motion Capture

Midori Kitagawa and Brian Windsor

AMSTERDAM ¢ BOSTON « HEIDELBERG * LONDON * NEW YORK @

OXFORD ¢ PARIS « SAN DIEGO * SAN FRANCISCO SINGAPORE Focal
SYDNEY « TOKYO Press

ELSEVIER Focal Press is an imprint of Elsevier

This eBook does not include ancillary media that was packaged with the
printed version of the book.

Acquisitions Editor: Paul Temme

Publishing Services Manager: George Morrison
Associate Acquisitions Editor: Dennis McGonagle
Project Manager: Lianne Hong

Assistant Editor: Chris Simpson

Marketing Manager: Marcel Koppes, Rebecca Pease
Cover Designer: Alisa Andreola

Cover Direction: Alisa Andreola

Cover Image: Eddie Smith and Patrick Dunnigan

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

Copyright © 2008, Midori Kitagawa and Brian Windsor. Published by Elsevier Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology

Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request on-line via

the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact” then
“Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data

Kitagawa, Midori.
MoCap for artists : workflow and techniques for motion capture / by Midori Kitagawa and Brian Windsor.
p. cm.
Includes index.
ISBN-13: 978-0-240-81000-3 (pbk. : alk. paper) 1. Computer animation. 2. Motion— Computer simulation.
3. Three-dimensional imaging. I. Windsor, Brian. II. Title.

TR897.7.K58 2008
006.6"96—dc22 2008000453
British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

ISBN: 978-0-240-81000-3

For information on all Focal Press publications visit our

website at: www.books.elsevier.com

080910111254321

Typeset by Charon Tec Ltd (A Macmillan Company), Chennai, India

www.charontec.com

Printed in the United States of America

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID o phe Foundation

Acknowledgments

Introduction

Chapter 1:

Chapter 2:

An Overview and History of Motion Capture
1.1 About This Book
1.2 History of Mocap
1.2.1 Early attempts
1.2.2 Rotoscoping
1.2.3 Beginning of digital mocap
1.3 Types of Mocap
1.3.1 Optical mocap systems
1.3.2 Magnetic mocap systems

1.3.3 Mechanical mocap systems

Preproduction
2.1 Importance of Preproduction
2.2 Pre-capture Planning
2.2.1 Script
2.2.2 Storyboard
2.2.3 Shot list
2.2.4 Animatic
2.3 Preparation for Capture
2.3.1 Talent
2.3.2 Marker sets
2.3.2.1 What are the system limitations?
2.3.2.2 What kind of motion will be captured?
2.3.2.3 Know the anatomy
2.3.3 Capture volume
2.3.4 Shot list
2.3.5 Capture schedule
2.3.6 Rehearsals
2.3.7 Props
2.3.8 Suits and markers

Xi

XIil

L 0 AN NN = -

—_ =
— O

13
13
13
14
15
15
16
17
17
18
18
19
19
21
23
24
25
26
28

0 Contents

Chapter 3: Pipeline
3.1 Setting up a Skeleton for a 3D Character
3.2 Calibrations
3.2.1 System calibration
3.2.2 Subject calibration
3.3 Capture Sessions
3.3.1 Audio and video references
3.3.2 Organization
3.3.3 Preventing occlusions
3.4 Cleaning Data
3.5 Editing Data
3.6 Applying Motions to a 3D Character
3.7 Rendering and Post-production

Chapter 4: Cleaning and Editing Data
4.1 Cleaning Marker Data

4.1.1 Types of data
4.1.1.1 Optical marker data (translational data)
4.1.1.2 Translational and rotational data
4.1.1.3 Skeletal data

4.1.2 What to clean and what not?
4.1.2.1 What not to clean?
4.1.2.2 What to clean?

4.1.3 Labeling/identifying

4.1.4 Data cleaning methods
4.1.4.1 Eliminating gaps
4.1.4.2 Eliminating spikes
4.1.4.3 Rigid body
4.1.4.4 Filters

4.1.5 When to stop?

4.2 Applying Marker Data to the Skeleton

4.2.1 Actor

4.2.2 Skeleton

4.2.3 Character

Chapter 5: Skeletal Editing
5.1 Retargeting
5.1.1 Reducing need for retargeting
5.1.2 Scaling a skeleton
5.1.3 Fixing foot sliding
5.1.4 Working on the spine

31
31
33
33
34
36
36
37
38
39
40
43
44

47
47
47
47
47
48
48
48
49
49
51
51
54
56
59
61
62
63
67
69

73
73
73
75
76
78

Chapter 6:

Chapter 7:

Chapter 8:

Contents @

5.2 Blending Motions 79

5.2.1 Selecting a blending point 80

5.2.2 Matching positions 86

5.2.3 Dealing with less than ideal cases 86

5.3 Inverse Kinematics 88

5.4 Floor Contact 88

5.5 Rigid Body 92

5.6 Looping Motion 93

5.6.1 Getting motion ready 93

5.6.2 Setting up the loop 94

5.6.2.1 Walking down the z-axis 94

5.6.2.2 Taking out the translation 95

5.7 Poses 98

5.7.1 Deciding what to use 98

5.7.2 Creating a pose 98

5.7.3 Key-framing a pose 100

Data Application — Intro Level: Props 103

6.1 A Stick with Two Markers 103

6.1.1 When it fails: Occlusion 103

6.1.2 When it fails: Rotation 105

6.2 A Stick with Three Markers 105

6.2.1 Three markers with equal distances 105

6.2.2 Three markers on a single straight line 106

6.2.3 Placement of three markers that works 108

6.3 Flexible Objects 109
Data Application — Intermediate Level: Decomposing and

Composing Motions 13

7.1 Mapping Multiple Motions 113

7.1.1 Decomposing and composing upper and lower body motions 113

7.1.2 Synchronizing upper and lower body motions 116

7.2 Balance 118

7.3 Breaking Motion Apart 119

7.3.1 When you don’t need all the motion 119

7.3.2 Re-use of motion data for non-motion purposes 122
Data Application — Advanced Level: Integrating Data with

Character Rigs 125

8.1 Mocap as Forward Kinematics Animation 125

8.2 Key-frame Animation with Inverse Kinematics 127

8.2.1 Key-framing 128

822 IK 129

8.3 Integrating Mocap Animation and Key-frame Animation 130

8.3.1 Why do we want to do that? 131

8.3.2 Setting up a skeleton for FK and IK 131

8.3.3 Adding key-frame animation to mocap 134

Chapter 9: Hand Motion Capture 137
9.1 Anatomy of a Hand 137

9.2 Rigand Marker Set for the Hand 141

9.2.1 Rigid hand 141

9.2.2 Mitten 143

9.2.3 Mitten with an independent thumb 144

9.2.4 Mitten that stretches 146

9.2.,5 Ultimate 146

9.3 Capturing Hands 149

Chapter 10: Facial Motion Capture 151
10.1 Anatomy of a Face 151

10.2 Camera Setup and Capture 154

10.3 Facial Rig 155

10.3.1 Facial rig with discrete joints 155

10.3.2 Facial rig with muscles 156

10.3.3 Facial rig with IK 157

10.4 Marker Set 159

10.5 Facial Data Stabilization 161

10.6 Facial Data Editing 164

Chapter 11: Puppetry Capture 167
11.1 Background 167

11.2 Benefits 168

11.3 Ideas/Inspiration 169

11.4 Performance 170

11.5 Projects 171

11.6 Methods 173

11.7 Real Time 176

Chapter 12: Mocap Data and Math 179
12.1 How Data Is Created 179

12.1.1 Optical systems 179

12.1.2 Magnetic systems 180

12.1.3 Mechanical systems 180

12.2

12.3

12.4
12.5
12.6
12.7

Bibliography

Contents @

Data Types and Formats

12.2.1 C3D

12.2.2 ASF/AMC

1223 BVH

12.2.4 FBX

Coordinates and Coordinate Systems

12.3.1 2D and 3D coordinate systems

12.3.2 Cartesian, spherical, and cylindrical coordinate systems
12.3.3 Right-handed and left-handed systems
12.3.4 Object space and world space

Order of Transformation

Euler Angle

Gimbal Lock

Quaternions

Appendix A: Shot List for Juggling Cow

Appendix B: Sample Mocap Production Pipeline and Data Flow Chart

Glossary

Index

181
181
181
182
183
183
184
184
185
186
186
188
190
194

195

197

199

201

207

This page intentionally left blank

We would like to thank the following people who have helped us put this book together.

Eddie Smith and Patrick Dunnigan for a still image from their animation “Motion Captive” for
the front cover, the 3D hand model in Figures 6.8 and 6.9, and allowing us to include “Motion
Captive” on this book’s CD, Frank Dufour for designing sound for “Motion Captive,” Singkham
Khamnouane for the 3D character models in Figures 6.2 and 10.5a, b, Patrick Kenney for the 3D
hand model for Chapter 9, David Hanson and Hanson Robotics for the 3D head model in Figure
10.9, Jason Huang for the 3D plane in Figures 12.1 and 12.4, Dane Sigua for the 3D character
model in Figures 12.4, 12.5a—c, and 12.6a, b, Ken Murano and Bill Lorton for general fact check-
ing, Fran Kalal, Tim Daoust, Mike Maloy, Josh Huber, Eric Camper, and Brent Haley for help
with motion capture and mocap images, Jeff Senita, Jason Huang, and Tony Tyler for their assis-
tance at the UTD mocap studio, Thomas Linehan, Director of the Arts and Technology Program
at UTD, for his support, Bruce Barnes for his assistance in literature research and proofreading, and
our families for their love and support.

This page intentionally left blank

If anyone asks us “Do you think motion capture will replace key-frame animation?” we will
say “No.”

Motion capture (mocap) is a very fast and accurate way to bring human motion into a 3D com-
puter animation, but it is not always the best way. Mocap technology exhibits its remarkable
strengths for some projects while other methods, such as key-framing, work much better for some
other projects. We all need to make sure that whichever the method we decide to use, that’s the
most effective method for the project.

In this book, we try to give you a basic overview of motion capture based off of the most popular
method which is currently (circa 2007) optical motion capture that tracks retro-reflective markers.
We don’t even try to say that our way is the only way or always the best way, just that it works for us.
You will find many different ways to tackle problems as you go along and find different ways to think
about mocap data. Every person we know in the mocap industry has a different idea about how to
do things and very good reasons for doing them that way. It’s a big pond and there’s room for lots of

different ideas and methods. If you use motion capture you’ll create some of your own methods.

Our goal is to help those who are involved in 3D computer animation and games have a better
understanding of motion capture as a whole so that they can decide if they need it for a project,
and if they do, how it can be used. One of the things we try to do in this book is to have a mix of
showing you how to do things and telling you the theory behind it. Neither one of us was inter-
ested in writing a “manual” nor a definite guide that tells you exactly what you need to do with
specific mocap hardware and software. We wanted to make the information as broad as possible and
applicable to as many situations as possible. So there will be times you need to rely on the user

manuals from your hardware and software providers.

We are currently using optical motion capture systems at our workplaces and our pipelines involve
Maya and MotionBuilder, where MotionBuilder is currently the only widely available motion editing
tool with adequate functionality. Many examples in this book are products of the pipelines. However,

let us emphasize this again: this is not the only way. Other applications can work in your pipeline.

Photography did not replace painting as some predicted. It has found its own place in visual arts.
We believe that motion capture is finding its own place in motion picture and interactive arts.

We hope this book will help you get started with mocap and give you a roadmap to how it all

works. We also hope to see results of your creative endeavors.

This page intentionally left blank

1.1 About This Book

Motion capture (mocap) is sampling and recording motion of humans, animals, and inanimate
objects as 3D data. The data can be used to study motion or to give an illusion of life to 3D com-
puter models. Since most mocap applications today require special equipment there are still a lim-
ited number of companies, schools, and organizations that are utilizing mocap technology. Outside
the film industry, army, and medicine, there are not too many people who know what mocap is.
However, most people, even small children, have seen the films, games, and TV commercials for
which mocap technology is used. In that sense mocap is in our everyday life.

The main goal of this book is to help you understand steps and techniques that are essential in a
workflow or pipeline for producing a 3D character animation using mocap technology. Capturing
data using mocap equipment is, of course, the essential part of the pipeline, but equally important
are the things we do before and after capturing data, that is preproduction (planning), data clean-
ing and editing, and data applications. Without a well-thought-out preproduction for a project, the
project is destined to fail or go through preventable difficulties. It cannot be emphasized enough that
good preproduction is a key to the success of a project. After capture sessions, data needs to be
cleaned, edited, and applied to a 3D model. Applications are getting better every year but they are

tools, that is, technology does not create arts, you do. You are the creator and decision-maker.

Another key to success is setting up a reliable pipeline that suits your needs and environment. We’ve
heard about production companies deciding to use mocap for particular projects, believing that
mocap would cut their production cost and time, and giving up on mocap quickly after finding that
mocap was neither quick nor cheap. Mocap disaster stories are often caused by the lack of a reliable
production pipeline. Mocap technology can be eftectively used once a production pipeline is estab-
lished. For the first project or two, you will be hammering kinks out of your production pipeline
while the project is moving through the pipeline. Thus, greater productivity shouldn’t be expected
immediately after introducing mocap technology into the production environment.

This book 1s written for artists, educators, and students who want to create 3D animation for films
and games using mocap technology. Familiarity with basic concepts of 3D animation, such as the
principles of animation and inverse kinematics is expected. In the rest of this chapter we look at the
history of mocap and types of mocap systems. We detail the preproduction in Chapter 2 and
pipeline in Chapter 3, and introduce you to cleaning and editing data in Chapter 4. Skeletal data
editing is explained in Chapter 5. Chapters 6—8 are about applying data to 3D models. In Chapter 6

e MoCap for Artists

we show you simple cases of data applications. In Chapter 7" we discuss mapping multiple motions
and taking motions apart. In Chapter 8 we explain how you can integrate data into rigs. Special issues
about hand capture are discussed in Chapter 9, facial capture in Chapter 10, and puppetry capture
in Chapter 11. Chapter 12 covers mocap data types and formats, and mathematical concepts that are

useful to know when you are setting up or troubleshooting a production pipeline.

‘We suggest that you read through this book once before you start a mocap project, and read it again
as you go through your project pipeline.

1.2 History of Mocap

The development of modern day mocap technology has been led by the medical science, army, and
computer generated imagery (CGI) field where it is used for a wide variety of purposes. It seems that
mocap technology could not exist without the computer. However, there were early successful
attempts to capture motion long before the computer technology became available. The purpose of
this section is to shed light on some of the pioneers in mocap in the 19th and 20th centuries: this is

not our attempt to list all the achievements on which today’s mocap technology is built upon.

1.2.1 Early attempts

Eadweard Muybridge (1830 -1904) was born in England and became a popular landscape pho-
tographer in San Francisco. It is said that in 1872 Leland Stanford (California governor, president
of the Central Pacific Railroad, and founder of Stanford University) hired Muybridge to settle a
$25,000 bet on whether all four feet of a horse leave the ground simultaneously or not. Six years
later Muybridge proved that in fact all four feet of a trotting horse simultaneously get off the
ground. He did so by capturing a horse’s movement in a sequence of photographs taken with a set
of one dozen cameras triggered by the horse’s feet.

Muybridge invented the zoopraxiscope, which projects sequential images on disks in rapid suc-
cession, in 1879. The zoopraxiscope is considered to be one of the earliest motion picture devices.
Muybridge perfected his technology for sequential photographs and published his photographs of
athletes, children, himself, and animals. His books, Animals in Motion (1899) and The Human Figures
in Motion (1901), are still used by many artists, such as animators, cartoonists, illustrators, and
painters, as valuable references. Muybridge, who had a colorful career and bitter personal life, is
certainly a pioneer of mocap and motion pictures (Figure 1.1).

Born in France, in the same year as Muybridge, was Etienne-Jules Marey. Marey was a physiolo-
gist and the inventor of a portable sphygmograph, an instrument that records the pulse and blood

pressure graphically. Modified versions of his instrument are still used today.

In 1882 Marey met Muybridge in Paris and in the following year, inspired by Muybridge’s work,
he invented the chronophotographic gun to record animal locomotion but quickly abandoned it.
In the same year he invented a chronophotographic fixed-plate camera with a timed shutter that

allowed him to expose multiple images (sequential images of a movement) on a plate. The camera

Chapter 1: An Overview and History of Motion Capture e

Figure 1.1 Mahomet Running, Eadweard Muybridge, 1879

initially captured images on glass plates but later he replaced glass plates with paper film, introduc-
ing the use of film strips into motion picture. The photographs of Marey’s subject wearing his

mocap suit show a striking resemblance to skeletal mocap data (Figures 1.2 and 1.3).

Marey’s research subjects included cardiology, experimental physiology, instruments in physiology,
and locomotion of humans, animals, birds, and insects. To capture motion, Marey used one cam-
era while Muybridge used multiple cameras. Both men died in 1904, leaving their legacies in arts

and sciences.

In the year after Muybridge and Marey passed away Harold Edgerton was born in Nebraska.
Edgerton developed his photographic skills in the early 1920s while he was a student at University of
Nebraska. In 1926 while working on his master’s degree in electrical engineering at the Massachusetts
Institute of Technology (MIT), he realized that he could observe the rotating part of a motor as if the
motor were turned off by matching the frequency of the strobe’s flashes to the speed of the motor’s
rotation. In 1931 Edgerton developed the stroboscope to freeze fast moving objects and capture them
on film. Edgerton became a pioneer in high-speed photography (Figures 1.4 and 1.5).

Edgerton designed the first successful underwater camera in 1937 and made many trips aboard the

research vessel Calypso with French oceanographer Jacques Cousteau. He designed and built deep

e MoCap for Artists

Figure 1.2 Etienne-Jules Marey’s mocap suit, 1884

R R UL I I I R T L . . .o

Figure 1.3 Motion photographed by Etienne-Jules Marey, 1886

sea electronic flash equipment in 1954. Edgerton ended his long career as an educator and researcher
at MIT when he passed away in 1990.

1.2.2 Rotoscoping
Max Fleischer, born in Vienna in 1883, moved to the U.S. with his family in 1887. When he was an
art editor for Popular Science Monthly, he came up with an idea for producing animation by tracing live

Chapter 1: An Overview and History of Motion Capture a

Figure 1.4 Milk-Drop Coronet, Harold
Edgerton, 1957

Figure 1.5 Shooting the Apple, Harold Edgerton, 1964

action film frame by frame. In 1915 Fleischer filmed his brother, David, in a clown costume and they
spent almost a year making their first animation using rotoscope. Fleischer obtained a patent for
rotoscope in 1917. World War I ended in 1918 and in the following year he produced the first anima-
tion in the “Out of the Inkwell” series and he also established Out of the Inkwell, Inc., which was later

renamed as Fleischer Studio. In the “Out of the Inkwell” series, animation and live action were cleverly

e MoCap for Artists

mixed and Fleischer himself interacted with the animation characters, Koko the Clown and Fitz the
dog. In 1924, 4 years before Disney’s “Steamboat Willie,” Fleischer produced the first animation with
a synchronized soundtrack. Fleischer Studio animated characters from the comics, such as Popeye the
Sailor and Superman. Betty Boop first appeared in Fleischer’s animation and later became a comic
strip character. Fleischer’s early 30s animations were filled with sexual humor, ethnic jokes, and gags.
‘When the Hays Production Code (censorship) laws became effective in 1934 it affected Fleischer
Studio more than other studios. As the result, Betty Boop lost her garters and sex appeal.

In 1937, after almost 4 years of production, Walt Disney (1901-1966) presented the first feature
length animation, “Snow White and Seven Dwarfs.” “Snow White” was enormously successful.
Paramount, the distributor of Fleischer’s animations, pressured Max and David Fleischer to pro-
duce feature length animations. They borrowed money from Paramount and produced two features,
“Gulliver’s Travels” (1939) and “Mr. Bug Goes to Town” (1941). Neither film did well at the box
office. After the failure of “Mr. Bug,” Paramount fired the Fleischer brothers and changed the studio’s
name to Famous Studios. In the 1950s Max Fleischer sued Paramount over the distribution of his
animations. Before his death in 1972, he signed a Betty Boop merchandising deal for King

Features, a unit of the Hearst Corporation.

Rotoscoping was used in Disney animations, starting with “Snow White.” Later Disney animations
characters were highly stylized and rotoscoping became a method for studying human and animal
motions. Disney’s classic animations on DVDs, such as “Snow White” and “Bambi,” contain live
action film footages from the Disney archive. Comparison between film footages and the correspond-
ing scenes in the animations reveals skillful and selective use of rotoscoping by Disney animators. They
went above and beyond rotoscoping. The success of “Snow White” can be attributed to Walt Disney’s
detailed attention to the plot, character development, and artistry. There are some beautiful scenes
in the Fleischers’ feature length animations. However, they do not have plots that can sustain the audi-

ence’s interests until the end of the movie nor characters that make the audience care about them.

Both Max Fleischer and Walt Disney were highly innovative individuals; however, it is sadly true
that “Disney’s memory belongs to the public; Max’s to those who remember him by choice”
(Heraldson, 1975).

1.2.3 Beginning of digital mocap

Research and development of digital mocap technology started in pursuit of medical and military appli-
cations in the 1970s. The CGI industry discovered the technology’s potentials in the 1980s. Since some
of this book’s readers weren’t born in the 1980s, let’s recall the 1980s. In the 1980s there were floppy
disks that were actually floppy and most computers were equipped with monochrome monitors; some
with calligraphic displays. To view color images, for example rendered animation frames, images had to
be sent to a “frame buffer,” which was often shared by multiple users due to its cost. Large computers
were housed in ice cold server rooms. The noise of dot matrix printers filled offices. Ray-tracing and
radiocity algorithms were published in the 1980s. Renderers based on these algorithms required a

supercomputer or workstations to render animation frames in a reasonable amount of time. Personal

Chapter 1: An Overview and History of Motion Capture 0

computers weren't powerful enough. (Ray-tracing and radiocity didn’t become widely available until
the computing power improved.) CPUs, memories, storage devices, and applications were more
expensive than today. Wavefront Technologies developed and marketed the first commercial off-the-
shelf 3D computer animation software in 1985. Only a handful of computer animation production
companies existed. Most of the animations that they produced were “flying logos” for TV commercials
or TV programme’s opening sequences. These were often 15 to 30 seconds long per piece. The read-
ers who saw “Brilliance” (also called “Sexy Robot”) in the 1980s probably still remember the astonish-
ment of seeing a computer generated character, a shiny female robot, moving like a real human being.

“Brilliance” was produced by Robert Abel and Associates for the National Canned Food
Information Council and was aired during the 1985 Super Bowl. They invented their own method
for capturing motion for the project. They painted black dots on 18 joints of a female model and
photographed her action on a swivel stool from multiple angles. The images were imported into
Silicon Graphics workstations and a number of applications were employed to extract the infor-
mation necessary to animate the CGI robot. They didn’t have enough computing power to render
frames for the 30 second piece in house. So, in the final 2 weeks before the project deadline they
borrowed VAX 11/750 computers around the country to render. The final product was a ground
breaking piece and is regarded as a milestone in the history of CGI.

While “Brilliance” was the first successful application of mocap technology in CGI, “Total
Recall” was the first failed attempt to use mocap in a feature film. Metrolight Studios was one of
the production companies contracted to produce effects for the 1990 science fiction film starring
Arnold Schwarzenegger and Sharon Stone. Metrolight decided to use mocap to create an anima-
tion sequence of moving skeletons for the scene in which Schwarzenegger’s character goes through
a large airport security X-ray machine, along with other people and a dog. (Still images from the
scene popped up in news media after the 9/11 tragedy regarding security vs. privacy issues.) An
operator of an optical mocap equipment company was sent to a location with a mocap system.
A Metrolight team followed the operator’s instruction while capturing performances by
Schwarzenegger and other performers. They went home believing that the capture session had
gone well and the mocap company would deliver the captured data after processing and cleaning,.
However, Metrolight never received usable data and had to give up using mocap for the scene.

It is not certain if the operator did not know his company’s equipment well and made critical mis-
takes or the system was faulty. One of the lessons that we can learn from Metrolight’s unfortunate
experience is that if you need to rely on an external expert in capture sessions, make sure that you hire
a service provider with a good track record and references. Another is to check the data after captur-
ing the range of motion and one or two shots. You don’t want your capture subjects to wait for a long
time. Don’t process all the captured data during capture sessions, but check what kind of data quality
you are getting, especially at a location site that you are not familiar with. If you need to recalibrate,
recalibrate the system. Recalibrate after lunch or a long break and again before you wrap up sessions.
Also be prepared to have a follow-up shoot in case the director, clients, you, or any other decision-
makers make changes after the first shoot, or data from the first shoot has problems. Mocap wasn’t
used as planned but “Total Recall” won an Academy Award (Special Achievement Award) for its spe-

cial effects. Mocap technology had to wait for a few more years to come into the limelight.

e MoCap for Artists

Released in 1995, FX Fighter is the first real-time fighting game with 3D characters in 3D envi-
ronments. It is also one of the first video games that used mocap technology to give realism to 3D
characters” movements. Game characters are animated in real time by the user input using a set of
motion captured actions, for example, running, walking, and kicking. Pieces of actions are played
in such a way that the player does not notice the transition from one action to another giving an
impression that the player is fully in control of a game character’s movement. The game’s success

encouraged other game companies to use mocap in their games.

Since these pioneering eftorts in the 1980s and 1990s we have seen remarkable development and
achievement in digital mocap. In recent years, in addition to medicine, military, and entertainment,
mocap applications have been found in many other fields. Various sports use mocap to analyze and
enhance athletes’ performances and prevent injuries. Designers use mocap to understand users’
movements, constraints, and interactions with environments and to design better products. Engineers
use mocap to analyze human movements and design robots that walk like us. Art historians and
educators use mocap to archive and study performances by dancers and actors. For instance, in
1991 an intricate performance by legendary French mime Marcel Marceau (1923 -2007) was cap-

tured at the Ohio State University to preserve his arts for future generations.

1.3 Types of Mocap

Mocap systems commercially available today can be categorized into three main groups: optical
systems, magnetic systems, and mechanical systems. Each type has strengths and weaknesses, which
we will look at in this section. We will not look at ultrasonic and inertial systems because they are

very infrequently used in the entertainment environment.

1.3.1 Optical mocap systems

Most optical mocap systems are primarily designed for medical applications. The first commer-
cially available optical system developed with CGI applications in mind was the Vicon 8 system.
A typical optical system consists of 4 to 32 cameras and a computer that controls the cameras. With
most optical systems capture subjects wear markers, where markers are either reflective (passive) or
light emitting (active). Passive markers are made of reflective materials and their shapes are spheri-
cal, semi-spherical, or circular. Shapes and sizes of markers depend on the camera resolutions and
capture subjects (e.g., smaller markers are used for facial and hand captures). Passive markers are
attached directly to a capture subject’s skin or Velcroed to a mocap suit, which is a full-body uni-
tard made of stretchy materials, such as spandex. Cameras in a passive marker system are equipped
with light-emitting diodes (LEDs) and the lights emitted by the LEDs are reflected by markers
(Figure 1.6). On the other hand, markers in an active marker system are LEDs. Some active marker
systems illuminate one LED at a time, eliminating the need for identifying each marker. Others
illuminate all LEDs at once. Modulating the amplitude or frequency of each LED allows such sys-
tems to identify markers. Some of the latest active marker systems work in natural lighting condi-
tions, that is, they can capture subjects in various costumes at locations outside studios; however,

lighting must be carefully controlled for most optical systems, especially passive marker systems.

Chapter 1: An Overview and History of Motion Capture e

Figure 1.6 Vicon camera with LEDs

Cameras in an optical system capture the lights reflected or emitted by markers at speeds somewhere
between 30 and 2000 samples per second. At least two cameras need to see a marker in order to deter-
mine the 3D position of the marker, although three or more are preferred for accuracy. Sometimes a
capture subject herself/himself, another capture subject, or a prop hides (occludes) some of the mark-
ers on the subject. For instance, when a subject lies flat on the stomach, the markers on the subject’s
front will be occluded. When markers are occluded, no camera sees them and it results in loss of data.
There are data editing techniques and tools to make up for missing data but when too many markers
are occluded or the duration of an occlusion is too long, it is impossible to fix the problem. Optical
data generated by a state of the art system is very clean and accurate when it does not sufter from
occlusion problems.

Marker configurations are flexible with optical systems. You can use the marker configurations that
the system manufacturer provides you with or you can design your own that suits your needs.
A relatively large number of markers can be tracked simultaneously, for example, up to 200 mark-
ers with a 16 camera system. Since capturing multiple subjects at once tends to cause occlusion
problems, capture one subject at a time if it is not crucial to capture multiple performers together.
When performers interact with each other and the synchronization among them is important, cap-
ture multiple subjects simultaneously. Capture subjects can move freely in a capture volume

because no equipment or wires are connected to them.

Optical systems’ real-time visual feedback during capture is often limited to stick figures, although
linking a mocap’s real-time output to a specific real-time application such as MotionBuilder will ren-
der real-time results. Other systems such as the Giant Studios system readily render real-time charac-
ters directly in system. Recorded data is still processed to compute the trajectories of the markers in a
rather extensive post-processing to get the best, most stable results. Rotational data can be computed
in real time, but is usually computed from positional data in post-processing.

Among the markerless mocap technologies that recently emerged, Mova’s Contour Reality
Capture system is an optical system that captures the continuous skin surface of a moving capture
subject, instead of a small number of points on a capture subject. A capture subject wears a phos-
phorescent makeup and two sets of cameras capture the texture and geometry of the subject in a

movement. We will see how new markerless systems will compete with other systems.

@ MoCap for Artists

Advantages of optical systems:

Optical data is accurate.

Capture rate is high.

Multiple subjects can be captured simultaneously.

A large number of markers can be used.

Marker configurations can be changed easily, depending on project goals.
Optical systems’ capture subjects can move freely in a capture volume.
Capture volume can be larger than most other systems.

Skeletal data can be generated.
Disadvantages of optical systems:

Extensive post-processing is required

Rotational data needs to be computed from positional data in the post-processing.
Markers can be occluded by capture subjects or props, resulting in loss of data.
Lighting needs to be controlled for most optical systems, especially passive systems.

Real-time visual feedback is limited to stick figures.

Hardware is often more expensive than other types of mocap equipment.

1.3.2 Magnetic mocap systems

Magnetic (electromagnetic) mocap systems are sometimes called magnetic trackers. The systems were
derived from the sensors placed on a military aircraft pilot’s helmet to track the pilot’s head position
and orientation for the helmet-mounted display. With a magnetic mocap system, 12 to 20 tracking
sensors are placed on a capture subject to measure spatial relationship to a magnetic transmitter. The
tracking sensors output their translations and orientations. Hence, no post-processing is required to
compute rotations. This fact allows magnetic systems to be used for real-time applications.

Tracking sensors are not occluded by capture subjects or props made of non-metallic materials,
which is an advantage over optical systems. However, they are prone to magnetic and electrical
interferences caused by metal objects and electronics in the environments. Interferences can result
in distorted output. Building structures with high-conductivity metals are not suitable as capture
spaces for magnetic systems. The wiring and batteries for tracking sensors may limit capture sub-
jects’ movements. Moreover, tracking sensors’ batteries need to be recharged every few hours.

Magnetic systems can be divided into two groups. One group uses direct current (DC) electro-
magnetic fields and the other uses alternating current (AC) fields. AC systems (e.g., Liberty by
Polhemus) are very sensitive to aluminum and copper. DC systems (e.g., Flock of Birds by Ascension)
are sensitive to iron and steel.

Magnetic systems’ sampling rates (up to 144 or 240 samples per second) are lower than optical sys-
tems and magnetic data tends to be noisy. Tracking sensors’ configurations cannot be changed as

freely as optical systems’ marker configurations. Magnetic systems can capture multiple performers

Chapter 1: An Overview and History of Motion Capture @

simultaneously with multiple setups. Magnetic systems’ capture volumes are normally smaller than
optical systems’. One of the biggest advantages of magnetic systems is their cost; magnetic systems
are less expensive than optical systems.

Advantages of magnetic systems:

Position and orientation are available without post-processing.
Real-time feedback allows real-time applications.
Tracking sensors are not occluded by non-metallic objects.

Multiple performers can be captured simultaneously with multiple setups.

Magnetic systems are less expensive than optical systems.
Disadvantages of magnetic systems:

Tracking sensors are prone to magnetic and electrical interferences.

Wiring and batteries for tracking sensors can limit capture subjects’ movements.
Magnetic sensors have a lower sampling rate than most optical systems.
Magnetic data tends to be noisy.

Tracking sensors’ configurations are hard to change.

Magnetic systems’ capture volumes are normally smaller than optical systems’.

1.3.3 Mechanical mocap systems

Mechanical (exo-skeletal) mocap systems directly measure joint angles of a capture subject who
wears an articulated device that consists of straight rods and potentiometers. Straight rods are linked
with potentiometers at the joints of the body, designed to measure joint angles as the capture sub-
ject moves. The device looks like an exo-skeleton. Other types of mechanical systems include data

gloves and digital armatures.

Mechanical systems are real time, relatively inexpensive, free of occlusion, free from magnetic or
electrical interferences, and highly portable. Wireless mechanical systems provide large capture vol-
umes. A notable disadvantage of mechanical systems is that they do not measure global translation
very well. They measure it using accelerometers, but the data can still “slide” and “slip” a little.
They do a poor job when the feet leave the floor. If a capture subject jumps up, the data will nor-
mally not follow the jump and the data will stay on the floor. If a character walks up stairs, the data
will never go up in the air but look as if it were walking in place. Magnetic sensors are often added
to mechanical systems to correct this problem. The joints in articulated exo-skeletal systems are
simple hinge joints, although we, humans, have other kinds of joints, such as ball and socket joints,
gliding joints, saddle joints, and pivot joints. This means that articulated exo-skeletal systems
restrict capture subjects’ movement at their joints. Also the device’s volume and breakability restrict
subjects’ movement, for example, a capture subject wearing an articulated exo-skeletal system
probably doesn’t want to roll around on a floor since it hurts and breaks the device. ShapeWrap,
developed by Measurand, uses flexible fiber-optic tapes and is more durable than rigid exo-

skeletal systems.

@ MoCap for Artists

Advantages of magnetic systems:

Real time

Relatively inexpensive

No occlusion

No magnetic or electrical interferences
Highly portable

Large capture range
Disadvantages of magnetic systems:

No global translations

Restrictions on capture subject’s movement
Breakable

Fixed configuration of sensors

Low sampling rate

If you are choosing a mocap system to purchase, think about your goals first and then find a system
that meets your needs the best. Before investing in an expensive mocap system, it may be wise to
try out some service providers. If you like what a service provider delivers, find out what kind of

setup it has.

Preproduction can be looked at as one of the most important steps in motion capture. This is the
part of the process that allows us to break everything apart and prepare before either going into the
motion capture space or before going into the space with a client. Preproduction can be broken
down into pre-capture planning (Section 2.2), preparation for the capture (Section 2.3), and
designing a production pipeline (Chapter 3).

2.1 Importance of Preproduction

Why do you want to spend time on preproduction? Because a good preproduction saves a lot of
production cost and time, spares you from unnecessary pain, and results in a much better end-
product. If you jump into production with little or no preproduction, we assure you that you will
face problems at some point that will cause waste of motion capture time, difficulties during the
capture, issues in processing, and other trouble. The majority of these can be avoided by taking the
time to really go through the preproduction process meticulously. We can never stress enough how
much planning and working through everything in advance is the difference between a motion

capture nightmare and good motion capture experiences.

What preproduction gives you is a roadmap to how you’re going to organize and accomplish all of
your goals. It should answer the questions, such as “Why are you capturing anything?,” “What are
you capturing?,” “How will you capture it?,” and “What will you do with the data once it’s cap-
tured?” Thinking through all of this and running a few small tests will make a huge difference in

how easy or hard motion capture will be.

Many people have a preconceived notion that motion capture is not only simple but very quick and
that it automatically works. This, unfortunately, is not the case. Getting good data out of a motion
capture system takes patience and experience. The process will not be quick until you’ve done it
several times and are used to how it works. Motion capture never works automatically. However,
with enough planning, even the first time you work all the way through a motion capture project,

you will have a clear idea about how you get from one end to the other.

2.2 Pre-capture Planning
One of the most important parts of not only enjoying mocap, but getting good data out of it, is to

have everything ready to go before your mocap shoot. Much of this process is done in spreadsheets,

@ MoCap for Artists

word processors, and thumbnail sketches. We’ll now take a look at the areas that need to be fleshed
out before you go into a shoot.

2.2.1 Script

The script is the narrative of the story that you're trying to tell. This could be anything. It could
be a screenplay, an idea for a short animation, or the shots needed for a video game. The script is

one of the basic building blocks of any type of animation process.

The script allows you to bring all of your ideas together and gives a certain flow to the story that
you want to tell. It not only serves as a roadmap for the client, but it also serves as a roadmap for
the talent. The talent will need a script as early in the process as possible. This helps them not only
prepare to be in character, but to understand what will be physically required of them.

When we refer to the client, we’re referring to whomever you are capturing the motion for.
This can be for a class assignment, for yourself, for another group of students, for teachers
who need some motion capture, or for paying clients in a studio. Always think of what
you’re doing in this relationship and give your client the best motion capture experience pos-
sible. Don’t cut corners or try to pass oft bad data to anyone. It will hurt your reputation, and
the motion capture world is a fairly small one.

Because I've worked in the private sector with motion capture, I'll at times put emphasis on
saving money and time, and these are important to think about no matter what situation
you'’re in. Even though saving money may not be relevant to a student who has access to a
mocap system based on a course enrollment, still think about the impact that your decisions
will have on the time it takes you to complete certain tasks.

Scriptwriters are professionals who specialize in writing scripts for films, TV programmes, anima-
tions, video games, etc. It is common for a film script to be rewritten by multiple screenwriters

while a project is going through the preproduction, production, and post-production phases.

Typical scripts contain the following elements for each scene:

Scene Heading: Short description of when and where a scene takes place.
Action: Description of any moving elements in the scene.

Dialog: Conversation between characters.

Character Name: Character’s name that precedes his/her line in a dialog.

Transition: Editing transition between shots or scenes (e.g., cut and dissolve).

Shot: Name of a camera shot (e.g., close-up shot, long shot, and tracking shot).

Most scripts go through several revisions and they are eventually torn apart to create the shot lists

which we will discuss in Section 2.2.3. Because of this, use a type of word processing program

Chapter 2: Preproduction @

where revisions can be maintained and multiple people can make comments or changes. The script
is also used as the basis for the storyboard.

2.2.2 Storyboard

The storyboard is a 2D visual representation of the script. A script is turned into a set of drawings and
short text that accompanies each drawing. They present essential elements of character performance,
timing, staging, camera (shot size, camera move, camera angle, etc.), editing (transitions between
shots, etc.), and sound (dialog, narrative, sound effect, etc.). Drawings for a storyboard are usually
quick thumbnail sketches that are rough but pre-visualize the motions and emotions of the script.

Storyboards have traditionally been one of the most important steps in preproductions of anima-
tions, films, TV programmes, and games. They allow content creators, directors, performers, cin-
ematographers, clients, and anyone else who is involved in the preproduction and/or production
to get a clear picture of how the final product will look.

Most storyboard artists create storyboards in a format that allows them to make modifications eas-
ily. Some pin thumbnail sketches to a cork board with pushpins; others draw on Post-it notes and
stick them to a wall. Either way, they can add, delete, replace, and rearrange any parts of the sto-

ryboard while they are trying to find the best way to tell the story.

How storyboards are made is not important. You can use pencils, markers, watercolors, pastels,
computer applications, and anything else. No matter what you decide to use as a tool for story-
boarding, keep in mind that you are making a storyboard to get your idea across. Storyboards do
not have to look like art works because they are not. The main goal of storyboarding is to firm your
ideas up and communicate with a team of artists and with decision makers, such as directors and

clients. A good storyboard will result in a final product that reaches the audience’s heart.

2.2.3 Shot list

The shot list is a list of actions or motions that will be compiled together to create a scene. Breaking
the story into shots will give you a very good idea about how complex each scene and shot will
be and also about how many talent, props, and other things will be needed for each shot. This is
one of the earliest and most important steps in organizing your project. It can tell you how many
days a shoot will take, what types of talent will be needed on what days, if special rigging will be
needed, etc.

If there is a lot of rough action and stunt work, you may want to have a longer shoot time. If it’s
more dramatic with less dangerous action, you may want more acting talent. If there are special rig-
ging shots, you’ll want to find a stunt coordinator who has experience in motion capture. Also try
to figure out if your motion capture equipment is capable of capturing the desired motion. If there
are a lot of physically demanding shots, it will take longer to capture these shots since the talent will
tire quickly. Because of this, you will get fewer shots in during a day for this type of action, so take

this into account when putting together your shot list.

@ MoCap for Artists

As a term in cinematography a shot can be defined as a continuous view filmed by a single camera
with no interruption, while a scene is a place or setting for an action to take place. A scene may
consist of a series of shots (or a single shot) that depicts a continuous event. Thus, you may have
several shots for a scene, instead of one continuous shot. You need to think about and decide what
types of camera shots you want to use based on the storyboards as well as what types of editing are
feasible, where editing includes both editing motion capture data to create motions that are

humanly impossible or improbable and compositing in the post-production phase.

If you have one shot that’s 45 seconds of continuous running, you may not have enough physical
area in your motion capture space to capture a full run for that long. The person may be through
your space in a few seconds. In this case, you’d need to be able to loop smaller motions together
several times to create 45 seconds of running. This is one of those types of problems you may

encounter and will need to try to solve before you go into the mocap studio.

When thinking about the studio, always think about the amount of space it has as well as the capa-
bilities. Are you going to be tracking facial, finger, and full body data all at once? If so, is this pos-
sible throughout the entire space or is it just possible in a smaller area of the space that has more
cameras? What are the physical limits as far as length, width, and height of the motion capture vol-
ume? If you’re doing motions that are gymnastics related and possibly need a high bar, you’re going
to want to make sure that this type of motion is flagged ahead of time for not fitting in the normal
space as well as requiring special equipment. Use your shot list as a way to think about what you
have to use for capture. We will look at shot lists in more detail in Section 2.3.4.

2.2.4 Animatic

The animatic is basically a storyboard in a time-based format that has visual elements (e.g., draw-
ings, rough animation, camera moves, and preliminary special effects) and sound elements (e.g.,
dialog, sound effects, and music), where both elements are timed and edited together to fit each
other. Animatics let us see how timing and cinematographic elements of the camera are working.
That makes it easier for you to determine if your story is being told eftectively or not. The pro-
gression reel is similar to animatics but shots and scenes in a progression reel are repeatedly replaced
with animated scenes and elements that are closer to the final ones as the production proceeds.

Timing is essential, not only in telling a good story, but also in conserving money. If there are shots
that can be reduced from 2 minutes down to 30 seconds, this is important and can usually be seen
in an animatic. A common mistake is to try to capture really long motions or complex motions just
because it’s possible and not because they add to the story. Don’t capture any scenes that do not
contribute to the story telling. An animatic will help to see if your pacing is working and if all of
your scenes are really adding to your overall story.

More and more, video game engines are being used to create animatics. Existing motion capture

data can stand in as placeholder motion to get an idea of camera placement as well as timing of the

Chapter 2: Preproduction Q

shots. This is a very helpful tool since the real-time rendering capability of video games allows for
instant updating and changing without long render times that you’d have with a traditional ani-
matic rendered by hand or with animation software. A good library of generic motions for this

purpose is never a bad idea.

Students often animate camera positions in their 3D computer animation, not because a camera
flying through a scene adds something important to story telling, but because it is easy and fun to
move a virtual camera around. If you want to animate camera moves to create an effective dynamic
shot, study popular types of camera moves that are possible with a real physical camera, such as
dolly, crane, and boom.

Knowledge in cinematography is essential in making good films, videos, video games, and anima-
tions, including mocap data driven ones. If you have never produced a narrative video piece, try it.
Taking a video production course and a film history course is beneficial as well. There are a lot of
good books on cinematography and film history too. Study and get familiar with common terms
and concepts in cinematography that you need when you create storyboards and animatics.

For those who are studying animation, we highly recommend Prepare to Board!: Creating Story and
Characters for Animated Features and Shorts by Nancy Beiman, published by Focal Press, 2007. The

author explains a number of concepts and techniques that are crucial in preproduction.

2.3 Preparation for Capture

Preproduction is one area where there are many things happening at once and if any one aspect is
neglected it will have a negative impact on the overall process. There are too many times when a
small oversight in this area has caused either bad data or people to dislike the process so much that
they’ll never agree to use mocap again. We want the results to be good and the overall experience

to be well thought out and enjoyable.

2.3.1 Talent

Make sure to use the proper talent. It can’t be stressed enough that if you want to motion capture
dancing, then use dancers, not your friend who used to dance when she was 10 but hasn’t danced
in years. The results are evident and the poise and confidence of the right talent come across in the
data.

In one of the shoots I was involved in years ago, we had talent miscast. It was beyond the motion
capture department’s ability to change the talent since we were told who the talent would be by a

senior member of the company. We had to say yes and make the best out of the situation.

The character was to be a very tough, aggressive leading female. The talent we got was a middle-
aged dancer. What we really needed was an actor that would fit the role of the character. The tal-
ent was a wonderful person, but her motion characteristics did not match the character. If the

character had been a dancer, she would have been great talent, but that wasn’t the case. The motion

@ MoCap for Artists

revealed the fact that she was not right for that particular role no matter how talented she was in
her field. Remember that the final look and feel of motion capture has a lot to do with the talent,
and you need to get the right talent for the right situation. The right talent will produce good

motion capture.

There is also something to be said for capturing people that have distinguishable physical features.
One of the stunt coordinators I enjoy working with has a few definable motion traits. One of those
characteristics comes with the fact that he broke his arm close to the elbow and that arm never
straightens all the way out. If we use his motion for a main character, that’s fine, but if we used his
motion as the motion for several background characters, they all would have a slightly bent elbow.
It would be fairly noticeable when half of the extras all have the same physical feature. I’ve heard
people say “Well, you can edit that out. ...” Yes, you can, but it takes much less time to mocap

another person than trying to make the person look like someone else by massaging the data.

When casting for facial animation, which may or may not be done separately, do not cast based on
the voice alone. Cast for the look of the character and the voice. Some people are not good for
facial capture. I personally am not a great candidate for facial capture. My brow goes far enough
forward and my upper eyelids come up enough that I lose any markers on my upper eyelids. I also
have what would be termed chubby cheeks that shake when I laugh. If the character is supposed to
have a very lean face, you don’t want the motion capture data to possibly inject some secondary

motion that’s not wanted in your character.

If you need to capture older people or kids, capture them. Do not capture people acting like older
people or younger people unless there is an extremely good overriding reason to do so. Kids,

adults, and seniors all move difterently, so try to cast the right talent to the age as well.

2.3.2 Marker sets

The marker set defines how many markers will be attached to your actor, prop, and anything else
that will be captured and where the markers will be placed. A few of the things to think about
when attaching markers are: what the limitations of your system are, how close markers can get to
each other, what type of motion you are capturing, and if the markers are in logical locations.

2.3.2.1 What are the system limitations?

There are times when your system will dictate what size marker you can use and where it can be
located with relationship to other markers. Because camera-based systems are reconstructing 3D
data from a set of 2D images, it’s important to realize that if markers are very close, the system may
see two markers as one marker. Check your system’s setup and marker specifications. A general
rule of thumb is that once you place markers, you should still be able to place two markers in the
space between any pair of adjacent markers (although you would not do that). This can sometimes
be difficult to do when working on markers for facial capture. If a large amount of facial data is

needed, that may necessitate a dense set of markers and that makes it very hard to space markers out

properly.

Chapter 2: Preproduction @

2.3.2.2 What kind of motion will be captured?

The types of motion to be captured may cause you to move your markers away from the standard
marker positions that you start with. For example, if your actor is constantly lying on the stomach,
you may want to put more markers on the back and get rid of the ones on the front of the chest.
Think if there are several markers that will be rarely or never seen because of a certain set of
motions, other people, or props. If a number of markers will not be visible in a significant number
of motions (maybe more than a quarter of your captures for a day), then you should make an alter-
native marker set. If it’s only for one or two shots, it may not be worth interrupting the flow of the
capture to create a different marker set. This is a judgment call you’ll have to make.

We normally have to apply different marker sets when using flying harnesses as well because the
harnesses’ pick points and wires may interfere with markers. Since the pick points are normally on
the sides of the hips the markers in those locations can be close enough to be sheared off by the
wires. It’s best to work around this type of setup with an alternate marker set since you’ll get bad

or unusable data almost every time if you use the normal marker set.

If you are doing a lot of work with physical rigging, physically demanding shots, or shots that
require a lot of setup in between takes, you can always change marker sets during this time. Using
your downtime to your advantage is an important area of motion capture. There always seems to
be something to do, even if it’s just starting to create 3D data on a different computer while other

people are changing a set. It’s important to maximize your time.

2.3.2.3 Know the anatomy

It’s very important to understand the anatomy of whatever you’re capturing. There are several
anatomy books out there, but the really important issues are musculo-skeletal anatomy. We also
like to refer to Anatomy of Movement by Blandine Calais-Germain, published by Eastland Press.
When dealing with human motion, it gives a very clear view of how the body moves with a num-

ber of illustrations and it’s thorough but not overly technical.

The importance of anatomy in regards to optical markers is that you are trying to represent the
underlying human skeletal structure using a set of markers. You need an understanding of how
bones relate to each other or what parts of the body move more than others. To decide where to
attach a marker on a knee, it’s important to know how to find a good location for the marker as well
as be able to replicate it on the other knee without just guessing. You want to avoid areas around the
joints that move a lot, and try to find locations where the bone is near the surface. For markers in
between the joints, you’ll have to compromise and use some locations that will move a lot. The leg
is a good example where you need to place a marker on the upper leg, and the only place to put it
in between the hip and knee is all muscle which will expand as the muscles are moved. You will have

to put the marker someplace that will have a considerable amount of movement.

It also helps if you know how to find the bony landmarks that define the hips and other joints of
the body. If you go too far below the landmarks for the hips, the motion of your marker will be
heavily influenced by the upper leg; if you go too far above, it will be heavily influenced by the

back and abdomen.

@ MoCap for Artists

The markers are specifically located for a reason and it’s a good idea to know the reason. However,
every system has its own way of placing markers, so we won't cover a specific marker scheme here.
Reference your motion capture manufacturer’s guides for their suggestion on where to place markers.
They must have tested and retested different marker setups until they came up with an optimum setup.

We suggest using their scheme to begin with and then changing it to work best for your situation.

Anatomy is even more important when capturing very intricate data such as hand or facial data
because a good understanding of anatomy will help you determine how many markers to use and
where to put them. The face is extremely complicated, but the hands are as well, and getting good
data from either requires both a lot of informed decision making and some trial and error. Never

be afraid to try many different marker setups.

When we don’t know what we are really getting out of a capture (which is often true when exper-
imenting), we usually put too many markers on. If there are too many markers you will see which
ones are redundant and where one marker can be used, instead of two or three markers. The face
is an area where we tend to place too many markers. Depending on the complexity of your facial
rig and the requirements of your software application for it, you may need more or less markers.
However, until you put some markers on a face, track them, label them, and then bring marker
data into your 3D animation system; it’s not possible to know if your marker setup will give you

what you're looking for. It may take three tries to get experimentation to work reliably.

The first try is done with some guesswork on marker placement and we know in advance that we are
not going to get perfect data, but it will give us a lot of useful information. We take all the information
from the first try and apply it to the second try. This usually gets us 75% there. The third time we nar-
row in on everything that we want: a marker setup that gives us clean useful data, how markers relate

to the facial rig, and how we can get repeatable results (read Chapter 10 for more about facial capture).

So what do you do if you're not capturing a person but an animal? We usually try to take a human
marker set and distort it to match whatever we’re capturing. A dog is a good example. Keep the back
legs as in a human marker set, although you need to change them for the natural bend in a dog’s legs.
Make the spine come forward out of the hips instead of going up. Rotate the upper arms down to
the floor and shorten them. All the while make appropriate adjustments for the differences in dog
and human anatomy. This method has a lot of flaws, but gives you a starting point. The biggest flaws
are that a dog’s back curves differently than a human’s and that the shoulders are much more impor-
tant in locomotion. Besides these are the obvious changes in bone lengths and positions.

Comparative anatomy is the study of the body structures of different species of animals. It helps us
understand adaptive changes that body structures of vertebrates (that includes us, humans) have
undergone in the process of evolving from common ancestors. At a glance, a horse’s knee and a
human’s elbow seem to have evolved from the same joint of the common ancestor but a knee of a
horse’s front leg is comparable to a human wrist and a human elbow is comparable to a horse’s joint
that’s right below the rib cage.

Form follows function. What animals eat determines their body structures. Horses, cows, deer, and
other herbivores have thick stiff torsos that support their long intestines. They have long intestines

because they need to digest plants that are full of fibers. Meats are much easier and faster to digest

Chapter 2: Preproduction @

than plants. Lions, tigers, and other carnivores don’t need long intestines and have flexible torsos that
allow them to run fast to catch their prey. If you are capturing motions of a cat, you will need con-
siderably more markers on its torso than when capturing a horse. You will be able to reduce your
guesswork if you study the anatomy and movements of the animal that you will be capturing.

There are a number of excellent books on comparative anatomy and biomechanics that can give you an
idea how different things behave in motion. Just to name a few, Life’s Devices by Steven Vogel, published
by Princeton University Press, 1988, Exploring Biomechanics: Animals in Motion by R. McNeill Alexander,
published by Scientific American Library, 1992, and Vertebrates: Comparative Anatomy, Function, Evolution
by Kenneth V. Kardong, Ph.D., published by McGraw Hill, 2002. Do some research.

2.3.3 Capture volume

The capture volume is the amount of 3D space that your motion capture system can “see.” When using
an optical system, the capture volume never has a nice rectangular or square shape. It’s almost always
more of a tent shape with higher points being in the middle. If you’re using a lot of cameras which are
not pointing at the center of the space, then your capture volume can have a shape that is even more
irregular. You'll have to check the capture volume before every shoot. There are certainly a number of

things to take into consideration when you are setting up your capture space for the first time.

If you’re using an optical system, the number of cameras in your system is a major factor that deter-
mines your capture volume’s size. You want a good mix of camera coverage over a floor. So, if you
only have six or eight cameras (Figure 2.1), you’ll probably want your space to be as close to 10 feet
by 10 feet as possible, although it could be closer to 8 feet by 8 feet.

Figure 2.1 Simple eight camera setup

@ MoCap for Artists

Figure 2.2 Cameras set up in a zone approach

If you have more cameras, you may want to create a type of overlapping “zone” approach in which
the cameras are grouped and focused on quadrants, instead of all focusing on the center of your
mocap space (Figure 2.2), but you should still try to get the center of the space in view of the cam-
era if at all possible. This zoning approach may or may not allow every camera to see the actual cen-
ter of your capture space depending on the size of your capture volume and the number of cameras
that you have. In certain types of capture spaces it is possible that only three or four of your cam-
eras can see the center of the space and other cameras have overlapping coverage areas with them.
This type of setup is fine, but you need to check your manufacturer’s guidelines on setting up a

volume.

Find out the focal length of your camera lenses. The focal length is the distance between the lens and
where light converges when the lens is focused on infinity. The focal length controls the magnifica-
tion and the angle of view; 35 millimeter is a fairly common focal length. If you want to be further
away, you need a higher number such as 100, and if you want to be closer, you use a smaller number
such as 12. In the case of the higher number, you’ll get less light into your camera, and the smaller

numbers will create greater lens distortion. Make sure that you choose the right lens for your capture.

Also you want to know the approximate distance between the center of your capture space (or
wherever you're focusing your camera) and where the camera should be mounted on a wall or a
tripod. However, be aware that a camera lens has a depth of field (an area of acceptable sharpness).
A camera lens can focus on whatever is in the depth of field. Hence, if the center of your capture

space is within a camera’s depth of field, the camera is focused on it. The distance between the

Chapter 2: Preproduction @

camera and the center of your capture space does not have to be the exact distance that you figure
out from the focal length.

The first step in roughing in a capture space is to place markers on the floor to outline the area that
you're interested in. Next, decide what the desirable height for the edges of your capture volume
is and place markers at the height on tripods (poles, c-stands, or anything else that is tall enough).
Then, place the tripods on the outline of the capture space where markers are placed in the previ-
ous step.

The height of a capture volume depends on what will be captured. If your capture subject will be
jumping up on a trampoline, you want to increase the height of your capture volume by reducing
the capture space in terms of the square foot of floor area. The height for the edges of a capture

space is normally somewhere between 6 and 7 feet.

Finally, adjust each camera’s aim so that the markers on the floor and the tripods are seen by as
many cameras as possible. Markers in the capture space’s corners should be seen by at least two
cameras, although three cameras would be more ideal. Adjusting camera aims is easier if you can
do it with another person. While you are on a ladder to change a camera len’s aim, the other per-
son can look at what the camera is looking at and tell you in which direction the camera aim should
be moved. If you have to aim cameras by yourself, you may want to project what the camera is

looking at onto a wall so that you can see it from the ladder you are on.

After setting up cameras, you need to test if your capture volume has any blind spots. To do this, walk
around outside the capture space with an object with at least three markers on it. With three mark-
ers you can track the object and see where the markers go in and out of the capture volume. Make
sure to move it all over the space. Thus, you want to move it close to the floor and in the air to find
out where markers disappear. Once you know where the blind spots are, adjust the cameras covering
that part of the floor to eliminate the blind spot. You may need to calibrate your system first in order

to have it compute the trajectories instead of just eyeballing when markers are in or out.

There are times that covering one blind spot opens up others. When this happens you either need
to reposition your cameras and try to cover an overall smaller space, or you have to decide which
blind spot you can live with. Either way, try to make the most out of what you have, but still
remember that the better data you get, the better results you’ll have.

With a magnetic system, the size of a capture space is usually defined by the system. Hence, you
can’t change it depending on specific needs for a shoot. A magnetic system needs to be calibrated
for items in the room that may disturb the magnetic field. Calibration must be done in order to
create a corrected magnetic field and let you know where the capture space’s boundary is.

Outlining the capture space on the floor with tape helps you know when you step outside of it.

2.3.4 Shot list
The shot list is a list of all the motions that will be captured in the order that they will be captured

with critical information on each shot, such as what talent and props will be needed, if any special

@ MoCap for Artists

preparations will be required, and how long each shot will take. A shot list should be the culmina-
tion of your organization regarding the shots that you are planning to capture motions for. It is
generated by breaking down a storyboard as we discussed in Section 2.2.3 (see an example shot list
in Appendix A and on the CD).

Your shot list is for you as well as for your talent, client, and project staff. Your shot list should help
you understand each shot’s requirement, organize people and props, and find the best order for cap-
turing all shots that you need. Also the list should inform your talent of what’s expected of them
and your client of what you’ll be doing.

No matter how great the talent is they will get tired especially if there are a lot of exhausting shots
in a row. If your actor gets tired during a shoot, it will show up in captured motion data. You don’t
want your 3D hero to look tired at some points and perfectly fine at others if the character is sup-
posed to have the same silhouette or pose through all of the motions. If you can, spread strenuous
shots throughout the day, but still try to bunch them together in small groups. For example, if you
have several run motions, try to keep them together. If you also have several falling motions that

are tiring for your talent as well, move the falling motions away from the run motions.

Use the shot list to help you know on what day which talent needs to be at the capture site. You
do not want any talent to be sitting around all day long by needing them for the first shot in the
morning and the last shot in the afternoon. It is your job to group the shots that require the same
talent together as much as possible so that you can economize the amount of time that each talent
is required to be there. That minimizes the amounts of your time and cost as well. Major set
changes or stunt work also need to be figured into a shot list. For a shoot of 1 week or longer, you’ll
normally have to write several drafts of a shot list until you get all the pieces fit together. Double
and triple check your shot list before you distribute it.

Clients often want to sneak a few extra motions in on the capture day. Work it into your shot list
in a logical manner and try to stay on track. If what they want will take too much time, let them
know that it will impact the day’s shoot, but don’t refuse to do it. If they want to add another day’s
worth of shooting, it would be best to let your producer or whoever handles your negotiations

with your client talk with them about the time and financial ramifications of adding to the shot list.

2.3.5 Capture schedule

The capture schedule outlines logistics for a motion capture shoot, such as when and where cap-
tures will happen, which talent will be involved, if audio is used, and if special props are needed.
For the most part, the capture schedule is an expanded shot list. It lays out the schedule for each

day of shooting and informs which talent is needed for which shots.

The capture schedule should clearly indicate when the shoot officially starts, when breaks start and
end, and when the shoot ends. Another important role of this document is to let talent know that
they need to be at the capture site early enough to get in the mocap suits and have any type of cal-
ibration or character matching finished before the shoot starts. In that way preparation time will

not reduce capture time.

Chapter 2: Preproduction @

Be sure to have a lunch break. You can use the time to have your lunch, recalibrate the system, and
make any adjustments that the actor’s mocap suit(s) needs. Mocap subjects cannot easily slip in/out
of mocap suits, but they will eventually have to go to the bathroom. Lunch breaks are very con-
venient times for that. When they take mocap suits off to go to the bathroom and put them back
on, all the markers will shift and it will require you to recapture a T-pose, range of motion, scal-

ing position, or whatever your system needs for tracking.

Some people become uncomfortably hot in mocap suits and may want to cool off by unzipping the
suits and getting partially out of them. Try to make your talent as comfortable as possible. If you can’t
have the mocap space air-conditioned enough, let your talent unzip the suit even if that means you
will need to capture another T-pose. Have a positive attitude and consider recapturing a T-pose as an

opportunity to improve the quality of your data, instead of an unscheduled task brought upon you.

Always make enough room for any special setups in your capture schedule. If you need to bring in
a trampoline or set up a flying rig for stunt work, you have to build setup time into your capture
schedule so that everyone will know what needs to happen next and also setup time won'’t cut into

shoot time.

You want to follow your capture schedule as much as possible, but remember your capture sched-
ule is a guide. Capture schedules are not set in stone and everyone appreciates a flexible approach,
especially if they are new to motion capture. So, if you have to deviate from your schedule, try not
be stressed out about it. Be flexible.

2.3.6 Rehearsals
Rehearsals are vitally important to the smooth running of a motion capture shoot. By rehearsals, we
mean that the actor(s) will rehearse at an off-site location but not at the motion capture studio.

There are many reasons to have off-site rehearsals, so let us go into just a few of them here.

Time is money in a mocap studio. Each time you start using a mocap studio, someone has to pay
for the electricity, the salaries of the staff who works there, and the wear and tear on the comput-
ers, cameras, mocap suits, and markers to name just a few of the obvious costs. Your client does not
want to waste any part of a day in a mocap studio. While a director or choreographer is figuring
out how to approach a shot with talent, your client will be paying for the mocap staft who is not
capturing anything. That will be a large waste of money on the client’s part. Rehearsing at an oft-
site location can certainly avoid such a situation.

Some clients may swear that they are prepared although they’re not. Talk to your client about hav-
ing a rehearsal at an off-site location. If you can convince your client to have a rehearsal, it will ben-

efit you as well. You will be able to flag difficult to capture motions and foreseeable problems.

Your clients may never give you a shot list or will give you one that will change a lot when they
start shooting. Rehearsing will help the clients to better understand what they are really looking for.
It also lets the clients know if they want something that they have never thought of before until

they see it acted out in front of them. Rehearsing will help your clients to create a better shot list.

@ MoCap for Artists

You can't force your clients to have a rehearsal. If you tell your clients that you want them to have
a rehearsal because it will make your life easier it will be very unlikely that they take you seriously.
They may tell you that they are not paying you to have an easy life. On the other hand, if you
explain to your clients that a rehearsal can save their money and time, they will be more agreeable.
If you are the client, then you can of course make the people whom you work with have a rehearsal
and get ideas about how the mocap shoot will go, how much you can possibly capture in 1 day,

etc. Planning ahead and thinking things through always make the whole mocap process easier.

Many times clients will not know exactly what they want to do because they have not done motion
capture before or a member of their production crew is not familiar with it. There is also a case
where the clients have done it several times before and know what to expect, but they are not used
to your way of doing things. You will encounter individuals who have seen mocap on YouTube
and assume that they know how it’s done. It is your job to educate them about how motion cap-
ture works and how your studio should run in a non-hostile, cooperative manner. Also be flexible
enough to make them comfortable by relaxing your methodology and adding a little of theirs.
You’ll find out you get much better results when everyone understands what other people are

doing and why. You’ll also make your methodology better.

2.3.7 Props

One area that people tend to work on at the last minute is the props. There are a variety of good
and bad reasons that props are added at the last second, but you normally have to accept it and try
to incorporate them into what you’re doing. By props we mean “markered” props that will be cap-
tured. They should be regarded as actors. The reason to think of them this way is that you will be
capturing their motions and they will be moving in relationship to your actor(s).

Because props are usually moved in relationship to the actor(s), special consideration needs to be
given to where to place markers and how many to place. You usually need at least three markers,
but think about using more to help with occlusion problems. Occlusion will normally happen if
the prop that you are using is picked up by an actor or handed from one actor to another. Unless
you know for sure that the markers will always be seen by the cameras, it’s best to double up on the

markers. More about props and markers will be covered in Chapter 6.

‘When you are deciding where to place markers, think about where the prop will be handled and
what other markers on the actor will be in the same vicinity. If the prop is a rifle, the butt of the rifle
will be up against the actor’s shoulder. In this case, you wouldn’t want to put a marker on the butt of
the rifle (Figure 2.3), but a few inches up on the top side of the stock would work well (Figure 2.4).

Figure 2.3 Improper marker placement

Chapter 2: Preproduction @

Figure 2.4 Better marker placement

Another consideration for props is their relationship to other props that are captured on the set. If
you are capturing a sword, you will of course need to pay attention to the relationship between the
sword and the actor’s hand that’s holding it. If the sword hits another sword, you will also need to
pay attention to the relationship between the two swords. You do not want markers to get flung oft

when the swords collide.

Think about these relational issues when placing markers on your props. Test capture your mark-
ered props to see if marker placements are working and also if props are reflective enough to cause
an issue with your motion capture sensors. If a prop is too shiny, then ask the prop’s owner if it is
OK to cover the prop up with gaffer’s tape or paper tape. Also, before you start attaching markers
on a prop, talk to the prop’s owner about potential damages to the prop. Some tape or glue will

take the finish off of a prop’s surface and damage the prop.

When you attach motions to a 3D character, a prop should not be treated as a natural rigid exten-
sion of the character’s hand because it is not. When people use hammers, golf clubs, etc. the items
will swing and move in their hands. Thus, a grip, or how an actor holds a prop in the hand, can
change in the course of an action. That’s why props cannot be regarded as rigid extensions of
hands. There are a few different types of grips, but let’s look at two of the most common ones. One
is the grip that you use when you are pointing a prop at someone. It is more of a golfing grip where
the thumb is open and the object lies diagonally across the palm. The other is the grip that you use
when you are holding a prop upright. It is more of a hammer grip where the thumb is normally
closed and the object lies along the palm parallel to the knuckles. There are obviously other ways
to grip items, but these two can exemplify the point that an object moves within the hand and
changes its orientation with respect to the hand. Do not simply parent a prop object to a hand of
a 3D character. Spend time making sure that you properly track the props and the actors and then

learn good editing techniques to take the above fact into account.

A very useful technique for editing the relationship between a prop and a hand is the use of what
MotionBuilder calls “Auxiliary Effectors” or what Nuance calls “markers.” An auxiliary effector
(marker) can be attached to one object and then influence another object. You can create one that
is attached to a prop and have it influence a hand so that the hand moves a little to compensate to
the prop’s movement but not a lot. Locating an auxiliary effector (marker) close to the web of the
hand between the thumb and forefinger usually works well (Figure 2.5). This method does not
work for every conceivable motion but provides a lot of flexibility in editing the relationship

between a prop and a hand. It is a good place to start.

@ MoCap for Artists

Marker placement between
thumb, forefinger, and prop

Figure 2.5 Object—hand relationship

2.3.8 Suits and markers

In the preproduction stage it is important to prepare markers and mocap suits to which markers (or
sensors) will be attached. Be sure to have more than enough markers of the right size and enough
mocap suits and shoes that fit the capture subjects. Markers, suits, and shoes should be clean and in
good condition. Repair or replace damaged ones. On each capture day, before the talent and clients
arrive, have the suits, shoes, and markers set out and ready to be put on.

Let’s look at each item with a little bit more detail.

You never want to run out of markers. To be sure that there will be enough markers, make an esti-
mate of the number of markers that you will need and add about 30% to the number. Have that
many markers in a usable condition. The extra markers can be a lifesaver in case some markers get
lost or damaged or there is a last minute change. Marker surfaces can get oils from our fingers by
excessive handling and also get scratched or rubbed off by anything that comes in contact with
them. Both cause marker surfaces to be less reflective. Add more reflective tape if this is the case.

If small optical markers will be used for facial or hand tracking, prepare a visual guide to show
where the markers need to be placed. Pasting tiny markers to the capture subject’s face with glue
and tweezers is time consuming and the placement is critical to getting good, repeatable results. If
you are going to do several days worth of facial capture, create a facial mask with small holes that
indicate the locations of markers. Place the mask on the actor’s face, mark the positions of the holes
with an eyeliner pencil, remove the mask from the face, and paste markers on the marked spots.
The mask allows you to use the same marker placement every day. A mold taken from the actor’s
face gives the best result.

Make sure that the suits are properly laundered, their zippers work, and there is no tear in them.
You want your talent to wear a suit that is tight rather than loose. That can stress the suits, especial

seams, and some get torn, although mocap suits are made of stretchable materials.

Velcro is normally used to attach markers to the mocap suits. Stock various types and sizes of

Velcro pieces to attach markers to the suits and repair any problems with the suits.

Chapter 2: Preproduction @

Shoes, headbands, and wristbands can be considered as part of the mocap suit since markers will be
attached to them. You may choose to attach markers to them permanently and use them as “pre-
markered” shoes, headbands, and wristbands.

Try to get measurements of your talent beforehand. If you are using professionals, they will be able
to give you all the relevant measurements. Make certain that there will be suits, shoes, headbands,

and wristbands of appropriate sizes waiting for them on the capture day.

That’s about all we can think of for preproduction. Everyone approaches preproduction in a
slightly different way but it is always important to figure out every detail as much as possible in the
preproduction stage. We are now heading to the next chapter on creating a pipeline which is

closely related to what we have discussed in this chapter.

This page intentionally left blank

Various types of information that contribute to a project move through a production pipeline.
The information changes its form while moving from one step to the next (e.g., a script turns into
a storyboard; marker data into skeletal data). In a large production environment, teams of special-
ists are involved in the production. Each team is responsible for a section of the pipeline. In a small
production environment, a single individual or a small number of crew members are in charge of
the entire pipeline. No matter what size a production environment is, it is crucial to have a well-

designed and well-tested pipeline that projects move through smoothly.

A project pipeline starts with preproduction and ends with post-production. Appendix B shows
the middle part of the pipeline that is being used at the University of Texas at Dallas and the Ohio
State University as of 2007. The diagram starts with calibrations (in the upper left corner) and ends
with rendering. It is an example of a mocap production pipeline that consists of a number of steps,
software applications, and file formats. Depending on the type of projects that you will work on

and the hardware and software that you have, your pipeline may look different from the sample.

In this chapter, we will discuss key points for designing a pipeline. We will skip over preproduction
here since it has been covered in Chapter 2 but the preproduction phase is the first and the most
important step in any pipeline.

3.1 Setting up a Skeleton for a 3D Character

The character in a game or animation is ultimately where you want the mocap data to go to. The
skeleton that goes inside the character is what you will work with in your motion capture system.
There are quite a few different ways to look at the skeleton.

The first questions are “What is going to be done with the skeleton and at what level?”; “Is the
character going to be primarily key-framed with some motion capture?”’; “Is the character going
to be all motion capture?”; “Will any editing be done in a motion capture specific package, such

as MotionBuilder or Nuance?”; and “What does my final output format need to be for my client?”

There are times when the skeleton needs to be built in a certain way specified by the mocap software.
Check to see if the software you are using expects a specific stance or the joints oriented in a specific
way. One of the old conventions is letting the y-axis of a joint point to the next joint (i.e., face down
the length of the bone between the joint and the next joint), the z-axis point forward (i.e., toward
you if you look at the skeleton from its front), and the x-axis be the cross-product of the y- and z-axes.

Some riggers use a similar approach but may let the x-axis of a joint point to the next joint, instead
of the y-axis. Consider these differences before you get too far into your process. One area where
you may ignore the rule about the joint rotation axes is the foot or ankle joint. We usually make

@ MoCap for Artists

this one orthogonal to all the other bones so that the joint’s z-axis still points forward. This can
make editing and rotation of the foot easier.

Make sure all the joints have a major axis consistently facing down the length of a bone. These days
the x-axis is often used as the major axis but the y-axis was most often used in the past. The spine
is one of those areas where you may map one variable to several joints. If you do not orient the
rotation axes of the spine joints consistently, the joints will bend in inconsistent ways.

There are multiple ways to handle the spine. How many bones should be used? A good rule of
thumb is that four will work OK but seven or more is better. One is never acceptable and two will
just barely work. The back can curve in more than one direction along its length. Try this: bend
over to touch your toes. Isolate your back and try to bend your chest and head up to look in front
of you. You will notice your lower back is in almost the same shape but the upper back is now in
a much difterent shape. Trying to replicate or track every vertebra is usually not feasible. So try to
give the skeleton enough joints to allow the mocap software enough flexibility to get the best solu-
tions it can. A bit of trial and error is usually involved.

The shoulder joints are unique because they can translate as well as rotate. They have a wide range
of motion, which makes them more prone to dislocation than other joints. Most animation soft-
ware is not able to handle the shoulder joints properly and treat them as three degrees of freedom
(DOF) rotational joints. However, there are locations that the arms cannot reach without the
shoulders” ability to translate and rotate. An additional joint can be created between the shoulder
joint and the spine to track the rotation and translation of the shoulders.

Generally the character is already designed and modeled before the shoot. So, the proportions of
the 3D character have already been determined before the data is captured. The best results come
from a skeleton that matches the proportions of the person in the suit as closely as possible. If you
can use the proportion of the capture subject, take the marker data in a T-pose (Figure 3.1) and use
that as a basis for the lengths of the skeletal segments (see Section 4.2.2 for more details).

Figure 3.1 T-pose

Chapter 3: Pipeline @

Think about where the editing will happen. Let’s suppose that your skeleton has finger joints for
key-framing but you are not going to capture any finger motion. Your mocap skeleton does not
need the finger joints unless you plan to add the finger motion inside the motion editing package.
If the editing (key-framing in this case) will happen in a 3D animation package, then leave the fin-
ger joints out of your mocap skeleton since they will never be touched and there is always the pos-

sibility of accidentally mapping data to them.

3.2 Calibrations

The first type of calibration is preparing the mocap system so that it can tell where all the sensors
are. To do this with an optical system, you usually have to first tell the cameras where they are and
correct for as much lens distortion as possible. With a magnetic system, you would be making cor-
rections for other electromagnetic fields that may be interfering. The second type of calibration is
for the person(s) and/or object(s) being captured.

3.2.1 System calibration

System calibration is usually pretty straightforward. It normally involves some type of calibration
device, such as a wand that has some pre-defined markers on it. These markers are placed at a set
of distances from each other so that when the software sees the markers in one camera, it will be
able to tell what is which. When multiple cameras all see the markers, the cameras will start to fig-
ure out where they are in relationship to the other cameras (Figure 3.2). Once the cameras know

where they are, they can triangulate a marker that two or more cameras see.

Some systems also have a secondary device that sets up the world coordinate system’s axes and ori-
gin. The world (global) coordinate system is initially set by one of the cameras and all the other
cameras’ locations and orientations are computed from that. The coordinate system setup allows
you to decide where the world coordinate system’s origin should be, what type of system (e.g.,

y-axis up) it should be, and which direction each axis should point at.

Remember that once your cameras are set up, you do not want them to move at all. Something as
small as a constant vibration in a wall can move a camera. The camera would be skewed from its
real position. When it is used with the other cameras to determine the positions of markers, the

system will generate bad data. Thus, the slightest movement of a camera can aftect data greatly.

Mount your cameras up on solid walls or grids if possible. If they are on tripods, create barriers
around the tripods to keep people from accidentally leaning on them or bumping them. Place no
camera close to a client area or a high traffic area such as between your control room and your
mocap space. Always remember that even something like a slamming door can shake a camera and

cause the camera to fall out of calibration.

The better your calibration is, the cleaner the data will be when it comes out of your system.

Calibrate in the morning, lunch, and at the end of the day. If you are using an optical system make

@ MoCap for Artists

Figure 3.2 MoCap calibration wand

sure in the morning to allow the cameras enough time to warm up (usually 10 —20 minutes). Having
three different calibrations per day can help, especially if a seemingly insignificant amount of dis-
placement creeps into your mounted cameras’ locations. Even the afternoon sun can move your
cameras by heating up the roof of your building, making the roof expand, and warping the building
structure to which the cameras are attached. It is also a good practice to check your data whenever
possible just to see what kind of quality you are getting. Remember that once the calibration starts

to go bad, there is not much you can do with the data unless you stop everything and recalibrate.

3.2.2 Subject calibration
Your capture subject is whatever you are interested in capturing. It can be as mundane as a hat, or

as complex as half'a dozen people performing extremely complex interacting motions.

If you view most mocap systems as initially totally ignorant of what they are tracking, that is the
right approach. You need a way to tell the mocap software what it is looking at and what the rela-

tionships among the markers are. This is done with a subject calibration.

The subject calibration normally takes place with the subject being in a T-pose, the subject
exhibiting the range of motion (i.e., maximum flexibility) of each joint, and a generic skeleton (or

a template). Let’s look at each.

Chapter 3: Pipeline @

In a T-pose, a subject should stand facing down an axis of the mocap space. We commonly use the
positive z-axis but different systems have different axis orientations. The feet are about shoulders’
width apart and face as directly forward as possible. Arms are straight out to the sides with palms
down. The head should be facing forward and level, not looking up, down, left, or right, but
straight forward. The body should resemble a T (Figure 3.3).

Figure 3.3 Subject with markers in a T-pose

A shot of the capture subject going through each joint’s range of motion is called a “range of
motion trial.” The software uses a T-pose and a range of motion trial to correctly identify and
track the markers on the subject, and create better data. The range of motion that you ask the sub-
ject to do is as simple as moving each joint through all the DOF. Have the subject do that for all
the joints that will be tracked, including the spine and the neck. If you are not going to track fin-
gers, there 1s no need for the subject to do range of motion for the fingers. It is a common practice
to have the subject start and end the range of motion trial in a T-pose.

Once you have the data of a T-pose in the optical system, identify the markers. A label (or an indi-
vidual name) should be assigned to each marker. The labels are used to create a statistical model
that your software will later use to identify and track markers on its own. Also the labeling step
gives you a chance to check that all the necessary markers are in place and in their proper locations.
Label all the markers including the ones that drop in and out due to occlusion. Discontinuity is
common in the waist area when the subject bends a lot. The markers on the front waist are often
occluded by the thighs bending up against the stomach.

@ MoCap for Artists

When all the markers are labeled, run the subject calibration process. The process fits your system’s
generic skeleton to the labeled marker data of your capture subject in a T-pose in a range of motion
trial. Different systems have different methods for this but the main concept is the same. First, the fol-
lowing is given to the process as input: a generic definition of a skeleton, the marker and skeleton rela-
tionships (i.e., relationship between each marker and the skeleton segment that the marker is associated
with), a T-pose, and a range of motion trial. Next, using statistical measurements and comparisons on
given data, the marker and skeleton relationships in the generic skeleton are optimized to best match
the actual locations of the markers on the subject. The proportions of the generic skeleton are changed
to match the physical dimensions of the captured subject. Thus, the subject calibration process stretches
or shrinks and rotates the generic skeleton’s segments so that the skeleton fits the capture subject’s pro-

portion and posture. The T-pose is important in this process. So, have the best T-pose possible.

If you are going to capture objects, it is very important to record their placements. Either take
reference photos or keep notes. Develop placement rules that you always use when you place
objects. Rule 1 may be making the marker closest to the capture subject the beginning of a prop
and the marker farthest away the end of the prop. Rule 2 may be placing the beginning of the prop
at the center of the capture space while the end of the prop points at the positive z-axis. If you use
only three markers on a prop (although we say four markers are minimum and six markers are
recommended) it will be hard to tell a bat from a sword or a walking stick and which end 1s which
when you look at data. If you do not keep track of these seemingly minor things in a prop heavy
environment, they will drive you crazy. Always keep good notes and think about how you will
know the orientation of the object in every shot. It is a good idea to use a vinyl tape to outline an

object on the floor and replace the object inside the outline at the beginning of every shoot.

If you are going to capture a prop that has no joints and no, or little, flexibility, such as a bat, you
do not need to capture any range of motion or track it as a multi-jointed object. If your prop has
a lot of flexibility, like a golf club, you can create a skeleton for it and track it as a multi-jointed
object. If you have a prop with jointed sections, such as nunchakus, create a skeleton, capture its
range of motion, which will create a better statistical model, and track it as a multi-jointed object

(read Chapter 6 for marker setup for props).

3.3 Capture Sessions

Capture sessions are very reminiscent of being on a stage or shooting live action. Everyone has to
know when to start their part of the process and when to stop. A capture schedule should be cre-
ated and followed. It should have a complete set of times for T-poses, changing props, changing
camera setups, camera calibrations, lunch break, and any other necessary business. It also should
dictate who and what will need to be on or off the mocap stage.

3.3.1 Audio and video references
It is usually a very good idea to make both video and audio reference. A video camera can be set

up in the corner of the room. This camera can also be used as a “slate” camera. Using a clapboard

Chapter 3: Pipeline @

(or something else large enough to be written on) the slate camera lets you record what shot you
are on and which take of the shot you are currently capturing. The camera should be in a fairly
generic location where you get good coverage of the mocap area but not in the way of the mocap

crew or the subjects being captured.

For video and audio, always get the best resolution that you can. If you are recording to tape, be
sure to have extra tapes with you that are already dated and numbered. Also always have a few blank
tapes lying around just in case. Before the shoot starts check your video equipment and make sure
it records both video and audio. Use a tripod. Do not shoot by holding the camera. Avoid exces-

sive zoom in and out.

It is possible that audio will be played during a shoot, such as music for dancing or a sound track
that people will act to. Take an output of that and bring it into one of your audio channels so that
you have a clean recording of the audio. Use the other channel for live recording so that later you
can hear onset comments and concerns. Just as a note, always pretend that you are being recorded
and assume that your boss and the client (or your professor) will listen to everything on the tapes.
It is possible that once you get comfortable with the mocap process and the people around you, you

may say something you do not want to be on tape, so, watch out.

A note about time code: If you can successfully push time code onto your video track, audio
track, and into your mocap data from a common source, do it! There is no reason not to use
time code but you will need a dependable time code generator and a reliable way to feed it
into your video/audio system and mocap system. If you are going to have synchronized time
code in audio/video and mocap data, make sure it will not crash the mocap system or “hic-
cup,” causing time code to be no longer in synch across applications.

3.3.2 Organization

Having everything organized and everyone informed about how to be ready for each shot helps the
shoot go well. The capture schedule (detailed in Section 2.3.5) for the day should be one of your
guides, and everyone in the production should have a copy. There are usually last minute changes,
so be prepared to run new copies every morning and hand them out. Any changes should be high-

lighted or explained so that the production staft and talent know what to expect.

Make certain that your props are in order and in a logical place. If you are going to be changing
props out a lot, do not leave them in another building or on a different floor. Keep them on set if
you can. Cover them up so that the mocap cameras will not see markers on them. Having markers

and mocap suits ready for the day’s capture is also important.

Get into the shoot early on the first day and have everything turned on. It is good to let everything
warm up and calibrate, even if no one has shown up. It is one less thing to do. If you find a damaged
or broken cable, or some other problem, you will have time to fix it before everyone else shows up.

@ MoCap for Artists

Have an “emergency” cart in the mocap space. It is a storage cart that contains supplies for repair-
ing or replacing markers and various types of tapes, such as reflective tapes, gaffers, and double-
sided toupee tapes. (We recommend double-sided toupee tapes for contact with human flesh. It is
durable and sticky.) Check if everything (e.g., tapes and glues) that comes in contact with human
skin is hypo-allergenic. Even if the packaging says so, it never hurts to test it on someone just to
make sure. Some people have horrible reactions to latex and some of the tapes have latex in them,

so pay close attention to them.

If you are having talent brought in or are having a large group of people, make sure that they are
taken care of. Provide a light breakfast, lunch, dinner, or whatever is appropriate. Always have
plenty of water on set for the talent as well. Take a little initiative and see what type of snacks or
candy the talent may like in order to give them an energy boost or just to allow them to munch on

something they like in between takes.

3.3.3 Preventing occlusions
‘With an optical system some occlusion is not preventable but making the effort to reduce occlu-
sion will result in cleaner data. Let’s look at some ways to prevent markers from being occluded.

One common way occlusion happens is having too many capture subjects in a shot. Many times there
are too many capture subjects in a shot who are not interacting with each other. If it is possible to
break the shot up into several shots with fewer capture subjects, do it. If they all need to be in a shot
together for interaction or timing, you will just have to spend extra time in post-processing.

Whenever possible, ask capture subjects not to put their hands directly over a marker. This is not
always possible but asking them can help in the end. Another thing to avoid is impeding the per-
formance of the person being captured. When you work with dancers, do not give them too many
rules. Just let them perform. Having to think about their performance and all the rules you gave can
be distracting. The same goes for anyone who is trying to create a good performance. They may
position their hands in certain ways that make the mocap crews cringe because of all the occlusion.
However, forcing performers to restrict their performance will cause the performance to suffer. It

is balancing good performances with avoiding occlusion.

If the motion you are capturing is fast paced with lots of action, or if it is for background charac-
ters, you probably can get by with some occlusion since it is not the focus of what you are creat-
ing. If a particular action will be the focus of the final camera shot, work to reduce any possible

marker occlusion. If occlusion persists, try variations of the motion.

Props can be made more marker friendly if they are created as frames and not as solid pieces. One
example is a table. If a capture subject is going to only lean on the table, you do not need a table-
top. You only need the frame of the outside edge of the table. If a capture subject is going to place
the hands down on top of the table, there are a couple of options. One option is to use a very loose
wire mesh over the top of the table. The other is to use a platform (such as a tripod) that has a board
attached to the top at the same height as the table and in the position where the subject will make

Chapter 3: Pipeline @

contact. The reason to do this is to have as little physical material as possible between any markers
and the cameras. Normally cameras are placed above the mocap space looking down. If a capture
subject is next to a regular table with a solid tabletop, the table will block some of the cameras from
seeing the subject’s legs and feet. Minimizing this blocking helps prevent occlusion. Every little bit
of extra clearance helps and having just one more camera see a marker can be the difference

between usable and non-usable data.

3.4 Cleaning Data

The majority of systems write out marker data and some systems write out skeletal data. Both need to
be cleaned. Data cleaning both is basically the same. Either there is bad data that you need to remove

and replace with better data or a best guess, or there is no data and you will need to create something.

As mocap systems get better, these kinds of problems are disappearing. The software is getting bet-
ter at guessing what an occluded marker would be doing based on other markers around it and fil-
tering out low- and high-frequency noise. But until these techniques become 100% reliable, we
still have to clean data and spend some time trying to fix what should not be in the motion.

The most common problem in the data cleaning is gaps in data. You may let the software figure
out the best way to fill in gaps in the data but inspect what it does. The software results are usually
acceptable but when they go wrong, they can go very wrong. So, when the result is not accept-
able, try another method, then another. As a last resort, try fixing the problem by hand. Place the
data where it is supposed to be. Exhaust all the other options before doing this because it can be

quite time consuming. Check your software and see what kinds of tools are available.

Another problem that often shows up in mocap data is spikes. If you look at skeletal or marker data,
you may find values that form sudden peaks or suddenly shoot oft in a strange direction. The best
solution is to simply chop those sections out or use your software’s filtering algorithms to take the
spike out. With Euler angles (which will be discussed in Chapter 12) it is sometimes difficult to take
out spikes, but again, the software should be able to handle quite a bit of that for you.

One common problem in mocap data is “shaking” when you need someone to be standing still. It
seems that a group of markers are basically staying in the same area but slightly shifting around in
every frame. There are numerous reasons for this and there are also several approaches to solving
it. One option is purposely creating a data gap by deleting the shaking data and filling in the gap
with an interpolation method. For instance, if you know that a foot is on the ground and should
not be moving for a certain period of time, delete all the shaking data of the foot in the section and

perform an interpolation between the values at the beginning and end of the data gap.

Another option is reconstructing the trajectories of the affected markers in the section by chang-
ing parameters for the reconstruction algorithm. The markers may become stable on a second pass.
Yet another option is to run a filter across the affected markers.

The level of detail you need to clean your data largely depends on the type of product your final

product will be. If you are working in film or broadcast, each shot will be rendered using a camera

@ MoCap for Artists

pre-determined in the preproduction phase. You cannot change the camera freely. If you did, the
continuity would be missing from the final product. You need to edit the characters’ motions based
on how they look through that camera. That is often an advantage. For example, suppose that the
mocap data of a character’s hands is bad and the hands is bent sideways. If the camera does see the

hands, there is no need to fix the data.

In a video game and other interactive media, the player (or user) has full control of the camera and
can look at the characters from any angle. The player can navigate through the entire environment
and get close to any characters. You have to clean the data from top to bottom and pay enough
attention to the background characters’ motions as well as the main character’s. There are no places
you can cheat. The one luxury with games is that shots are normally very short and have a single
character. There are “full motion videos” or cut scenes with multiple characters and complex
motions but the player does not have control over the camera in these pre-recorded animations.
We will discuss cleaning data in more detail in Chapter 4.

3.5 Editing Data

There are two types of data to edit. One is marker data, and the other is skeletal data. Because
marker data is translational data and skeletal data is translational and rotational data, translations and
rotations need to be dealt with differently depending on the data type. We will look at both types
after a brief talk about hierarchies.

The hierarchy is a system of relationships among elements where each element is a subordinate (a
child) of a single dominant element (a parent). The element at the top of a hierarchy is called the
root. Each element (except for the root) has one parent and an arbitrary number of child elements.
A transformation applied to a parent is applied to its child as well but a transformation applied to a
child is not applied to the parent. Geometries, markers, and joints are often organized in hierar-
chies. For example, suppose that there are two entities, A and B, in 3D space and A is parented to
B. Thus A and B are in a parent—child relationship in a hierarchy. If you translate B by 5 units, A
will also move with B 5 units. If you move A 5 more units, B will stay in place and will not move.
(See hierarchy movie on the CD.)

Marker data is normally organized in a hierarchy in which all of the markers are children of the

root and none of the markers are parents of other markers. It is a flat hierarchy (Figure 3.4).

In a skeleton, which is a hierarchy of joints, the root is normally the hips. Building off the hips are
the legs and the spine. The spine goes up until the neck and shoulders/arms branch off. It is a more
complicated hierarchy than a marker data’s hierarchy (Figure 3.5). It is often beneficial to have a
node above the hips, called a “reference,” as the root, instead of having the hips as the root. This
allows you to make changes on the whole skeleton without changing the transformation values of
the hips or any other joints. For example, if a skeleton is placed and keyed at a desirable location in
an environment using a reference node and if mocap data is imported onto the skeleton, the skele-

ton will keep its location keyed in the reference node.

Chapter 3: Pipeline @

Figure 3.4 Hierarchy
of a marker data set

Let us start talking about editing marker data. If you are using an optical mocap system, marker data
is a collection of the x-, y-, and z-coordinates (or x-, y-, and z-translation values). None of these are
dependent on the others, so if the x-coordinate is changed, it will not affect the y- or z-coordinate.

For instance, let us suppose that the y-axis is the vertical axis and that we want to move all the

@ MoCap for Artists

Figure 3.5 Hierarchy of a skeleton

markers up 5 feet in the air in order to have a character walk on a 5-foot tall platform. Select all the
markers of the character and add 5 feet to the y-coordinates. Then the markers will be 5 feet in the
air. A much better way to do this is to select the root node that is the parent to all of the markers
and add 5 feet to the root’s y-coordinate. Changing one y-coordinate (the root’s y-coordinate),

instead of multiple y-coordinates (all the markers’ y-coordinates) moves all the markers up 5 feet.

An issue that you may face is translating a character in one continuous shot. For instance, a char-
acter is supposed to walk and then step up onto a sidewalk but the stepping up action was never

captured. The action needs to be created by editing walking data. This is a challenging case.

If a vertical translation is added to the whole character at the moment it is supposed to step up, the
character will look as if it were magically lifted up. If blending alone is used, the character will look
like it’s on an escalator. For a better result, apply both translation and blending. Add emphasis to
the hips and chest so that the character will show the effort of pushing off the ground to get up to
a higher level. Another approach is to use mocap data to rough the motion in and then key-frame
the stepping up action building in the right level of effort.

Chapter 3: Pipeline @

Now let us use a joint in a skeleton to think about editing rotations. Rotations are more difficult to
work with because we use Euler angles. The x-, y-, and z-rotations of a joint are not independent
from each other like the x-, y-, and z-translations. Thus, if you change the y-rotation, it may affect

the x-rotation or the z-rotation, depending on the order of rotations (see Chapter 12).

If a character’s arm needs to rotate to a certain position, the action added by data editing should move
the arm to the position in a realistic manner. A linear interpolation from the original rotation angle to
the new rotation angle makes the action mechanical and unnatural. Apply slow in and slow out and
make the action look more fluid and natural. Also let the action take place in an appropriate amount
of time. If the action takes too long, it will look like slow motion. If it is too quick, it will also look
wrong. Keep trying different timings until you find the timing that looks best for the specific action.

Since a skeleton is a set of joints in a hierarchy, rotating a joint in a skeleton rotates all the descen-
dent joints (the joints that are below the joint) in the hierarchy, for example rotating a shoulder
joint will move the upper arm, lower arm, hand, and fingers. Move one of your arms above your
head and see how it affects your balance. Try that in a neutral balanced position (e.g., sitting down)
and a precariously balanced position (e.g., standing on one leg). You will notice that if you move
a character’s arm, you need to adjust the character’s balance. If the spine is rotated, it will move the
head and arms as well. Counter rotate the head and arms to correct the character’s balance. Editing

skeletal data will be detailed in Chapter 5.

Motion editing is the closest thing to animating in the mocap production pipeline and a fine eye
for motion and balance is needed to make the editing results look believable.

3.6 Applying Motions to a 3D Character

When mocap data is cleaned and edited, it is time to apply the data to a 3D character. This means
that you need to define how data relates to the character’s skeleton. There are multiple ways to do
it. Let us look at data application methods for both marker data and skeletal data.

Let’s start with marker data. Marker data requires you to assign markers to the joints in a skeleton
directly or indirectly using an intermediate skeleton. An example of the direct approach is bring-
ing marker data into Maya and applying it to a skeleton there. An example of the indirect approach
is bringing marker data into MotionBuilder and applying it to a skeleton via an intermediate skele-
ton, called an Actor. (The former example will be detailed in Chapters 6, 9, 10, and 11. The latter
example will be detailed in the second half of Chapter 4.)

If you are applying marker data to a skeleton either directly or indirectly, you need to let your appli-
cation know which markers are associated with which segments of the skeleton (i.e., which markers
move and rotate which joints). First, create a character’s skeleton in a T-pose and match it to the mocap
data of your capture subject in a T-pose. At this point, the skeleton is probably larger or smaller than the
marker data. Resize the skeleton if you are using a direct method without an intermediate skeleton. If
you are using an indirect method, scale and adjust the intermediate skeleton to deal with the size

difference. Secondly, let the application know which marker should move which segment of the

@ MoCap for Artists

skeleton. And finally, retarget the motion to the skeleton of your final 3D character. If you try to fit
marker data to the skeleton and tackle retargeting issues at the same time, it can get too complicated,
especially if you are new to mocap. Try to conquer one problem at a time. Take a layered approach.

Let’s look at skeletal data. Skeletal data is applied to the skeleton of a 3D character directly. There
are several issues to consider in order for this to work. Before we look at some of the issues, let us
call the skeleton in the skeletal mocap data the “source skeleton” and the skeleton of the 3D char-
acter the “target skeleton.”

The first issue is the joint names. Each joint in the source skeleton and the corresponding joint in
the target skeleton should be identically named if you simply want the skeletal data to be imported
onto the target skeleton.

The second issue is the local rotation axes of joints. If the local rotation axes of a joint in the source
skeleton and the corresponding joint in the target skeleton are oriented differently, the joint rota-
tion will be messed up. The local rotation axes of each joint must be oriented identically across the
source and target skeletons to make any sense out of the motion.

Sometimes these issues have to be solved in the mocap software and other times it is easier to cre-
ate simple utilities (e.g., scripts) to take care of them. When these issues are sorted out, the retar-
geting issue still remains. Retargeting is a very common problem and usually seen as a normal part

of the process. It can be frustrating at times, but with practice it becomes easier and easier.

Retargeting is making data of one skeleton work for another skeleton of a different size or proportion.
For instance, if the data of a capture subject (source) is applied to a 3D creature (target) with long legs
and a short torso, the creature’s feet will not fall in the proper place. You need to “retarget” the feet
so that the footfalls match. Scale the source skeleton up until the source and target skeletons have the
same length between the waist and feet bottom. There are times when you want the hands to match
up more than the feet. In that case, hands should be the focus of your retargeting. There is no single
strategy that works for every case and different strategies are required for walking, crawling, hands
important, feet important, and other cases. Retargeting will be discussed more in Chapter 5.

‘When setting up a pipeline, check if the data type that comes out of the mocap system and the data
type that goes into your 3D package match. Unfortunately, you usually have to make the mocap
system happy and use the type of skeletons that it spits out unless you have a more advanced system
that will allow you to import or tweak joints from another 3D package.

3.7 Rendering and Post-production

Once all the motion is applied to 3D characters and the editing is finished, it is time to look at
the motion by either loading everything into the game engine or rendering all the frames using the
camera that has been set up in a 3D application based on cinematographic decisions made in the
preproduction stage.

Chapter 3: Pipeline @

It is nice to see the motions you worked on inside the game. Depending on the software and
pipeline, motions are loaded into a game several times so that the designers, directors, and producers
have a chance to see how motions look and how they transition. This gives you feedback on what
will need to be changed.

‘When frames are rendered in a 3D application, a virtual camera “films” the shot. The camera should
be set up for each shot based on the storyboard, animatic, or progression reel, whichever has the
latest shot decisions. Rendering generates a still image for every frame of a shot. Each still will have
a name and a number so you can keep track of which shots and which frames have been rendered.

Before you render all the frames of your project using the full resolution (i.e., the resolution of your
final product), do a pencil test. A pencil test is rendering frames using a lower resolution (e.g., one
half or quarter of the final resolution) to test the camera, motion, texture, lighting, special eftects,
and other elements of your animation. If you plan to use time-consuming rendering algorithms
(e.g., ambient occlusion and subsurface scattering) for your final rendering, use a faster rendering
option and a smaller resolution for the pencil test. This may seem like an extra step that you can
skip but it often keeps you from wasting a lot of rendering time on full-size images that you will
need to re-render. You will almost always find something that needs to be fixed in your first pen-

cil test. Repeat pencil tests until everything is worked out for the final rendering.

In the preproduction stage, think about the aspect ratio. High-definition (HD) TV screens with
16:9 aspect ratio are replacing standard definition TV sets with 4:3 aspect ratio at homes and busi-
nesses. If you plan to use 16:9 aspect ratio, create a storyboard using 16:9 aspect ratio. Look at
a motion using 16:9 aspect ratio. The 16:9 aspect ratio leaves more space on both sides of the screen
that you can fill up with extra characters, props, or a background. Use the selected aspect ratio for
pencil tests and the final rendering. Be prepared to capture everything you need for the project
before you go into the mocap space.

When you come to the final rendering, render in layers and passes. Layers and passes are composit-
ing issues and do not deal directly with mocap but can play important roles in reducing rendering
time and improving final image quality. If you can render each character in a separate layer and each
attribute (e.g., diffuse reflection, specular reflection, and shadow) in a separate pass, do so. For
example, if your main character needs more backlight to separate him from the background, you
may need to re-render (or simply alter) one of the passes of the character, instead of re-rendering
everything in the shot. In this way you will have more control over your final image quality and be
able to create a more visually compelling piece.

Once the frames of all the shots are rendered, bring the sequences of images into a video editing
application and compile them into a single image sequence that has all the scenes and shots. Then
synchronize it to the audio tracks. This can be tricky, so try to use an easily identifiable sound or
the start of someone talking to help with matching the data. The mouth starting to open with a
voice is usually a decent place to start. Inch it back and forth until they match. If the frame rate of
the audio and the frame rate used for rendering do not match, the audio will begin to skew over

time. Scaling the audio or the image sequence by multiplying it with the appropriate factor

@ MoCap for Artists

matches the frame rates but the sound quality or image quality will suffer. Avoid mismatched frame
rates by making decisions about frame rates in preproduction. When you have synchronized images
and audio, output the sequence as a movie file (e.g., an .avi and .mov file). Apply a compression
method if you need to reduce the file size.

After going though your production pipeline, all the pieces will be together in your final product.
It is time for the work to be seen by others.

The very first thing you need to do after capturing data is cleaning and editing the data. You want
to do as little data cleaning and editing as possible. Good preproduction, especially a well-thought-
out shot list, and the best calibration possible help you to generate good data. That reduces the need
for data cleaning and editing. However, there is always some need for data cleaning and editing
caused by the limitations of the capture system, space, and capture subjects’ physical abilities, and
other unpreventable reasons. So, you need to know some techniques for cleaning and editing data.
In the first half of this chapter we will focus on cleaning and editing marker data; in the second half
applying marker data to the skeleton. (Editing skeletal data will be covered in the Chapter 5.)

4.1 Cleaning Marker Data

In this section we’re going to go in depth on cleaning motion data. We will spend a lot of time here
because the concepts and practices in this section are very important to getting good motion.

4.1.1 Types of data

Different types of mocap systems generate different types of mocap data. It is important to know
what kinds of problems the type of data that your system generates can have. Let’s think about
marker data that is generated by optical and magnetic systems and skeletal data.

4.1.1.1 Optical marker data (translational data)

Optical marker data generated by the optical mocap system is the simplest type of mocap data. It is
translational data, that is, the information on the positions of markers that move in space and time.
The cleanliness of optical marker data is heavily dependent on the cameras being calibrated well
and all the markers being inside of the calibrated volume. The optical system does its best when it
can see and track all the markers. When no camera can see a marker for a period of time and all or
some of the cameras start seeing it again, there will be a gap in data where the marker is invisible
to the cameras. The information about the marker’s position is missing in the gap. The majority of
cleaning optical marker data is filling gaps in data where the cameras could not see some markers.
(We will look at a few methods for filling in gaps soon.)

4.1.1.2 Translational and rotational data
Data generated by the magnetic system is different from optical marker data: it has information on
both rotation and translation of tracking sensors. The sensors can be followed when they are inside

of an electromagnetic field generated by the transmitter source. Having the field properly calibrated

@ MoCap for Artists

for any potential issues inside the field, such metallic objects in the space that may distort the field,
is the key to getting quality data. There are a few methods for cleaning this type of mocap data (rota-
tional and translational). Because of the rotational information contained in the data, cleaning rota-
tional and translational data is more complicated than cleaning translational data. However, data
cleaning methods work fairly well on translational and rotational data if a capture subject stays inside

the calibrated magnetic field.

4.1.1.3 Skeletal data

Skeletal data comes directly out of skeletal systems, most of which are based on optical mocap sys-
tems. Skeletal systems fit a skeleton inside a cloud of markers to generate joint rotation angles.
Skeletal data has a full skeletal hierarchy of joints where the hips (root joint) have translational and
rotational data and the other joints have rotational data only. (There are types of skeletal systems
that allow the back and other body parts to have both translational and rotational data, in addition
to hips. The best of these systems give you more flexibility than the ones that allow only the hips
to have both translational and rotational data.)

If markers are incorrectly tracked, problems may arise in skeletal data. For instance, if a hip marker
is not tracked properly, that can affect not just the hip motion but also the entire body motion. If
a shoulder marker 1s missing, that can severely change the motion of the arm attached to the shoul-
der. When such problems happen, you have to either try to retrack the motion in post-processing
or try to edit the motion, which is both difficult and time consuming. Pay attention to the outputs
of skeletal systems and know what types of tools are available to deal with issues in data.

4.1.2 What to clean and what not?
What do we need (not) to clean? This is one of the hardest questions to answer. We have touched

on this earlier, but let’s go into more detail now.

4.1.2.1 What not to clean?

One of the obvious pieces of motion that won’t be in final product is a T-pose. T-poses give an
easy view of all the markers and help the system and you to identify markers. They are not in your
shot list or storyboard. T-poses are often added to the beginning and ending of a shot to help with
marker identification, but those are cut from the final motion. So, you don’t need to clean T-poses.

If you are working on a motion that will be seen in a static camera shot, then you only need to clean
the motion data for that camera shot. Only what the camera sees will be on the screen. So, there is
no need for cleaning things that won't be seen. For instance, even if your camera moves and it keeps
framing only the character’s face and upper torso (i.e., you are using a dynamic close-up shot), then
there is no reason why you need to clean data for the character’s legs. Check what the camera sees
using the aspect ratio that will be used to render the final product and determine what needs to be
cleaned and what not.

Most mocap systems want to track and identify all of the data markers that they expect to see, no

matter how many markers are actually in the mocap volume. The systems are usually designed to

Chapter 4: Cleaning and Editing Data @

solve for a set of unknowns. If a system is unable to find some markers it will try to create them
where it thinks they should be. It does so by taking very unreliable fragmented data and identify-
ing it as missing markers. As the result, on the edge of the mocap space you tend to have a number

of small segments of data. These usually cannot be cleaned.

Let’s think about the motion data of a capture subject walking into a capture space, stopping in the
middle, and then walking out of the other side of the space. When the subject is outside the space,
the cameras cannot see the markers. As the subject approaches the space and starts to enter, various
markers begin to appear to the cameras and are identified. Much of this data is compromised at first,
but as the subject gets into the mocap space, it starts to solidify and become useful.

Because the data is very shaky at the very edge of the space where some markers are visible and
others are not, you should discard this part of the data. You probably can identify the existing
markers and recreate some data for some of the missing markers, but it is a difficult task since each
marker usually moves at a different rate or in a slightly different direction than the other markers.
Keep the frames that have all the markers and cut off the frames that have an incomplete number
of markers but try not to cut off too much.

4.1.2.2 What to clean?

The best approach to data cleaning in general is to clean the data as much as possible at the marker
data level. You need to try really hard to clean your marker data as best as you can if your client
can’t tell you exactly what will be in a shot (e.g., your client hasn’t decided which camera position
will be used for the shot). Cleaning marker data until it becomes the best it can be will create a

good foundation for the motion no matter what your client decides to do with it.

If your motion will be used in a video game or other interactive application where the player/user
has full control over the camera (i.e., your character can be seen from any camera position), then

you have to clean everything as well.

Clean a motion using a camera position, move the camera, check the motion in the new camera
view, clean the motion again if you find a new problem, move the camera again, check the motion

again in the new camera view, ... keep repeating that until the motion looks good from any angle.

It is tedious to clean data thoroughly. But having good data will give you better results down the road.
If you decide to not clean the data well and rush through the process, you can get into trouble with
faulty data later on, and often the best way to fix it will be going all the way back to the marker data
and repeat the process all over again. Take your time and clean your data in the right way.

4.1.3 Labeling/identifying

All markers need labels or identifications associated with them. Labels are usually short character
strings that allow you to know which marker belongs to what part of the body. Sometimes labels
are numbers that are usually logically grouped for arms, legs, and other parts of the body. Either
way mocap systems need to know which marker belongs to which body part and most systems rely
on you to give them the information. Some systems automatically identify markers by themselves,

but we are going to take the scenario of having a system that does not.

@ MoCap for Artists

‘Why is labeling important? It is possible that an optical system does not see a marker for the entire
duration of a motion due to occlusion. Also it is possible that an optical system mislabels a marker
if the marker re-emerges after being occluded for a period of time. Labeling allows you to identify

problems like these by letting you see each marker through time and space.

Labeling also allows you to make sure that all the markers that you need are in a scene without get-
ting confused even if extra markers (or objects that appear to be extra markers) are in the scene.
The optical mocap system always tries to identify a marker and goes to great lengths for that. It may
assign a marker label to anything if it loses the original marker. For example, let’s suppose that you
have a few extra markers left out on a table (i.e., they are in your scene but not part of it). Because
you can easily tell that they are not part of your scene, you leave them in. Your subject covers up
one of the wrist markers. It’s possible the mocap system decides that one of the extra markers on
the table is the missing wrist marker and identifies it as such. You can see the problem easily if all
the markers are labeled. But if markers are not labeled it is probably not so easy since all the mark-

ers look the same.

Labeling can help you improve the continuity of a marker’s trajectory as well. If a marker is occluded,
there will be a gap in your data. Marker labels let you know which marker has a gap in its data. Filling
the gap improves the continuity of the marker’s trajectory. Filling data gaps is a big part of cleaning
data.

Another type of common problem that needs to be fixed by cleaning data is overlying data.
Overlying data occurs when an optical mocap system decides that a marker exists in two places at
once and gives the same marker label to two pieces of data segments that overlap in time. Let us
explain how overlying data can happen by giving you an example. Suppose that there is a marker
placed on a capture subject’s waist. The subject bends down and the waist marker is occluded. The
subject is crouched over and then starts to crawl forward. Now several different cameras can see the
marker from different angles. A computational error can make the marker appear to be two mark-
ers in the same waist area and the system concludes that somehow the same marker exists in two
places at once. The marker data ends up having two overlapping segments. One segment has good
data. The other one has slightly skewed data. You have to decide which segment belongs to the real
marker and which one to a ghost. Looking at how the marker position is before the occlusion starts
and after the overlying data segments end gives you some basis for deciding which data segment

should be kept and which should be removed.

One other common problem is marker swapping that occurs when two markers’ labels are
switched. Let’s say you have a marker on the back of the head. You lean your head back to look up.
The head and upper back markers come in close contact. After that moment the mocap system
decides that the head marker’s data is the back marker’s and the back marker’s data is the head
marker’s. You need to find out where this swap occurs and swap the labels back so that they are

associated with the correct markers.

Correcting marker swapping requires either retracking a section of the data after correcting the

labels or “cutting” the marker data where the swap occurs. Cutting divides your marker data into

Chapter 4: Cleaning and Editing Data @

two segments. One segment contains the data before the cut and the other one after the cut. Now
you need to change the marker identification of the segment after the cut to be the proper identi-
fication. In the case above, you need to cut both the head marker data and the back marker data
where the swap happens and correct identifications for the segments after the swap.

4.1.4 Data cleaning methods

There are two major types of possible data cleaning. One is cleaning marker data that is transla-
tional data for optical systems and translational and rotational data for magnetic systems. The other
is cleaning skeletal data that is largely rotational data with a small amount of translational data.
There are some common methods of how to attack the data cleaning.

4.1.4.1 Eliminating gaps

The most common problem with optical mocap data is the gap caused by an absence of data or by
removing an irregular peak that is a result of incorrect solution for computing marker locations.
Gaps caused by the absence of data can occur for many different reasons, but occlusion is probably
the most familiar one. One of the places where markers suffer from occlusion most frequently is
the hands. A gap in the data looks like Figure 4.1. Gaps can be overcome in a few different ways.

Figure 4.1 Gaps in mocap data

The quickest and most direct way to fill the gap is using linear interpolation (Figure 4.2). Linear
interpolation is connecting the last good data point before the gap and the first good data point after
the gap with a straight line between them. There is no ease in or ease out but a straight line filling
the gap. So, the resulting motion may look mechanical for that section.

@ MoCap for Artists

Linear
Interpolation

Figure 4.2 Linear interpolation

Another way to fill the gap is using spline interpolation (Figure 4.3). The type of spline most com-
monly implemented for a graphical data editing tool is a cubic spline defined by the positions and
tangents of two end points. Spline tools normally match the tangent of the curve’s beginning point
to the tangent of the last data point before the gap and match the tangent of the curve’s end point
to the tangent of the first data point after the gap. Thus, the positions as well as the velocity

| insert

Spline
interpolation

Figure 4.3 Spline interpolation

Chapter 4: Cleaning and Editing Data @

(the rate of change in position) are interpolated by the spline interpolation method while only the
position is interpolated by the linear interpolation method.

Since spline interpolation uses more information from the data before and after the gap than the
linear interpolation it provides a more organic curve to fill in the gap. Spline interpolation usually
works well, but because of the nature of spline that interpolates the velocity as well as the position
you may end up having a segment that has a lot of unwanted wild motion over a small area.
Widening the gap by deleting small amounts of data before and after the gap and then applying
spline interpolation will give you a smoother curve (i.e., a better result).

One other way to fill the gap is to add data by hand. It is not as tedious as you might think and this
method can give good results. To do this, first you create a spline curve that fills a gap and then add
as many control points as you need onto the newly created curve (Figure 4.4). The positions and
tangents of the control points can be adjusted to create the motion that you want. This method gives you
much more control over the shapes of the curves to fill in gaps than using splines with no additional

control points.

Figure 4.4 Control point

It’s also possible to use a sample of similar data to fill the gap. Let’s say you have a marker on your
head that goes missing for a few seconds for some reason. It would be sensible to think that you
could “borrow” the data from a different head marker and plug it in (Figure 4.5a). They are, after
all, on the same body and therefore moving in the same direction and speed. The problem with
this is that the markers may be rotating around an axis with an arbitrary orientation (Figure 4.5b).
The rotation axis can be changing its orientation over time as well. This method can work OK at
times, but you need to be very careful with using it because movements of markers are not so pre-
dictable. A better approach is the rigid body, which we will discuss in Section 4.1.4.3.

@ MoCap for Artists

Marker
S

Good
Markers

Figure 4.5a Borrowing data

Where marker
should be

Where marker
ended up

Figure 4.5b Problem with borrowed data

4.1.4.2 Eliminating spikes

Another issue that often crops up with any type of mocap data is what’s called a “spike.” The spike
is a portion of data that suddenly leaves the normal range of the data (Figure 4.6). This results in
skewing your data and causes a sudden jump in marker data that will eventually make your char-
acter look as if it suddenly jumped or twitched. Spikes are very easy to spot and also very easy to
get rid of.

When you look at a graph of marker data a spike usually stands out as a sharp peak pointing up or
down. Select a small segment around the peak and delete it (Figure 4.7a). Simple linear interpola-
tion will usually fill in the resulting small gap fairly well (Figure 4.7b). You may decide to simply
move the data point at the top of the spike instead of creating and filling in a gap. Either way, spikes
can be fixed quickly.

Chapter 4: Cleaning and Editing Data @

[S5m Gop] [st Sogment__|[_ Remove Segment_|[_Resct Sogment [Swap vith varh
120,
£0.00 . n
. :Illl:-III“IF.I't-I 1-'.IF'I|I1Ii| II|-='iIi||'I|'I -';.'III '-I-'lri--i'ii-i I-I-r-: I_Hiil'lll..lii--‘l-i; = ' - M—‘n_

Figure 4.6 Data spike

_5

[Segment] Gap || Spit Segment || Remove Seoment || Reset Segment || Swap with Mark

§

|

i
4

]

ki

Figure 4.7a Spike to be removed

Helpful Hint: When removing bad marker data do not get sloppy or remove too much good
data. However, removing a small amount of good data on either side of the bad data often
yields a better result when you recreate deleted data.

@ MoCap for Artists

Filled in linear interpolation

0,00 SRR SR e St e

Figure 4.7b Deleted spike filled in

There are algorithmically more sophisticated methods that require more mathematical computa-
tions but often provide better results with less manual labor than the methods that we already
looked at. Let us now take a look at those. First we’ll look at the rigid body to fill a gap and then
filters to get rid of peaks.

4.1.4.3 Rigid body
The rigid body is a good method to try when a data gap is wide and none of the methods described

in the previous section works well.

A good place to use a rigid body is a section of a body that is rigid (e.g., the head) or relatively rigid
(e.g., the rib cage and hips). It is because when a “rigid” body section moves, the markers on the
section move with it without changing their relative position among them. On the other hand,
when a flexible part of a body moves, for example an arm, the relative position among the mark-
ers on the arm changes as the arm moves. A hand is an OK place to use a rigid body because the
metatarsals (bones in a hand) can move independently (but not much).

Creating a rigid body is like creating a polygon using markers. You need at least three markers to
create a polygon (Figure 4.8a). If you have only two markers (Figure 4.8b), then it won’t work well
since the polygon can rotate freely around the line defined by the two markers. One marker

(Figure 4.8c) does not define any orientation at all.

The markers that you select define a rigid body and the rigid body’s motion is derived from the
markers. When one of the markers in a rigid body is hidden, missing data will be created using the
position and orientation of the rigid body and the position of the marker with regard to the rigid
body before it disappears.

Chapter 4: Cleaning and Editing Data @

: three
* defining

markers

Figure 4.8a Three markers

two defining
— a— markers

-
Rigid /
Body

Can have rotation about line
between the markers

Figure 4.8b Tivo markers

one marker

\

No other markers to
help create data

Figure 4.8c Oune marker

@ MoCap for Artists

To use this method, in addition to the “bad” marker(s) that has a data gap, select at least three
“good” markers with no gap. (The number of good markers can be four, five, six, or more.) You
need to make the selection in a section of data where the “bad” marker is not bad (i.e., it is not
missing data). All markers, both good and bad markers, need to be rigidly bound to each other. In
other words, they don't flex, bend, or move in relationship to each other. Create a rigid body using
the selected markers.

If not enough markers are selected to create a rigid body, there will be some problems. An exam-
ple is a rigid body of four markers on the head (Figure 4.9a) where two of them have a gap to fill
in. Let’s suppose that you create a rigid body using four head markers when the subject is standing
in the middle of the mocap space looking forward. The subject now turns around and two of the
head markers are occluded. If you use the rigid body the result will not look right for your motion
(Figure 4.9b). It is because when only two markers are left, the rigid body doesn’t have a third

oducer Perspactive

Figure 4.9a Rigid body

Where markers >y
end up

Where markers
should be

Figure 4.9b Rigid body with bad marker placement

Chapter 4: Cleaning and Editing Data @

marker to orient itself and the rigid body can spin around the line defined by the two markers that
are still visible.

One last word of caution: When creating a rigid body, make sure that the markers are all
present and at correct locations. If a capture subject starts outside the capture volume and
then comes into it, the markers at the beginning are all over the place and it is not a good
choice to set up a rigid body there. A better choice is when all the markers are visible and
obviously in a correct relationship to each other. The software is usually not smart enough
to know where the markers or rigid bodies should be, so use your best judgment.

4.1.4.4 Filters
The filter is a mathematical application that smoothes data by reducing low- or high-frequency
noises, detects and removes sudden changes in data, or changes other properties of the data. There

are a few different types of filtering algorithms for mocap data.

Why do you need filters in the first place? Why is motion jittery and almost never 100% dead on and
correct? The answer to the second question usually lies in the accuracy of the hardware (physical
equipment) that generates raw data and the mathematical algorithms implemented for the software that
processes the raw data into a more useful one. There is always an inherent amount of error in the hard-
ware and software. The error gets into data and becomes evident in the motion. From afar, the motion
will look very accurate, but if you get close to the markers you may see them jiggling and moving
slightly. Even with the best calibration this can occur. Low-pass filters remove jittering by not allow-
ing high-frequency noises to be passed into filtered data. That’s one reason why we may need to run
filters. Another reason is spikes in data. When a marker is invisible due to occlusion or some other
cause the mocap system can make a wrong guess and create a spike in data. Low-pass filters can remove

spikes (Figure 4.10a and Figure 4.10b) much more quickly than the manual method we talked about

Spike before
filter

Figure 4.10a Data spike

@ MoCap for Artists

Spike after
filter

Figure 4.10b Filtered data spike

in Section 4.1.4.2. When a calibration is poorly done, high-frequency noises tend to be compounded.
An excellent example is the Butterworth filter, which does a remarkably good job of smoothing out

spikes without smoothing the rest of the data too. Low-pass filters remove high-frequency noises
(Figure 4.11a and b).

High frequency noise
before filter

Figure 4.11a High-frequency noise

Low pass
filter applied

Figure 4.11b High-frequency noise filtered

Chapter 4: Cleaning and Editing Data @

Each filter has its own function and settings that allow you to change the filtering conditions. Each
generates a different result even if it’s applied to the same data. There are several filters that are
implemented to perform multiple tasks, for example, remove both low- and high-frequency noises.

You need to try different filters and decide which one solves your problem with the best result.

Be aware that too much filtering can deteriorate your data, instead of improving it. For instance,
smoothing filters work well to make your data look more stable if there is a lot of marker shake.
But also it can make your resulting motion look too smooth. Look at the quicktime or .avi file on
the CD. Notice the foot twisting with an over-exaggeration of smoothing.

One of the major reasons why we capture motion is to get the subtle characteristics of balance,
poise, and motion, and apply it to something later. A large part of what makes our motion look
“human” or at least alive is in how our muscles react to move our body. It’s not in a linear curve or
even necessarily a smooth curve all the time.

Once you start smoothing data, you change all the velocities and accelerations, as well as positions.
If you don’t stop where you should, filtering can make the motion appear no longer real. Although
at times it’s critical to get rid of the jitter that’s usually inherent in most mocap systems, you need
to be judicious with smoothing. Try to use the absolute minimum filtering that you can. Never
overdo it or the results will make your final product look “floaty” and strange as if your character
were skating through syrup.

Some people will run filters only on the upper body markers and not on the lower body in

order to make sure the feet stay in the best position.

4.1.5 When to stop?

This 1s a good question and one that you will have to figure out yourself. It really depends on what
level of cleaning you're looking for. Let’s look at a few different scenarios.

When you only want to see your motion for either shot blocking or to get an idea about how the
shot will look, don’t worry too much about filtering marker data. This is not your final motion, so
you don’t need to fix everything at this point. In this case, it is a good idea to apply the marker data
that 1s not fully cleaned to a skeleton, look at the motion on the skeleton, and find where problems
pop up. Go back to the marker data and fix the parts of the data with the problems. If there are
some problems that cannot be solved by working on the marker data, then you need to edit skele-
tal data. Going back and forth between marker data and skeletal data can help you decide what to
fix, where to fix, and when to stop.

When you want good motion because you need for someone else to see it, and you don’t want

him/her to think you slapped it together, it’s best to run a few filters across it and make sure there’s

@ MoCap for Artists

no marker swapping or mislabeling. You probably need to do this on a shot by shot basis. Do not
kill yourself over little things. However, if anything immediately pops out to you, it’s not a little
thing; it’s a big enough problem that it stands out. Whenever anyone asks us “Is this a problem?”
We say “If you’ve noticed it, it’s probably a problem.” The feet and hands are usually the places that
are the most prone to small errors. Make sure the feet are stable and the hands are not slightly shak-

ing. You may have to remove some data and replace it for both of these examples.

You can expect the most tedious data cleaning task when you want to perfect your mocap data and
say “I cannot do anything else to it.” Remember that just like key-frame animation you could
spend all your time tweaking and changing the data. You could burn yourself out or drive yourself
crazy. Give yourself an acceptable standard, and don’t go above that unless you have extra time,

which you probably never have.

Get someone else to look at your motion critically and ask if it’s good enough or if he/she sees any
problem. Remember that you are dealing with mocap data of human motion most of the time and
that all humans are experts at observing human motion. We are much more familiar with human
motion than motion of animals, for example dogs and cats. However, it is often difficult for us to
pinpoint what is exactly wrong when there is something that looks odd. Try to find someone who
can spend time examining your motion and tell you what she/he thinks, instead of just saying

“Yeah, it’s great.” You want objective opinions of other people.

Even after you have moved to the next stage (or a much later stage) in your pipeline, do not be
afraid to go back to the marker data and make changes on it. Remember that with optical data there
is always the 2D camera data to go back to as well. So, no matter where you have gone to in your
pipeline, you can always start over from the very beginning if necessary. If you are using a system
that does not allow you to go back to earlier forms of the data, always save original data into a file,

make a copy of it, and edit the copy.

4.2 Applying Marker Data to the Skeleton

In this section we will go over the process that takes your cleaned marker data and attach it to a skele-
ton that you have created. What you will get at the end of the process is a skeleton with a motion
driven by mocap data. Since clean marker data is essential for good motion, marker data should be as
clean as it can be. We are going to use a pipeline that is designed with Maya and MotionBuilder
(Appendix B), but the process should be similar to that in a pipeline with other software packages.

To apply marker data to a skeleton in MotionBuilder we will go through a couple of steps. In the
first step we set up what MotionBuilder calls the “Actor” and in the second step we set up what
MotionBuilder calls the “Character.”

First we set up an Actor which is a set of constraints represented by body parts that can be rotated
and translated. Rotating and translating the Actor’s body parts allow markers to be on desirable parts
of the Actor. (The Actor’s body parts can be scaled, but scaling is not part of the solver.) We can
tweak the relationships between the markers and the Actor so that the markers drive the Actor’s

motion in the most desirable way.

Chapter 4: Cleaning and Editing Data @

Secondly we set up a Character that is a list of relationships and joint names. When a skeleton is
attached to the Character, the Actor feeds its motion into the proper joints of the skeleton by way
of the Character. We can adjust the relationships between the Character and Actor so that we can
get the best movements in every part of the skeleton.

You might ask “Can we forget about the Actor and the Character and just attach the marker data
directly to the skeleton?” or “Are there options to do this with other programs?” The answer to
both of these questions is “Yes.” There are other applications that use different methods, such as
the Giant Studios tools, Diva, and the PEEL solver. Even in MotionBuilder there is the ability to
take marker data and directly apply it to a skeleton, usually using a rigid body constraint, but this
is normally reserved for props or joints in addition to the primary skeletal joints.

The Actor and the Character can be considered as a pair of mediators whose handshake has to
occur in order for information exchange to happen. One mediator works on the marker data side
and the other one on the skeletal data side. When the handshake between the two mediators is per-
formed properly, the information is successfully transferred from the marker data to the skeleton.

The Actor and the Character are probably the least intuitive (hence, the most confusing) part of
MotionBuilder. However, MotionBuilder is equipped with a number of good tools for skeletal
data editing and is widely used for that purpose.

Let’s begin with setting up the Actor. We will try to explain it step by step.

4.2.1 Actor

You want to start in MotionBuilder with markers that are in a T-pose. You usually have some sort
of calibration motion or throwaway motion from the shoot that begins or ends in a T-pose. Import
a file with markers in a T-pose into MotionBuilder. You should see markers as a collection of dots
or point cloud (Figure 4.12).

Figure 4.12 Markers in T-pose

@ MoCap for Artists

Now you need an Actor. The Actor is a collection of constraints and it is important to manipulate
it to a degree that it matches as close to your marker data as possible. To import an Actor, go to the
Asset Browser, click on the Character folder in the Templates folder, and drag the “Actor” icon
onto the 3D viewer. Move the Actor over to marker data that’s your T-pose and move it around
until the hip markers fit inside of the Actor’s hips (Figure 4.13). Using the translate manipulator (T
key) on the hips lets you move the entire Actor around.

Figure 4.13 Actor over markers

Next you need to scale the overall Actor to get it close to the size of your markers. When needing
to scale everything, you can select all of the circles in the “Actor Controls” box (Figure 4.14) and

Character Controls

Figure 4.14 Actor controls

Chapter 4: Cleaning and Editing Data @

select the scale function by either clicking the scale icon or tapping the “S key.” Now rotate and
scale the different body parts of the Actors to get the best possible match to the point cloud (Figure
4.15). The upper arms often need to be rotated to better match the hands. The legs and feet also
often need to be rotated.

Remember that MotionBuilder is generic 3D animation software. It has no idea what type of data
you are using or how many markers you are using. Some of the markers that you captured in your
mocap software may not be needed in MotionBuilder although your mocap software may have
used these markers to solve some problems on its end. Sometimes these extra markers can be used
in other ways to help with the overall motion of the character. An example is a marker in the mid-
dle of the lower arm. It may not be used for the Actor setup but can be used for other purposes,
such as controlling the roll (twist) of the lower arm along the longitude axis of the lower arm.

Figure 4.15 Matching Actor to markers

Now that you have the Actor and the markers lined up, it’s time to associate the markers with the
body sections of the Actor. Click on the Actor under the Actors node in the Navigator panel. The
Actor Settings shows up with a gray figure and empty boxes. To the right of the figure is a button
labeled “MarkerSet ...” (Figure 4.16). Click on the button and choose “Create.” You will now see
several small circles appear around the gray figure.

When the body sections of the Actor are ready to be associated with the markers, select markers
for a body section and Alt-drag them into the appropriate section of the gray figure. For example,
select markers for the head and Alt-drag them into the head of the gray figure (Figure 4.17). (Since

@ MoCap for Artists

Actor Settings]
[Active | I"xkl [<tio Marker Set> 7! Markerset...
Object(s) Orienteu
Output Marker Set : | <o Marker Set> 7
Figure 4.16 MarkerSet button
[Active [Lock | [Markerset 1
Object(s)
male2_LFHD C3D:male2_LFHD
male2_RFHD C30:male2_RFHD
male2_LEHD C3D:malez_LEHD
male2_RBHD C3D:male2_RBHD

Figure 4.17 Associating markers with body sections
MotionBuilder has a fairly comprehensive overview of this process in its documentation we are not
going into every detail here.)

Once all the body sections of the Actor are associated with appropriate markers “activate” the
Actor by checking the “Active” box in the Actor Settings. You can play the animation and see the

Chapter 4: Cleaning and Editing Data @

Actor move with your marker data. A range of motion are the best to test this setup. If markers have
been associated with a wrong body section, you will see the Actor moves in an obviously weird
way. Mistakes tend to happen in the hands and feet segments. When you find a marker (markers)
associated with a wrong body segment of the Actor, move it to a different body segment. Even after
you finished assigning the markers, you can still tweak the positions of the markers by translating
and rotating the Actor’s body segments. (See .fbx file of markers and Actor on CD.)

4.2.2 Skeleton

Now that your Actor is moving, it’s time to attach your skeleton to a Character and “characterize”
it as MotionBuilder calls the process. But before we start explaining how to set up a Character let
us give you some hints on how to build a skeleton that works well in MotionBuilder. No matter
which 3D software you use to create a skeleton, there are some rules that seem to make
MotionBuilder happier. In this section we will be telling you a few hints largely based on those
implicit rules that we have discovered. (A new version of MotionBuilder will probably be out by
the time you read this book. The new version may have a different set of preferences. So, as with
everything in this book, use the following as a guideline but not as a be all end all.)

Hint 1. When you are going to build a skeleton, marker data in a T-pose can be brought into your
3D software package and used as a guide for the proportion of your skeleton.

If your 3D character can have the proportion of the marker data (i.e., your capture subject), build
the character’s skeleton using the capture subject’s proportion. In that way, there will be less need
for skeletal data editing, especially retargeting limbs. However, being able to use a capture
subject’s proportion for a 3D character is rare. You are more likely to be building a skeleton for a
3D character that’s been modeled or based on a model sheet of a 3D character that’s been drawn
but not modeled. Either way the skeleton of the 3D character has to be proportioned to the 3D
character, not to the capture subject. A MEL script “marker_lookat.mel” which generates
spheres at the locations of markers is on the book’s CD. If you want to build a skeleton using
marker data as a guide for the skeleton’s proportion in Maya, the script visualizes your marker data

for you.

If possible, cast the talent whose size and proportion matches that of the 3D character as
closely as it can. Men and women are proportionally different, so are children and adults.
Capture a woman, not a man, if you need motion for a female character. Capture a child,
not an adult, if you need motion for a young character. The closer the match between the
markers (your capture subject) and the skeleton (your 3D character), the more smoothly
everything will work out. Avoid forcing MotionBuilder or Maya to compensate too much
for differences in sizes and proportions. The more that the software has to change data, the

more likely problems will creep into your pipeline.

@ MoCap for Artists

Hint 2. Add an empty node named “reference” at the top of the skeletal node.

Having a reference node helps because there tends to be a 10 to 1 scale difference between
MotionBuilder and Maya. You can apply scaling to the reference node when the entire skeleton needs
to be scaled up or down. The .fbx export in Maya has a unit conversion setting, so you can also address
the issue there, but it’s always a good idea to have the “reference” node.

Hint 3. Build a skeleton as you want to, but remember that MotionBuilder will want it to be
rotated into a T-pose.

You can build skeletons in any fashion; however, remember that MotionBuilder will eventually
need them in a T-pose. Have your skeleton’s rotations “zeroed” out in Maya so that there will be
no rotational values left in the joint rotation channels when the skeleton is imported into
MotionBuilder. Once you have your skeleton in MotionBuilder, if it is not in a T-pose, put it into
a T-pose by rotating joints. Make sure to do this before characterizing it. (Also, before the charac-
terization, make sure that your skeleton is looking down the global Z-axis.) If your character
(skeleton) is not in a T-pose before the characterization, you’ll have to use reach constraints to
make all the body positions match. That will create an unstable solution.

Hint 4. Orient all skeleton joints so that their local rotation axes become identical to the global
space’s axes (Figure 4.18).

Figure 4.18 Skeleton without rotations at joints

If you leave rotational values on the skeleton joints, you may have a problem especially when trying
to blend motions. The end result after the blend may look fine, but when you are in the middle of
using MotionBuilder’s blend tool, the skeleton may look either skewed or as if it had been rotated

Chapter 4: Cleaning and Editing Data @

90 degrees about the hips. Although you really need to see how blending is working during the
blend process, this makes it almost impossible for you to see the result of the blend until the process
is finished and rendered (more about blending will be covered in Chapter 5). In order to get all rota-
tional values out of the joints in Maya, apply “Freeze Transformations” (with every option turned on)
to your skeleton’s joints. It should be noted that this only applies to the Blend tool. The Story tool
has been added to MotionBuilder and supported more over the years. It is far more flexible than the
Blend tool. We’d suggest that you go through the tutorials on both Blend and Story tools and see
which will work best for you.

Hint 5. Name your skeleton’s joints using MotionBuilder’s names for joints.

Name your skeleton’s joints in the way MotionBuilder wants them to be named. (Please reference
MotionBuilder’s Character for these names.) Using their naming scheme makes things go quicker

although this is not something that must be done.

When you finish building your skeleton, export it out as an .tbx file. You will import the file in the
next section. (Sample Maya and .fbx files are included on the CD.)

4.2.3 Character

It is time to attach a skeleton to a Character. First, use the Merge option under the File to import
the .fbx file that contains your skeleton into MotionBuilder. The skeleton should show up in the
middle of the space. Go to the Asset Browser and look in the Character folder in the Templates
folder and drag a “Character” into the 3D View window. If you like, you can drag it over your
skeleton’s hip and it will try to automatically characterize the skeleton, but this will only work if
everything is named as MotionBuilder expects it.

If you notice that your skeleton is extremely small once it’s imported from Maya into
MotionBuilder, then select the “reference” node. Go to the “Properties” window and change
all the scale sizes to 10. You should now have a skeleton that seems to fit in the world.
Remember that Maya .fbx export allows for unit conversion or you can scale the skeleton up in
Maya before exporting. Try a few different ways to see what works the best in your pipeline.

If you don’t characterize it automatically, you’ll need to drop the skeleton joints into the appropri-
ate slots in the Character Definition tab. If you have everything named with the names
MotionBuilder is looking for, you can just Alt-drag them all down. If you didn’t follow the nam-
ing convention, you'll need to Alt-drag each joint one at a time and associate it with the proper
section of the character.

Once that’s done, check the “Characterize” box. You’ll now see a couple of questions such as if
you want a quadruped or a biped. You may even get a few errors. If MotionBuilder lets you go on,
it’s probably OK to ignore those messages for now.

In the Character pane, change over to the Character Settings and choose the Actor as your input
type and then choose the Actor that has marker data driving it as the Input Source. Click the Active

@ MoCap for Artists

box (Figure 4.19). When the Character is activated, you see your skeleton moving around with the
actor (Figure 4.20), but it may not be in the same place, and there will more than likely be some
other discrepancies. We’ll cover such issues in skeletal editing in Chapter 5.

Viewer

SISIOING

Producer Perspactive

Figure 4.19 Activating Character

Figure 4.20 Activated Character

Chapter 4: Cleaning and Editing Data @

Apply some motion and take it back into your 3D package to see if it looks OK and imports cor-
rectly. In order to make sure that you won’t have to redo it all over after doing a lot of work, look
at the skeleton with some motion applied onto it in the 3D package.

To get a motion into your 3D animation package, you must “plot” the motion to the skeleton in
MotionBuilder (Figure 4.21a). Plotting takes all the motion that’s currently just pointed at the
skeleton and bakes the translations and rotations in every frame as a key-frame. The initial dialog
will ask if you want the motion plotted on the skeleton or the Control Rig. Choose the skeleton
(Figure 4.21b). Then you see another dialog box with options. The default setting usually works
fine. So, just choose to plot (Figure 4.21c). Once the motion is plotted to your skeleton, select all
of your skeleton’s joints and export the skeleton as an .fbx (animation only) file. Exporting and
“Saving As” are two different things in MotionBuilder. Do both but only import the exported file
into your 3D animation package.

Figure 4.21b Choose skeleton

Go to your 3D animation package and first open the file that you exported the skeleton from. In
addition to the original skeleton with no motion, the file may contain the skin geometry bound
to the skeleton, 3D models of the environment, textures, lights, and anything else needed for
the scene. Now import the .fbx file that contains a copy of the skeleton with motion plotted

@ MoCap for Artists

8| Character

P inEEEE HaEE

FldepAKetis M alerande % IS5 | |

Figure 4.21c Use defaults

to it. The merge option tends to work the best, but different instances may call for you to play around
with the options. Once imported, the plotted motion should be dropped onto the correct joints of
the original skeleton and you can see your 3D character moving. You can repeat this for every shot.

Just as a note, there is no reason to just import the skeleton without skin into MotionBuilder. We did
so to give you a better look at the skeleton itself and the marker to Actor relationship. Whenever pos-
sible, export your skeleton with skin bound to it out of your 3D animation package. By importing
the skin bound skeleton into MotionBuilder you can see if the character’s arms intersect with the
torso, how far the bottom of a foot is to the ground, and other things that you can check only with
the skin bound skeleton. If you find, for instance, a character’s hand keeps going through its thigh,
you may have to play around with the marker to Actor relationship or add in an offset to counter that.

Another note is that MotionBuilder at times has trouble with some of the tweaks that are applied
to skin geometries in Maya. Applying “Delete All By Type/Non-Deformer History” to your skin
gets rid of those instances. Also there have been issues with cluster deformers in the past. If you run
into a number of problems with a skin bound skeleton that is imported into MotionBuilder, we
suggest that you create a low-resolution model that has just enough definition for edges of hands,
feet, etc. and use it, instead of the real skin geometry, while editing data in MotionBuilder.

In next chapter we will look at skeletal editing and blending in detail.

This chapter is about various ways to edit skeletal data, that is, data that’s rotational in nature. The
skeletal editing techniques that will be discussed include retargeting, blending, inverse kinematics
(IK), floor contact, rigid body, looping, and poses. Let’s start with retargeting.

5.1 Retargeting

When we have mocap data that has been applied to a target skeleton, it is very possible that the
source skeleton (the skeleton in the data) and the target skeleton do not have the same proportion.
That is almost always the case between the capture subject whom markers were attached to and the
3D character that you want the motion to go onto. Some allowances must be made for the pro-
portional differences in order for the motion to fit the target skeleton as well as possible.

Retargeting is more than just slapping the rotations and translations from one skeleton to another.
It is about trying to adjust for the proportional differences while keeping the motion from suffer-
ing, looking too stiff, quirky, or weird. Retargeting itself is a discipline and one of those challeng-

ing research areas that people are constantly working on.

The key to retargeting differs depending on the type of motion you are working on. A retargeting
strategy works well for a walking character but may not work for a character crawling on the
ground. The retargeting setup for a quadruped or non-biped creature must be diftferent from the
ones for biped humans. To deal with a variety of situations, retargeting requires sets of strategies.
We will discuss a retargeting method for a biped human here. We would like you to look at the
retargeting process as a whole and what it does, and understand why you do what you do. That
way you can develop an effective retargeting strategy when you come to a scenario that we do not
cover in this book.

5.1.1 Reducing need for retargeting

The classic retargeting problem is “We’d like to capture this actor who is 6 feet and 2 inches tall but
apply the data to the character that will be only 3 feet tall.” Even with casting, it is extremely diffi-
cult to find a 3-foot tall person for the motion (Figure 5.1). Kids do not have the same proportions

@ MoCap for Artists

Figure 5.1 Large source and small target

or move the same way as adults. Look at a book on figure drawings. You can see differences in
proportions between adults and children, men and women. Drawing in a sketchbook can help you
create differently proportioned skeletons, instead of trying to use one skeleton based on an adult
male for all of your characters.

You need to work closely with whoever is directing the mocap shoot as well as anyone else who
has a say in the final outcome. Should the 3-foot tall person act like an adult, a child, or something
altogether difterent? You will be editing motion differently for each scenario. Understand what is
needed as well as what can be done during the mocap shoot to solve possible problems before they
happen.

One method is to have a scaled-up set in which everything is larger than normal. In the set the 6
foot 2 inch tall actor should behave like a 3-foot tall person. This method works well unless you
have to mix several differently proportioned characters. Another method is to place multiple tar-
gets for differently sized characters in the mocap space. If a small character needs to reach up to hit
a target (e.g., it is going to shake hands with a taller character), it reaches a higher target while the
taller character reaches down to touch a lower target. This will get the captured motion closer to
its target but it will still require editing.

Chapter 5: Skeletal Editing @

5.1.2 Scaling a skeleton

If you are going to apply the motion of a tall person (the source skeleton) to a much shorter char-
acter (the target skeleton), what are the obvious problems? One is that a normal stride for the tall
person is much greater than the smaller person. To match the stride, first try to scale the source
skeleton down to make as close a match between the two skeletons as possible (Figure 5.2).
Assuming that the feet are normally in contact with the floor, the length from the waist of the skele-
ton to the bottom of the foot is important. This is what you need to try to match up. Do not worry
if the overall heights do not match up. In this case the waist to foot length is more important.

Figure 5.2 Same size source and target

You can scale the target skeleton up or the source skeleton down. Each will give you the same basic
results. When an end character’s size and proportion are set, you need to scale the source to match
the character rather than the other way around. Either way write down your scaling factors so that
you will use them consistently.

If multiple capture subjects who interact with each other are captured together, retargeting must
be done without scaling source skeletons or with scaling them all using the same scaling factor. If
you scale the source skeletons using various scaling factors, the target skeletons’ relationship to one
another will be skewed and none of their interactions will line up. Shaking hands is one of the best

@ MoCap for Artists

examples. If you capture two people who are 6-feet tall shaking hands and apply the data to a
3-foot tall character and an 8-foot tall character, the hands will no longer line up. This is a prob-
lem that you can overcome with retargeting to some degree. But think about it before the capture.
Instead of relying on retargeting, have the actors compensate for the size differences during cap-
ture. Preventing or reducing the need for retargeting is important.

If the corresponding joints of the source and target skeletons are in different locations, you may
see some unusual hyperextensions or the knees locking out, appearing very stiff (Figure 5.3a).
If this happens, start playing around with the scale factor until the legs look more normal (Figure
5.3b). If you are really stuck and cannot get it to work well, try letting the target skeleton be a lit-
tle larger than the source skeleton. The reason for this is that the target will always be able to reach
at least what the source reaches. If the target is smaller, you are more likely to see the joints locked

out or hyperextend.

(b)

Figure 5.3 (a) Locked out knee rotation; and (b) Locked out knee rotation corrected

5.1.3 Fixing foot sliding

Let’s suppose that your source and target skeletons are pretty close and you have them matched
up fairly well. There is no hyperextension or joint locking but the feet are still sliding a lot.
MotionBuilder and other motion editing software allow you to use a type of IK that will adjust the
target skeleton to place its ankles, balls of the feet, or toes exactly where that of the source
skeleton is located (Figure 5.4a). Do this with both position and orientation of the ankles. If you
apply this to the ankle and toe of the same foot simultaneously, beware that the constraints
may fight each other. The foot may end up with even more sliding if the ankle and toe are con-
stantly trying to push or pull the joints to match (Figure 5.4b). This is difficult to see when look-
ing at a frame, but in motion you can see if the foot is unstable and trying to satisfy multiple
constraints.

Chapter 5: Skeletal Editing @

(b)

Figure 5.4 (a) Ankle reaching source’s ankle position; and (b) Toe and
ankle reaching source’s positions

@ MoCap for Artists

When working with the feet, turn off any type of influence to the hips. Many people leave it on at
times but it is usually better not to mess around with the hip rotations and translations at all. The
reason for this is that the hips are the root of the skeleton and normally the only source of transla-
tion. If you rotate or translate the hips everything else in the skeleton is affected. That can change
the characteristics of the whole motion. Both the hips affected during retargeting and over-
smoothed data results in a motion that looks as if it had no weight at all (called “floating motion”).
This is one of the biggest criticisms on mocap, so try to avoid it.

5.1.4 Working on the spine

The spine is a difficult area to edit. Minor tweaks to it can cause large changes but sometimes it has
to be edited. You want the spines of the source and target skeletons to match up fairly well but this
is not always possible. Sometimes the source and target skeletons have spines with different lengths.
If the source skeleton can bend over and reach the ground with its arms, the target skeleton, with
different proportions, might not be able to reach the ground when it bends over. In Figure 5.5, you
can see that the target skeleton in white has a shorter spine than the source skeleton in dark gray.
The target skeleton’s hand does not reach the ground whereas the source skeleton’s hand does. This
is where you may have to use some key-frames for your retargeting and also do what we earlier
advised against, allow the hips to move. For every so-called rule in mocap, there are usually a cou-
ple of situations where you have to break it.

Figure 5.5 Source reaching the ground but not target

Chapter 5: Skeletal Editing @

In this situation, you would want the hips to dip lower so the spine and arms can get closer to the
ground. It is possible that you are using IK retargeting on the spine and hands. If the hand is sup-
posed to touch the ground or an object, it is important that hands of the source and target skele-
tons are in the same location. This means loosening everything up a little. That will allow the
target’s hand to reach the ground. Most systems allow you to key-frame these changes on and oft
so that it does not affect the entire motion. You may have to have one setup just for this action. Be

ready to have special setups for not so special cases like this.

If the back is also loosened up carelessly, it may look unnatural. If the back is not loosened at all,
the shoulder may do some strange rotations in order to get the hand where it needs to go. Play
around with these to get the best fit. MotionBuilder has stiffness and pull modifiers that can be used
to change how much different parts of the body react. Usually adjusting the back (or torso), neck,
and head gets the best possible match between the spines of the source skeleton (Actor) and target
skeleton (Character). If these are not adjusted, it may appear that the back moves as one piece and
does not curve or bend correctly. That will be very evident when the motion is put on the target
skeleton, brought into your 3D package, and the motion is rendered out.

Retargeting is one of the most difficult things to do in skeletal editing. Before going into it, be aware
that you will be required to do some tweaking. Being precise will save you from spending a lot of

time on tweaking. In the next section you will learn how to blend two different motions together.

5.2 Blending Motions

Motion blending is one of the hardest concepts to learn, so this section may get a little long.
Motion blending is taking two motions that have been applied to the same skeleton and merging
them (Figure 5.6). If you try to blend motions on different skeletons, there will be a large number
of issues that need to be taken care of. So, we will talk about blending two motions that are on the
identical skeletons. It should be noted that this is all in relation to MotionBuilder’s Blend tool and
that the Story tool may be better suited to your application.

First make sure that two motions that will be blended are on identical skeletons. The two skeletons
should have the same hierarchies and proportions. The corresponding joints in the two skeletons
should have the same names and the same orientation of the local rotation axes. The lengths and
orientations of the corresponding bones in the two skeletons should be the same. Blending is basi-
cally taking the rotations of the corresponding joints in a pair of skeletons and interpolating them.
Different bone lengths could cause the legs not to reach the ground or go through it. Different
joint orientations could cause unwanted rotations. The two motions to be blended should be on

identical skeletons but not on two different variations of a skeleton.

If you are trying to make a loop or a very long continuous motion, you may use the same motion
twice or more. Reasons to create the long motion by looping are numerous. If your mocap space
is 20ft X 20ft, the most distance you can get is someone walking across the diagonal line in the
space, approximately 28 feet. Let’s say you need your character to walk the entire length of a foot-
ball field, which is about 360 feet including the end zones. You will need to blend a 28-foot long

@ MoCap for Artists

Figure 5.6 One skeleton for multiple blend motions

walking section to itself several times over to get it to cover the entire distance. (Looping will be
more detailed in Section 5.6.)

5.2.1 Selecting a blending point

What will be blended are similar body positions and movement qualities from one motion to the
other. This is where blending can get confusing. Think of each motion as a section of time. You
have two sections of time that you want to put together. If you put them over each other, then you
have a blend area that is too long (Figure 5.7a). If you just place the beginning of one next the end of
the other, you have no area to blend across (Figure 5.7b). You want to slide one underneath the other,
just taking up enough room for a smooth transition from one motion to the other (Figure 5.7¢).

To demonstrate this, let’s think about blending a walking motion (motion A) and a turning motion
(motion B). Motion A will be a straight walk across the mocap space. Motion B will be a straight
walk that then has a 90-degree turn to the left and then exits the space as a straight walk again (.fbx
files are on the CD).

You need to find a blending point, that is, places in the two motions that are similar. It is impor-
tant to plan for blending and give proper instructions to the capture subject. Otherwise your cap-
ture subject may walk at different speeds or with different body postures in the motions that you
will need to blend. Have the capture subject walk in a relaxed manner at normal speed if that suits

Chapter 5: Skeletal Editing @

Traredabion: Lke mangadstor

Blend area

(W R

o]

- IR0

Figure 5.7 (a) Blend area that is too long; (b) No blend area at all; and
(¢c) Good blend area

@ MoCap for Artists

Figure 5.7 Continued

your project. Depending on the project you are working on, you may need to have the capture
subject walk in a peculiar way or constantly run. The important point is to have consistency.
Consistency makes it much easier for you to select blend points.

Suppose that you have one motion where a capture subject is walking at a fast pace and the upper
body is bent slightly forward, and another motion where the capture subject is walking at a relaxed
pace and the shoulders are slumped down. Thus, you have two very different paces and poses. Most
blending software does not know how to change speed or posture in an intelligent manner, that is,
it cannot correct inconsistencies between two motions. It simply lets a blended skeleton change
from one pose to another in an unnatural way.

A common blend point for walking or running is when a character has one foot on the floor and is
shifting weight across the foot. If the left foot is firmly planted on the ground, select the point where
the right foot is passing the left leg as the mid-point of the blend (Figure 5.8a). The beginning of the
blend can be just as the right foot is lifting up off of the floor and breaks contact with the floor
(Figure 5.8b). The end of the blend can be when the right foot moves ahead of the left foot and is
about to come in contact with the floor (Figure 5.8¢).

This is basically what you want to blend across. If you decide motion A is first, find the last useful
step with the left foot on the ground. By useful, we mean you do not want the beginning or the
ending of the walk to be incomplete or the mocap subject to turn during the motion. Now look
at motion B and find the first useful step with the left foot on the ground.

Chapter 5: Skeletal Editing @

CEeRGE

Figure 5.8 (a) Right foot in mid-stride passing planted left foot;
(b) Beginning of blend with right foot lifting off the floor; and (c) End of blend
area with right foot starting to touch the floor again

@ MoCap for Artists

DR —
r [13 s[rooo [

Figure 5.8 Continued

A note of caution: if a character is standing still first and starts walking, the first step is hard
to blend into or out of with another motion. From stance to step is a change in body pos-
ture and speed. The same can be said for going from walking to standing. That is even more
evident with running. It can take several strides to get up to a running speed and several
strides to stop, which are good examples of slow in and slow out. During these times, the
acceleration of the body is changing drastically as well as the body posture. When you start
to run, you throw your upper body forward, and when you are slowing down to stop, you
pitch your upper body straight up, even a little back. There are many different postural rela-
tions involved in a regular run. For a good run motion, have the capture subject start as far
outside the mocap space as possible and have the subject run all the way through without
slowing down until the subject is out of the mocap space. This should give a consistent run
that will be easy to loop or blend with other motions.

After selecting the segments of motion A and motion B that will be blended, slide the selected
segment of motion B under the selected segment of motion A until the selected segments match
up. You may have motion before or after your blend that you will not use. That is fine. Focus
on the blend section and keep it well defined (Figure 5.9a). Once you match up the selected

Chapter 5: Skeletal Editing @

segments, tighten the blend section even more by specifying the “in” and “out” points. Motion A
will end as the left foot is coming down. Motion B will begin as the left foot is coming oft the floor.
The in and out points let the blending software know where to start blending and where to end
(Figure 5.9b).

on (build Mon 03062006]pr - walk_turn_blend. {bx

CEloe

Bo

SED

£
=
4
o

F2008)pr - walk_turn_blend. (bx

JlGIOQNG

& o]

JBORR0l & R

Figure 5.9 (a) Selected sections matched up; and (b) In and end points specified

@ MoCap for Artists

5.2.2 Matching positions

It 1s possible that the two motions are not in the same space. They could be at two difterent loca-
tions. The positions need to be matched; otherwise, a blended skeleton will slide from one loca-
tion to the other as if it were on roller skates. Use of a “pivot point” or “stable point” allows
positions to be matched and a motion to be blended from one to the other in a natural way. Let’s

look at how positions are matched using a pivot point in MotionBuilder.

In MotionBuilder, select the left foot joint and Alt-drag it into the blended area. The name of the
joint shows up in the blended area (Figure 5.10). Now use the “Match Pivot” button (Figure 5.11a).
Your skeletons should align (Figure 5.11b). The blended motion should look like one continuous
motion. The last thing you need to do is to click the “Process” key to create the resultant motion
and the blending is finished.

LeftFoot

Figure 5.10 Left foot in blended area

The foot was selected as the pivot point in the example above. Since the foot is firmly planted on
the ground, having the foot as a pivot point works well. There are other cases where the pivot point
needs to be the hips or the head. Find a stable point in the motion that is “stable” in relation to the
reference. If the character is walking on its hands, one of the hands is a good choice. If the charac-
ter is in mid-air, choose the body part that is rotating and translating the least, but still going with
the motion, possibly the hips or the back. In MotionBuilder you can keep changing your pivot
point and see the results of the changes until you get the result that you like.

You can blend any number of motions by continually blending one motion with another. For each

added motion, choose a new pivot point to match positions.

5.2.3 Dealing with less than ideal cases

‘What do you do if you cannot find good places to use as a blending point in the motions that you must
blend? For instance, if the backs are in two very different poses throughout two motions, there is no
good blending point for them. If the motions were blended anyway, the back would change from one
pose to another very unnaturally in the blended motion. Use the hips or one of the back segments as
a pivot point. That will give you a much better result than not using a pivot point, although the posi-
tions of the feet will be changed wildly and you will need to lock the feet’s positions down.

How about speed changes? If you cannot reshoot, use a longer than usual segment for blending. Play
around with the length of the blend and fix the feet. Check if the blended motion looks right in

Chapter 5: Skeletal Editing @

£~y 185 (00)

(b)

Figure 5.11 (a) Match Pivot; and (b) Skeletons are aligned

terms of a balance. If a person is moving forward and stops, the stance changes, especially in the
upper body. If the balance looks wrong, make changes to other parts of the body so that the balance

makes sense for the action.

So what if you want to blend a motion of a large person and a motion of a smaller person or
vice versa? It is like Dr. Jekyll transforming into a much larger Mr. Hyde. It can be done, but
you will have to decide what part of their bodies you want to be stable. Do you want both
feet to remain in the same place as the transformation takes place? Do you want the trans-
formation to happen while he is running? Does it happen in the middle of a jump where you
can use the hips to be a pivot point and let everything else grow around it? Once you answer
these questions, then you will know how to work on the blend.

it MoCap for Artists

5.3 Inverse Kinematics

Forward kinematics (FK) is a method of animating a skeleton where the animator specifies and key-
frames the position of every joint in the skeleton. In essence, skeletal data is FK. The only differ-
ence is that skeletal data has rotational data of all the joints for every frame while FK has rotational
data for key-frames only.

Inverse kinematics (IK) is a method of animating a skeleton where the animator specifies only the
positions of the end effectors. Software calculates all the rotation angles of the middle joints in the
joint chain to reach the position of an end effector. In key-frame animation IK is usually used for

animating limbs.

3D applications, such as Maya and MotionBuilder, offer you a tool to edit skeletal data using IK
and blending IK and FK animations. We will discuss this in depth in Chapter 8.

IK solvers in MotionBuilder work all at once. MotionBuilder does not currently allow IK passes to
be layered (hopefully a future release of the software will). What this means is that it tries to reach
all the IK end effectors at once pushing and pulling multiple IK chains around. Because of this, you
may fix one problem in one area and create another problem in another area. MotionBuilder does
give you the ability to turn on or off parts of the body to be affected by IK but it still tries for an
overall fix. If you find one area fighting against another, edit one area of the body, such as the legs,
save out the data, and then re-import it to fix another area, such as the arms. A better solution seen
in other applications offers layering of IK passes that enables you to solve for the arms, legs, and
back independently and all of them at the same time.

In order to use the IK solver in MotionBuilder, you need to characterize a skeleton. Then “plot”
the character to the “Control Rig.” This creates a control rig on the skeleton that can be manipu-
lated using IK constraints. Next choose the FK/IK option. To get the data saved back to the skele-
ton, “plot” the motion back onto the skeleton in the Character Settings tab. If your motion does
not look exactly the same as it did before plotting, go to the Animation tab at the top of the inter-
face and choose “Plot All,” then plot to the skeleton.

5.4 Floor Contact
The floor contact is a useful tool. Various versions of it can be used in different situations, such as
keeping a foot on the floor, keeping a hand steadily on an object, and keeping a head constantly

looking toward something.

Making convincing contact with the floor or other objects is one of the most important aspects of
motion editing. A firm interface between a character’s feet and the floor makes the motion look
realistic. What are some ways to do this?

Some methods are broader and quicker but give a less accurate result overall. Others are more time
consuming but usually give a better look. It is very important that your marker data is as clean as
possible. The better the data coming out of your capture session, the less you will have to fix.

Chapter 5: Skeletal Editing @

One of the major reasons to fix feet is that they have been pulled a little by retargeting applied to
another part of the skeleton; retargeting is rarely a perfect fit. The software does not have the same
eye as a human, so it works on what is mathematically correct. There are times that mathematical
correctness and what we perceive to be correct are two different things, especially when dealing
with optimizing or battling IK pulls.

A quick way to fix the feet’s contact with the floor is the “floor plane” option in MotionBuilder.
When you characterize your skeleton in a T-pose, a set of virtual markers are set up on the hands and
feet. You can tell the program to never let them go under the floor plane. The markers are generally
at the heel, ball of the foot, and toe (Figure 5.12). Those push the foot up above the floor plane but
may not push it up to the same place it was a few frames before. The reason for this is that the marker
positions with regard to the floor are computed using only the translations along the vertical axis, that
is, the software just pushes everything up until it is above the floor. A foot may need to be rotated,
especially when there are multiple markers under the ground plane. However, the floor plane does
not rotate the foot. It simply pushes the foot up.

Figure 5.12 Markers at toe, ball, and heel

@ MoCap for Artists

The floor plane option can shorten the slow in and slow out of the foot motion above the floor and
make the motion look unnatural if the timing of the step is relatively slow or the foot is moved
from far under the floor. Thus, the timing of the foot motion above the floor may need to be
edited using IKs.

The floor plane option usually gives you a good starting point but always remember that if the feet
are not seen from the camera that will be used in your final rendering, you do not need to clean
them up at all.

When in MotionBuilder, make sure to characterize your skeleton in a T-pose. If the char-
acter is not characterized in a T-pose, the hand and foot floor plane markers will be skewed
and not line up properly.

Now let’s talk about a more time-consuming way to clean feet. Let’s look at the MotionBuilder’s
approach with auxiliary effectors. The auxiliary effector is created at a point, let’s say at a foot, and
then is relative to the global space, so it does not move with the rest of the body (Figure 5.13). You
can “target” the foot to lock into this position. To do so, first create an auxiliary effector when the
foot 1s making a firm contact with the floor, or move the foot precisely where you want it to be
first and create an auxiliary effector.

Figure 5.13 Auxiliary effector created at foot

Chapter 5: Skeletal Editing @

When the foot is supposed to be planted, you want the foot to “seek” the auxiliary effector. In
other words, you want the foot to be exactly on the effector but not floating around when it should
be on the floor. Use slow in and slow out as your character is stepping into and out of the position.
Do not let the foot seek the auxiliary effector when it is not close to the effector; otherwise, it will
try to pull the entire leg or body toward the point (Figure 5.14).

&

- Leg tryin
Auxiliary - ?eargh 9

goal

Effector

v

Producer Perspactive

Figure 5.14 Auxiliary effector pulling entire leg

So if the foot is working, what about the toe? You can set up an auxiliary effector for the toe or a
special constraint to keep the end of the toe from going under the ground. You need to pay atten-
tion to the toe when a person is walking, running, etc. and be sure that the toe is in contact with
the ground. When the toe and the ball of the foot are the only segments that are touching the
ground the auxiliary effector is useful.

There are times when the feet are not the only thing that you need to be concerned with. If a char-
acter is leaning against a wall and supporting its weight with its hand you need to have the hand in
constant contact with the wall and not floating around. This can also be done with an auxiliary
effector.

Another situation is your character running with its hand clutching its side. Usually this type of
motion is not dead on and you need to help the hand stay in the correct position. You can create
an auxiliary effector so it will move with the right side of the body but not stay in one place. Use
the parent—child constraint in order to constrain the auxiliary effector to the spine segment that is
closest to where the character’s hand should be (Figure 5.15). Look at the movie and .fbx file on
the CD.

@ MoCap for Artists

Figure 5.15 Left wrist’s auxiliary effector constrained to spine

5.5 Rigid Body

A rigid body, such as a sword, a bat, or a football, in relationship to a person presents another
unique situation. It can either be attached to the mocapped person and follow the person (Figure
5.16a) or separate and its own entity (Figure 5.16b). When you are working with data that may
need to be scaled, be aware that if you attach a rigid body to the skeleton and scale the skeleton,
the rigid body will be scaled as well.

If a rigid body is a separate entity, it will make things more difficult when trying to blend
motions because you will have to blend the character’s motions and then blend the rigid body’s
motions.

When editing data of a skeleton and a rigid body, first look at the data and determine which
has better positional data; the rigid body or the body part that the rigid body is attached to. More
often the rigid body has better data but not always. Secondly, have the one with better data move
the other.

Chapter 5: Skeletal Editing @

(b)

Figure 5.16 (a) Rigid body attached to a person; and (b) Rigid
body as a separate entity

5.6 Looping Motion

One of the most commonly used motions, especially in video games, is the motion loop. In this
section we will look at how to loop a motion in MotionBuilder. We will also discuss a few simple
preparations that are useful when dealing with video game motions. Even though we are focusing
on video games, the same techniques are used for large character simulations that are formulated
like a video game and use a number of stock motions.

5.6.1 Getting motion ready

Game engines have certain ways of compiling elements together as specified by the hardware and
software. Consult with your programmer and know your application’s specifications. The basic
rules below should apply to any game engines.

@ MoCap for Artists

First, create small motions that will be spliced. You do not want excess or wasted motion. An
example would be someone drawing a pistol, firing, and holstering the pistol. Break it into three
shots. The first shot is drawing the pistol, the second is firing the pistol, and the third is holstering
the pistol. The beginnings and endings of the motions should all line up. The shots should flow
from one into the other without having any wasted frames. Wasted frames will create a longer wait

before the reaction on the screen and therefore slow down the game play.

In the above example, it is normal to never see a character draw a weapon or holster it. Often the
weapon just appears. In order to make the action happen as quickly as possible, there are even times

when there is no firing animation. Be sure to know what is needed for your project.

Second, align all the motions in the same direction. The general rule is to face the motion down
the positive z-axis. Let walking, running, and any other actions move along the positive z-axis and
then take all the z-translation out of the motions. If you are working on a walking motion, edit it
so it will look as if the character were walking on a treadmill. The forward motion will be added

back in when the game player tells the character how far forward to run and for how long.

Thirdly, have standard beginning and ending frames. In the case of a loop, the beginning and end-
ing frames should be the same pose or a pose that is one frame off so that the loop can be repeated
seamlessly with no jumps or stutters in the motion. Other motions, such as a transition from a walk
to a stop, require a different end pose. A stopped or idle pose is a possibility. Think about what
motions need to transition into what motions. An important question is if you really have time to

run a transitional motion or if you want to jump directly into the next motion.

5.6.2 Setting up the loop
Let’s take a walking motion and turn it into a loop. There are different ways to do this but we are
going to step through MotionBuilder to show a general way of creating a loop.

5.6.2.1 Walking down the z-axis

There is a walk motion, walk.fbx file, on the CD. Load it into MotionBuilder. We will use this for
the rest of this chapter in setting up a loop. The first thing we need to do is to face the character
down the positive z-axis and have the character walk down that axis.

Characterize the skeleton. (See Section 4.2.3 for characterization.) Now plot the character to the
Control Rig (Figure 5.17). This will give you a control rig so that the skeleton can be manipulated
and the result can be key-framed.

Now we need to swing the entire animation around to make the character walk down the positive
z-axis. When the file is opened, the skeleton is walking diagonally across the space because the

Chapter 5: Skeletal Editing @

Character

Figure 5.17 Plot to Control Rig

diagonal distance of a square floor is the longest distance and gives us the most straight line data.
We want to turn this entire animation around. We do not want to rotate, translate, and key-frame
the first and the last frames of the motion. We will use the Control Rig’s Character Ctrl: Reference
node that will rotate the character over the entire time frame. It is indicated by a circle located
between the character’s legs at the bottom of the Character Control panel (Figure 5.18). Once you
have this selected, turn on the rotation handle, and rotate the skeleton so that it is pointed down
the positive z-axis.

5.6.2.2 Taking out the translation

We are now ready to pull the translation out of the motion. This is called “zeroing out the motion.”
The first thing we need to do is release the effector pinning on the ankle. If this is not done, the
character will try to keep the feet in the original position instead of allowing them to move when
the hips translation value is reset to zero. Select each ankle’s auxiliary effector in the Character
Controls and choose Release under the Effector Pinning section (Figure 5.19).

@ MoCap for Artists

Character Controls

Character_CtrliRt

Producer Parspective (xRay) Rotation: Liss mat
o~

) [l 000 N

Asset Browse

Figure 5.19 Effector Pinning Release

Select the translation mode by clicking the translate mode icon on the side or pressing the T key.
Go to the first frame of the motion (frame 70 in our case) and select the Hips Effector. Change the
z-value in the Global Translate box to 0 (Figure 5.20).

Go to the Key Controls, change from base layer to Layer 1, and press the “Key” button. This will
create a zeroed z-translation for frame 70. If you play the motion, it will now start at the center of
the space and walk forward. The next step is to do the same thing for the last frame of the motion.
Go to frame 200, set the z-translate value to zero, and then key it on Layer 1. Make sure that the
Hips Effector is still selected and that you are changing the effector’s value. Also make sure that

Chapter 5: Skeletal Editing @

l:l\-:n'ul er Controls

Figure 5.20 Zeroing the hips

both key-frames are created on Layer 1. Your character should now look as if it were walking on a
moving sidewalk.

If you look at the motion from the side, it is obviously staying around the center of the space
and walking in place. If you look at it from the front, however, you see a translation when the
character moves to its right. The translation is the most notable in the left footfall around frame 116
and in the right footfall around 131. Not all the steps in the motion are needed for the loop that
we are creating. Let’s use the frames after the translation, that is, after frame 131.

We need similar frames at the beginning and ending of the loop. Let our selection point be when
the right foot is planted and the left foot is moving into a passing position. Let’s use frames 150 as
the beginning and 180 as the ending. Change the start and end times in the Transport Controls to
reflect this (Figure 5.21).

Select the Hip Effector in the Character Controls. Frames 150 and 180 have z-translation values
that are no longer zero. Set these to zero and key-frame them as you did above. Play the motion
in loop mode. Looking at it from the side, looping looks almost fine, but if you look at it from the
front, you can see a twitch between the beginning and ending of the animation. We will look into
how you can use poses to take care of this in the next section, but first, let’s go to the Animation
pull down at the top and select “Plot All (All Properties).” This bakes the key-frames that you cre-
ated onto the motion and the key-frame indicators disappear. We now have a clean timeline to start
using the Pose Controls.

@ MoCap for Artists

Translation; Usa manipulator

ort Controls - Keying Group: TR

{ofmful«nf>]x][m[Sx vnms v]

N T P
Start

Figure 5.21 Narrowing the motion

5.7 Poses

“Pose” is a very useful animation tool in MotionBuilder. It allows you to copy a pose in one frame
of a motion and paste it in different frames of the motion. You can then slow in and slow out of
the pasted poses. Pose can be used to pull a pose out of mocap data and create consistent ending
poses. An example is the idle stance for a video game. This is the generic pose the video game char-
acter is in when it is not in motion. Another example is the end pose shared by running motions,
walking motions, and jumping motions. If the motions did not have the same ending pose, you
would either have to have a large number of transitions, or let motions jump from one to another.

You can create end poses in the following way.

5.7.1 Deciding what to use

So what do you use for a pose? That’s a good question. Since we have the beginning and ending
frames for the loop, let’s choose frame 150, the beginning frame. You may decide that frame 180
is better or that you want your walk loop to begin and end with different frames.

5.7.2 Creating a pose

Since we are going to use the pose in frame 150, the timeline indicator should be on frame 150
and frame 150 should be the current frame. Go to the Character Controls and click in the black
around the character but not on any specific control. This selects all of the controls except the

Chapter 5: Skeletal Editing @

Reference node between the feet. Change the Asset Browser to the Pose Controls by selecting
the Pose Controls tab (Figure 5.22). (Pose Controls can be found under the Window of the top
main menu as well.)

Selected

Frame 150

Figure 5.22 Pose Controls

In the Pose Controls, click on the “Create” button. A plus sign appears next to the word “Poses.”
Click on the plus sign. It changes to a minus sign and a Character Pose appears below “Poses.”
Right click on the Character Pose and change the name to “walk” (Figure 5.23).

Asset Browser

Figure 5.23 Poses

@ MoCap for Artists

We are ready to use the pose at the end of the motion but first make sure that the “Match
Translate” option is on (Figure 5.24). If the option is turned off, there will be a translation in the
beginning and ending frames that you do not want for a loop. Go to frame 180. Make certain that
the pose named “walk” and the controls (except for the Reference node) are selected, and click on
the “Paste” button in the Pose Controls. You should be able to see a noticeable change in the skele-
ton’s pose as the pose from frame 150 is inserted into frame 180.

Figure 5.24 Match Translate

5.7.3 Key-framing a pose

The pose now needs to be key-framed. Since all of the eftectors (except for the Reference nodes)
are selected, just add a key by clicking on the Key in the Key Controls (Figure 5.25). After this,
play the motion. The loop should look reasonable at this point.

Next we will create a “Zero” key (Figure 5.25). A Zero key forces all the effectors to move back
to their original positions. When you key-frame an inserted pose at the end of the motion, it affects

Key Controls

Zero
Key

Figure 5.25 Key Controls

Chapter 5: Skeletal Editing @

the entire motion, from the first frame to the last frame. The “Zero” key can localize the effect.
Go to frame 170 or 175 (i.e., 5 or 10 frames before the keyed ending frame), and press the “Zero”
key. Now the pasted pose affects only the last few frames.

Now all the key-frames are made and the motion is working. Go to the “Animation” tab at the top of
MotionBuilder and click “Plot All (All Properties).” This “bakes” all the changes onto the skeleton.
Then apply “Plot Character” in the Character Settings so that you can export the skeleton back to your
3D package of choice.

Hopefully you have a good idea about skeletons, retargeting, blending, IK, floor contact, rigid
body, looping, and poses. In various data editing software packages these procedures are imple-
mented in different ways. Know what each procedure does and what needs to be done, and try

tools to find a way to get the desired results.

In the next few chapters we are going to look at the pipelines for props, characters, hands, and faces.

This page intentionally left blank

We looked at how data is cleaned and edited in the previous two chapters. You are probably eager
to know how to apply data to your 3D character. But before showing you how to apply human
motion data to a 3D character let’s talk about much simpler cases. We will be mostly talking about
marker placements on props for optical systems in this chapter but the same principles work with
human capture subjects. Therefore, this chapter should help you understand effective ways to place
markers on humans as well as props.

6.1 A Stick withTwo Markers

Let’s consider capturing a stick as a prop. Suppose that you place a marker at each end of the stick.
You give the “markered” stick to a performer, ask the performer to move it around, and capture the
motion of the stick. Let’s disregard the motion of the performer for simplification for now. Process
the data as described in Chapter 3 and import it into your 3D application. Go to the first frame
where you can see the two markers. Create a joint j; at one marker my, create another joint j, at the
other marker m,, and a bone between the two joints. Let the position of joint j; be constrained by
the position of marker m; and the position of joint j, by the position of marker m,. Play back the
animation. You can see the simple rig (a bone with two joints) being animated by the mocap data.
If you like, create a skin geometry, for example a cylinder, and bind it to the rig.

6.1.1 When it fails: Occlusion

The approach above fails in many ways. The most obvious cause is occlusion. When one of the mark-
ers is occluded by the performer there will be only one marker to be tracked. If you play back the
animation you will see that the tracked marker moves one end of the stick (i.e., one joint in the rig)
to the correct position for each frame but the other end of the stick does not move while the other
marker is occluded. Remember that the optical system gives you a marker’s position but not its ori-
entation. Mathematically two points are required to define a straight line in 3D space (Figure 6.1).

Having one marker is like having just one point. It is impossible to orient the stick with one marker.

If an occlusion happens for a short period of time, you may be able to fill in the gap by applying a
spline interpolation or some other method as we discussed in Chapter 3. But if the occlusion period
is long, there isn’t much you can do, besides painstakingly filling in the gap by key-framing or giving

&

up on the data and recapturing.

@ MoCap for Artists

Figure 6.1 Tivo points define a line

‘When both of the markers are occluded for a period of time and reappear, your application that
reconstructs trajectories may swap them in the middle of the sequence by mislabeling them. For
instance, the marker that’s labeled as m; before an occlusion can be labeled as m, after the occlusion
and the marker that’s labeled as m, before the occlusion can be labeled as m;. This will be an issue
if both ends of the stick are not identical. Imagine a crook cane. You want your 3D character to
hold the cane’s crook, but not the tip (Figure 6.2).

Figure 6.2 Character with a crook cane

Chapter 6: Data Application — Intro Level: Props @

6.1.2 When it fails: Rotation

We’ve looked at the possibility of two markers being mislabeled and swapped after occlusion.
Marker swapping can happen when the stick is quickly rotated as well. For instance, if a stick is
swirled around like a baton when your capture rate is set relatively low, then your application will

be confused, so will you.

6.2 A Stick withThree Markers

Let’s try placing three markers on a prop stick this time. When one marker is occluded, there will be
two markers to determine the orientation of the stick. Also by having three markers we can capture
the stick’s bending if the stick is flexible enough to bend. So, we can expect a better result with three

markers than two markers. Now the question is “What is the best way to place three markers?”

6.2.1 Three markers with equal distances
Let’s place the first marker my near one end of a stick, the second marker m, at the middle of the
stick, and the third marker m;, at the other end of the stick so that the distance between m; and m,

and the distance between m, and mj are equal (see Figure 6.3).

Figure 6.3 Equal distances between markers

Capture motion data while a performer is moving the stick around. Process the data and import it
into your 3D application. Go to the first frame where you can see the three markers. Create joint

Jj1 at marker my, joint j, at marker m,, joint j; at marker mj3, a bone between j; and j,, and another

@ MoCap for Artists

between j, and j3. Let the position of joint j; be constrained by the position of marker m;, the posi-
tion of joint j, by the position of marker m,, and the position of joint j; by the position of marker
mjs. Play back the animation. You can see the rig with three joints being animated by the mocap
data. If you like, create a skin geometry and bind it to the rig.

With three markers you are less likely to lose the orientation of the stick due to occlusion than with
two markers. However, when the stick is rotated like a baton, either you or your application has
no way to know which end marker was at which end of the stick. The confusion can be avoided
by placing the middle marker m, at an off-set position so that the distance between m; and m, and
the distance between m, and mj; are not equal (see Figure 6.4). By having unequal distances
between the markers you and your application can immediately identify which marker is which.

6.2.2 Three markers on a single straight line

Now let’s think about a cane and the orientation of its crook. Suppose that we want the crook to
be oriented correctly so that it stays in a 3D character’s hand, but the marker set in Figure 6.4 does
not give you the orientation of the crook. You will encounter a similar problem if a prop is a rifle.
The rifle’s muzzle needs to point in the direction that it’s aiming. At the same time, the rifle’s butt
needs to be oriented correctly so that the projection side is up and the trigger is down. However,
again a marker set like the one in Figure 6.4 will not give you the data that orients the rifle’s butt
properly. Let’s understand why.

Figure 6.4 Better position for the middle marker

Chapter 6: Data Application — Intro Level: Props @

In the previous section, we mentioned that two points can define a line in 3D space (Figure 6.1).
Three “non-linear” points in 3D space can define two lines and a plane which a cane or a rifle can
be laid on (Figure 6.5). Hence, a plane defined by three non-linear points can orient a cane’s han-
dle and a rifle’s butt as well as the rest of them. However, three “linear” points can define only a
single straight line and no plane (Figure 6.6).

Figure 6.5 Three non-linear points define two lines and a plane

Figure 6.6 Three linear points define a line

@ MoCap for Artists

‘We have three markers but they are on a straight line. When the markers are placed on a prop in
such a way that they all line up on a single straight line, the marker data lets us reconstruct the
straight line that the markers were on, but not a plane. Thus while the cane’s tip and the rifle’s
muzzle can point at the right direction, neither the cane’s crook nor the rifle’s butt can be oriented
properly with three markers on a straight line.

6.2.3 Placement of three markers that works

In the previous two sections, we learned that neither three markers with equal distances nor three
markers on a straight line is an effective way to place a trio of markers on a prop. The best way to
place three markers is to create unequal distances among them and not to let them line up on a
straight line (see Figure 6.7).

Figure 6.7 Best way to place three markers

Although the marker set in Figure 6.7 is better than the one in Figure 6.3 or Figure 6.4, it is still
not ideal. If one marker is occluded the orientation of the prop will be partially lost. If two mark-
ers are occluded, the orientation will be completely lost. In practice use at least four markers. With
six or seven markers you can expect better results. If a prop is flexible, you need more markers. (We
will talk about marker setup for flexible objects in the next section.)

If you are a Maya user, try the following experiment in Maya to understand how three markers can
orient an object. Create a polygon and three joints, ji, j», and j;. (Three joints can be in a hierar-

chy or disjointed. Either way works. Also they can be locators or anything else that you can easily

Chapter 6: Data Application — Intro Level: Props @

select and move.) Point constrain joint j; to the polygon (i.e., let the position of the polygon be
constrained by the position of joint j;). Aim constrain joint j, to the polygon with “Object Up”
option as “World Up Type” and joint j; as “World Up Object.” Move the three joints around indi-
vidually to see how the polygon’s orientation changes. Display the polygon’s local rotation axes.
You can see that the origin of the polygon’s local space keeps moving with joint j;; the x-axis of the
polygon’s local space keeps trying to point at joint jp; and the y-axis of the polygon’s local space
keeps trying to point at joint j;. If you point constrain a marker to each joint you can have the poly-
gon animated by mocap marker data. And this method works not just with polygons but also with
3D objects.

We have looked at simple placements of two or three markers on rigid objects in this section. The
same principle works for marker sets for human and animal capture subjects. For instance, if we
want to capture the position of a wrist (but do not care about its orientation), one marker on the
wrist is sufficient (Figure 6.82). However, if we want to capture the wrist’s twisting as well as its
position, we must place two markers on the wrist in such way that the wrist markers and an elbow

marker make a triangle, not a single straight line (Figure 6.8b).

d

(b)

Figure 6.8 (a) One wrist marker; and (b) Tivo wrist markers

6.3 Flexible Objects

If you have a flexible rod, such as a golf club, or better yet, something more like a pool noodle, you
will need multiple markers to define how the object bends. So, how do you figure out how many
markers are needed to capture a flexible object? The answer is: it’s hard to tell until you capture it
a few times. The best way is to give it a few tries but we’ll try to give you a few tips on how to

place markers on flexible objects.

First of all, you need to know how flexible the object is. You want to be able to capture the
dynamic motion of the object, but you don’t want to apply too many markers or have them too
close to each other. When we say flexible, we mean something that won't coil up or is extremely

flexible such as a rope, fishing line, or whip, although you can track all of these.

@ MoCap for Artists

Bend the object as much as you can and try to imagine how many straight line segments you can
put into the object that fit within the object’s curvature. Below is both an example of a rather stiff’
object that only slightly bends (Figure 6.9a) and a more flexible object that bends more (Figure
6.9b). The stiffer object may only require three segments, whereas the more flexible object may
require seven segments.

(@) (b)

Figure 6.9 (a) More rigid object requires fewer segments; and (b) More
flexible object requires more segments

After making an educated guess about how many segments to approximate the object’s deforma-
tion, you need to think about the number of markers. At least three markers are needed for a rigid
object as we discussed in the previous section. You need more for a flexible object. You want to
place at least two markers in each segment of a flexible object. For the less flexible object with three
segments in Figure 6.9a, you may place three markers (including the base marker, which we will
talk about shortly) on the first segment and two on each of the other two segments for a total of
seven markers. For the more flexible object with seven segments in Figure 6.9b, you may place

three on the first segment and two on each of the other six segments for a total of fifteen markers.

Stagger markers along the length of the object. Staggering prevents markers from lining up on a
single straight line and also makes it easier to identify the markers with a glance.

The next thing you need to think about is if the object comes in contact with people and if it does
where the contact point will be. Before we get into this further let us define the “base marker” as
the marker on an object that is selected to provide data for the overall translation of the object. If
the object never comes in contact with anyone, you can place the base marker at any position along
the object. If you know one end of the object will be picked up and spun around, place the base
marker on that end. If both ends will be picked, you have to decide on which end the base marker
should be placed. Having just one marker providing the object’s translation becomes very impor-
tant when you need to edit the object’s motion, specifically in reference to the motions of other
objects in the scene. Keeping the base marker at the same location of the object throughout the
shot allows you to see the object move in relationship to other objects (e.g., the hand that is hold-
ing the object) and gives you the ability to translate the object with as much control as possible.
Above is true for rigid objects as well.

Chapter 6: Data Application — Intro Level: Props @

Moreover, if the object will be picked up by someone make sure that the markers are placed away
from where the hand will grab the object. Even if the person interacting with the object has no
markers on her/him, her/his hand can still cover up some markers.

Now let’s talk about how you can apply motion data of a flexible prop to a 3D model of the prop.
If your mocap software can give you skeletal data, create a skeleton for a flexible prop shaped like
a rod with a single chain of joints. The number of the bones in the skeleton should be same as the
number of segments that you came up with for the prop. The root joint of the skeleton should be
placed where the prop’s base marker is. To bring motion into your 3D application, import skeletal
data into the file that contains the skeleton with skin bound to it.

If your mocap software does not give you skeletal or rotational data, bring marker data into your
3D application and create a spline curve using the marker positions as the positions of the control
vertices (or end points) of the curve. The first control vertex (i.e., the beginning) of the spline
curve should be where the base marker is. The IK Spline tool in Maya is a nice tool to apply posi-
tional data of a long flexible object to its 3D model. The tool can deform the skin bound to the
skeleton by changing the shape of the joint chain using a spline curve. Applying an IK spline to
your skeleton using the spline curve controlled by the marker data will deform and animate a 3D

model of the prop.

If your flexible prop is not shaped like a rod but more like a pillow, you need to segment it into a
grid. Place a marker at each vertex of the grid, including the internal vertices. The first two facial
rigging methods in Chapter 10 work well with positional data captured using markers in a grid

configuration.

Let’s look at more challenging data applications in the next two chapters.

This page intentionally left blank

This chapter is about tearing motions apart and reusing them. For example, suppose that a game
character has 50 different walking motions and 30 of the 50 motions have identical lower body
motions but different upper body motions. To minimize the data size and the memory that are
required to play the game, the 30 motions can be divided into the upper body motions and the
lower body motions. Having one lower body motion (i.e., walking) shared by the 30 different
upper body motions (e.g., reloading a rifle, pulling a trigger, and throwing a grenade), only

one lower body motion is necessary for the 30 walking motions.

7.1 Mapping Multiple Motions

If decomposed/composed motions need to be prepared for a game on a game engine, program-
ming knowledge specific to the engine is required. We will show you generic ways to decompose
and compose motions using the example above and Maya’s constraints and Trax editor.

7.1.1 Decomposing and composing upper and lower body motions

The first step for creating a lower body motion without an upper body motion is bringing in a nor-
mal walking motion with no extraneous upper body motion. The easiest way to create the lower
body walking motion, without the upper body motion, is to select and delete all the joints above
the hip joint in the character’s skeleton (Figure 7.1a and b). Just a pair of legs should be walking

around. Save this out into a file with a file name, such as “walking_lower.mb.”

The second step is to create an upper body motion without a lower body motion. Import one of
the full-body motions with the upper body motions that you want to keep. Delete all the joints
in the legs. The hip joint and everything above the hip joint should be left (Figure 7.2a and b).

The third step is to remove the translation and rotation from the upper body’s hip joint since the
translation and rotation of the lower body’s hip joint will be used. Select the x-, y-, and z-translations
and rotations of the upper body’s hip joint in the channel box (Figure 7.3), right click on Channels,
and then choose “Break Connections”. The color of the boxes containing the translation and rota-

tion values should change from orange to white. Play the motion. The lower body is walking and

the upper is moving above the hips but not going anywhere.

@ MoCap for Artists

(a) (b)

Figure 7.1 (a) Select everything above hips; and (b) Delete selection

(b)

Figure 7.2 (a) Legs selected; and (b) Legs deleted

Chapter 7: Data Application — Intermediate Level @

Figure 7.3 Breaking connections

The fourth step is to let the lower body move the upper body using point constraint. Select the
lower body’s hip joint and shift-select the upper body’s hip joint. Apply point constraint with the
default settings. The position of the upper body’s hip joint is now constrained by the position of
the lower body’s hip joint. The upper body should be moving with the lower body. However, the
upper body is facing the wrong direction (Figure 7.4a).

(a)

Figure 7.4 (a) Point constrained; and
(b) Point and orient constrained

@ MoCap for Artists

=F e |B= -S|

Channels Object

e [
Translate X -1.557

Translate 9.02

(b)

Figure 7.4 Continued

The fifth step is to let the lower body orient the upper body using orient constraint. Select the lower
body’s hip joint and shift-select the upper body’s hip joint. Apply orient constraint with the default
settings. The orientation of the upper body’s hip joint is now constrained by the orientation of the
lower body’s hip joint. The upper body should be facing the direction that the lower body is fac-
ing (Figure 7.4b).

The last two steps can be done using other Maya’s tools, such as the Expression editor, Script edi-

tor, or Connection editor, instead of constraints.

7.1.2 Synchronizing upper and lower body motions

Let’s keep using the example above. In the last section the upper body motion and lower body
motion are decomposed and composed. The positions and orientations of the upper and lower
bodies are matched using constraints. However, the upper and lower bodies may not be moving in
a synchronized manner yet. For instance, the timings in the counter movement of the arms and legs
may be off.

To synchronize the upper and lower body motions, select all the keys for the upper body motion
and carefully move them in time until the arm movement and leg movement are aligned. This can
be done using Maya’s Trax editor as well. Since the Trax editor works with character sets (not with
keys), character sets for the upper and lower bodies must be created. Create a character set for the
upper body by selecting all the joints in the upper body’s skeleton and another set for the lower
body by selecting all the joints in the lower body’s skeleton (Figure 7.5).

Chapter 7: Data Application — Intermediate Level @

Create animation clips and bring them into Trax (Figure 7.6a). The clips appear as tracks that can
be moved in time (Figure 7.6b). Move the clips in time until the upper body motion and lower
body motion are synchronized. (Read the Maya manual for more detailed usage of the Trax editor.)

One useful process that you can take before exporting motions out of MotionBuilder, or any other
motion editing tool, is to align all motions so that a character is in identical poses at a selected frame
number. For instance, move motions in time so that at frame 30 in all the motions the left foot of
the character is planted and the right foot is halfway through being lifted. It is a time-consuming

I Create Character Set Options

Character 13 Ch:

Name Iuppef_hmecanﬂ
Include ¥ Hierarchy Below Selected Node

Create Character Set
Create Subcharacter Set (=}
Character Mapper...
Attribute Editor...

Include All Keyable

€ From Channel Box
& All Keyable Except:
/ ™ Translate
3 ™ Rotate
~
~Redirection

Add to Character Set
Remove from Character Set
Merge Character Sets

V Scale
IV Visibility
[~ Dynamic

Select Character Set Node
Select Character Set Members #
Set Current Character Set

™ Reduect Character
@ Rotation and Translation
" Rolation

€ Translation Only

Redirect

Oniy

Apply

Figure 7.5 Selecting joints and creating a character set

Ul Trax Editor,

File Edit View Modify N&GEEEN Library List Help

| (=
5] B
Constraint Clip
Expression Clip

Pose

Blend

Character Set

Time Warp

Quick Select Set...

Al

Aot M
B Ump

DDOOUDD‘

(@)
Figure 7.6 (a) Creating a clip in Trax; and (b) Tracks in Trax

@ MoCap for Artists

T Trax Editor

Fle Edt View Modfy Creste Library List Help

=EBECuEEE TR

(b) 48 0 48 88 14 192 20 28 38 42 480 -]

Figure 7.6 Continued

and tedious process but gives good results when blending, decomposing/composing, and other
edits are applied to the processed motions.

7.2 Balance

So why should we talk about balance, and what do we mean by balance in relationship to
breaking apart and combining mocap data? Unless your characters are floating weightless in space,
they need to appear as if they have normal everyday forces applied to them. Gravity is usually the
greatest and most recognizable influence. The force of gravity is evident when you capture. When
you start mixing and matching data the center of gravity can change. The computer programs don’t
take the effects of gravity into effect when you want to mix motions together.

A character has balance when its weight is equally distributed between its feet. When it goes out-
side of its center of gravity, the character, without adjustments, would fall over. There are certain
exceptions to this, for example, leaning against an object.

If you balance on one leg, your means to stabilize is cut in half. Try standing on one foot and extend-
ing your arms in the same or different directions. See what makes you go off balance.

For good demonstrations of balance, watch dancers. Dancers have excellent poise and balance.
Their great bodily control can be seen in the way they position themselves and carry themselves.
Cirque Du Soleil DVDs are great references to study balance in the extreme.

If the balance looks off it is wrong. There is not really a way to hide or fake it. Make sure that when
you are adding or merging different motions together you get the proper balance. The body in the
composed motion should appear counterbalancing itself to maintain its equilibrium.

Chapter 7: Data Application — Intermediate Level @

If you are working on a 4-armed creature, it is important to make sure that the upper and lower
arms balance each other out. If all four arms are out in front of the character, the back needs to be
arched back to keep it in balance. This avoids a mechanical posture.

Another thought about the creature in the above example is to increase its base of stability. Widening
the stance, increasing the size of the feet, or adding more legs can increase the base of stability. When
you are creating imaginative 3D characters use references just as you do when you are creating realis-
tic 3D characters. Study the forms and movements of elephants’ legs if you are designing on a heavy
animal. Studying the anatomy and morphology of animals helps you design the look and movement of
imaginary creatures that will suspend disbelief. (Morphology is the study of forms and functions.) A
trip to the local zoo with a sketchbook and a video camera is time well spent. Call the zoo ahead of

time to see when the animals are most active.

7.3 Breaking Motion Apart

How often do you see mocap data pulled apart and used in pieces for different purposes? Many
people overlook these possibilities because mocap systems are primarily geared toward full-body
motion capture. Only a few look at what their system can do beyond its primary purpose.

‘What if you want to have an arm sticking out of a wall and motioning to someone? Something to
think about, before your capture, is how the arm movement will affect the rest of the body. When
a person waves someone over, the entire body moves. Ask the actor to try to isolate the arm. If it
does not work, when you pull the arm off;, include the shoulder and part of the back. It would look
strange if you pulled the arm movement alone because the arm is part of a hierarchy, so it depends

on the joints above the arm joints in the hierarchy for some of its movements.

Large motion in the higher parts of the hierarchy often drastically affect where the body parts lower in
the hierarchy will end up. Try to reach straight up in the air without moving your shoulder or rotat-
ing your back. Then use your shoulder and rotate your back so you can reach as high as possible. You
will see the back and shoulder drastically affect how far the arm can reach and what orientation it’s in.

Give in-depth consideration to as many of these questions as possible in preproduction. Provide

your capture subject with detailed acting direction. It will make your life easier down the road.

7.3.1 When you don’t need all the motion

There are times you have too much motion. This usually happens when your motions were not
thoroughly thought out before you captured them. Let’s use the arm sticking out of the wall as an
example. Your performer was very active and threw the whole body into the performance. This is
usually what you want but, in this case, you wanted less and the shoot is over. It would be too costly

to reshoot just one thing. You now need to create what you need from the data you have.

The first thing to do is decide what part of the motion is really important. The arm consists of the
upper arm, lower arm, and hand. The hand makes the motion that really expresses the intent of the

motion. So the hand position and movement should remain intact and be used to drive the rest of

@ MoCap for Artists

the arm. The lower arm is important too because you’d like to preserve the general direction of the
elbow if at all possible. The upper arm motion can be changed the most.

If we take all the arm motion oft and just stick the upper arm in the wall with no spine or shoul-
der motion, it looks jerky. What we would really like to do is preserve the hand and lower arm
motion and mute the upper arm. Let’s look at one way to do this in Maya.

‘What we will do in Maya is remove all the motion from the upper arm and the lower arm and replace
the deleted motion with an inverse kinematics (IK) chain that will follow the original motion of the
hand, pulling the upper arm and lower arm with it. Where the IK chain bends will be controlled by
the position of the elbow; the goal is to make it look good enough to get the point across.

The first step is to track the position of the hand. Run the script named “armpos” on the CD. The
script does three things. First: it stores the position and rotation of the hand at every frame. Second:
it applies the data to a cube. Third: it creates a locator a short distance away from the elbow. The
locator, “elbow locator,” moves with the elbow.

The second step is to go to the first frame of the motion and delete the motion of the lower arm,
the upper arm, and the hand. You can do so by breaking all the connections of their translation and
rotation attributes.

The third step is to create an IK from the upper arm to the hand (Figure 7.7a) using the rotate plane
solver. Set a preferred angle for the joint before creating the IK handle. Select the elbow locator,
shift-select the IK handle, and apply pole vector constraint. This forces the IK chain to bend into
the direction of the elbow locator (Figure 7.7b). Then parent the IK handle to the cube that has
the hand data (Figure 7.7¢).

The fourth step is to orient the hand geometry using the hand data attached to the cube. Select the
cube, shift-select the object “RightHand,” and apply orient constraint.

Channels Object
Rotate Y 0
RotateZ 0
ScaleX 1
ScaleY 1
ScaleZ 1
Visibilty on

Pole Vector X -0.796

Pole Vector Y 0.135

Pole Vector Z 0,594
Offset 0

Roll 0 =
Tuwist [30 |
Ik Blend 1
INPUTS
ikRPsolver

155

il

(a)

Figure 7.7 (a) IK handle between upper arm and hand; (b) Elbow locator as pole vector;
and (c) IK handle parented under “hand”

Chapter 7: Data Application — Intermediate Level @

Translate X -1.328
Translate Y 12.206
Translate Z -5.926
Rotate X 0
Rotate Y 0
RotateZ 0
ScaleX 1
ScaleY 1
ScaleZ 1
Visibiity on
Pale Vector X -5.946

Dffset 0
Roll 0
Twist 0
Ik Rlend 1

@ Display " Render
Layers Options Help

(b)

&, ikHandle1

©
Figure 7.7 Continued

The fifth step is to make the upper arm and lower arm long enough to reach the IK handle by mov-
ing RightForeArm and RightHand joints.

Because the arm was changed in length to get a proper IK solution, you may need to scale the
motion down. The reason why you have to change the arm length is that we deleted the back and
shoulder motion that would have helped the hand reach its goal. Changing the arm length is one
way to make up for this. If you already have skin geometry made for the arm, then you probably
do not want to remodel it. Try to do this without lengthening the arm. Just move your entire arm
closer to where the hand motion happens. You may need to try it a few times to get it to work, but
this can be an acceptable solution that requires no adjustment on skin geometry.

The last step is if you want turn the IK data into forward kinematics (FK) data, bake the transfor-
mations onto the arm joints. Select the three right arm joints and select Keys under Edit. Then
select Bake Simulation. This will set all the rotations, translations, and other attributes as key-
frames and the arm motion will no longer be dependent on the IK handle.

@ MoCap for Artists

7.3.2 Re-use of motion data for non-motion purposes

Our bodies are constantly giving us feedback. We are always getting stimulus from our environ-
ment, and because of that, it is very hard for us to be 100% still. If you look at the graphs of the
skeletal data, you can see that all of the rotations are not as smooth and controlled as key-framed
animation data would be. There is noise and jitter in human motion. This provides you with a lot
of interesting possibilities.

One place you can use this sort of data is to change colors, lights, and other attributes and entities
in a 3D environment. You may need to find the highest and lowest values of the piece of mocap
data that you’re using and normalize it. Then the normalized data can be piped into the color value
of a shader or even the transparency value. You can use it to create a wide variety of changes.

Let’s say you have some mocap data of a person walking up steps. You want a light to get brighter the
farther up the steps he goes. Maybe the motion is the person being indecisive, going up and then
down, then up again. Perhaps the steps symbolize a decision to be made and the light shows how close
he is to a decision that will change some aspect of the character. If you link the color and intensity of
the light to the y-translation value of the character’s hips, now mocap data is controlling the light.

You can also apply joint rotations to RGB or other shader values (Figure 7.8). To do this, select a
joint and map the joint’s x-, y-, and z-rotation values to the RGB values of a shader. The shader
changes the color as the joint rotates (see also attached Maya file).

[0 2% 7 © + 7 EUE——
il Ul Expression Editor

ion AMHIO:'DMSLH Select Filter Object Fiter Attribute Filter Insert Function

K T

Expression Name |ye|ow1

_~|Selection————— .

Default Object |yellow
Convert Units: (+ All " Nc
Particle: € Runtime before Dynamic R

E valuation: |Always V|
Editor: |Ewtesshn£d’io: V|

Expression:

yellow.colorR
yellow.colorG
yvellow.colorB

LeftUpleg. rotateX;
LeftUpLeg. rotateY;
LeftUpLeg. rotateZ;

Figure 7.8 Leg rotations controlling colors

Chapter 7: Data Application — Intermediate Level @

One last example is to try to use the motion to control small little movements. Take some of the
mocap data, especially the jittery parts of rotations, and apply it to models of bugs. Use the data to
make their antennae twitch or have extra sets of arms or feelers move erratically.

There is no end to creative uses for mocap data. Always let your creativity flow and try not to get
too caught up in all the technical button pushing. Motion capture is a tool for artists to create with

and it is not something that takes the place of artists.

This page intentionally left blank

Data Application — Advanced
Level: Integrating Data with
Character Rigs

Motion capture is a good tool all by itself but being able to integrate traditional rigging and key-
framing on top of it makes it even better. Learning how to integrate motion capture data onto a
fully rigged character is an important part of motion capture. Let us look at mixing motion cap-
ture into rigging and key-frame animation.

8.1 Mocap as Forward Kinematics Animation

In motion capture we generally expect a direct representation of the capture subject expressed in a
digitally created character. Whatever the mocap performer does, you want to see its digital coun-
terpart do the exact same thing. The marker data is transferred to the skeleton in order to replicate
the performance.

You may be asking, “What is forward kinematics (FK)?” With FK you position all the joints in a
skeleton in one frame, set keys on all the joints, move to another frame, position all the joints again,
and key-frame again until you have the motion that you want (Figure 8.1).

Key position 1

Figure 8.1 An arm joint’s FK

@ MoCap for Artists

FK key-framing on every frame generates mocap data. Thus, in each frame the marker point data moves
the skeleton into a position and then the joint rotation angles are key-framed. For every position in
time, there are a set of directly corresponding rotations and translations. The main difference between
mocap and regular FK key-framing is that in mocap every single frame of the motion is a key-frame,
whereas for FK a key-frame is created wherever it’s needed. The fact that every frame is a key-frame for

mocap makes mocap data incredibly large. This is why editing motion capture data can be difficult.

There are times when you can use motion capture data for FK, inverse kinematics (IK), or
both FK and IK. Sometimes not using mocap data at all is the best solution. Never get locked

into only one way of solving a problem, expressing your creativity, or visually telling a story.

To apply FK data to our skeleton, let’s look at MotionBuilder, a stand-alone package that’s made
for this purpose. MotionBuilder applies marker data (translational data) to a pre-made skeleton by gen-
erating rotational and translational data for the joints in the skeleton. It also offers quite a bit of
flexibility. A minimum number of back and head markers can drive a fairly large number of back
and neck segments (currently 10 of each).

The skeleton needs to be a continuous hierarchy skeleton, not a broken hierarchy or a collection
of discrete pieces of hierarchies. We want to start with a totally clean skeleton without any rigging,
key-framing, or constraints for this process. We will integrate the IK and FK skeletons later on.
Export a basic skeleton out of Maya as an .fbx file.

In MotionBuilder, import marker data and attach it to an Actor. Then import your skeleton into

the scene and “characterize” your skeleton. Once this is done use the Actor’s motion as the input

There are times when a character motion, after plotting, looks different from before plotting.
Save everything into a file before you plot a character. Go under the Animation tab and choose
“Plot All (All Properties)” (Figure 8.2), then use “Plot Character” to get all the motion onto
the skeleton.

Window Settings Layout Help

Plat all (All Properties)...

Plot Selected (all Properties)...

N1~ |

caat |

Clear All (all Properties). ..
Clear Selected (All Properties). ..

Figure 8.2 Plot All option

Chapter 8: Data Application — Advanced Level @

for your Character’s motion. Then plot the Character to get all the motion onto your skeleton.
(This is all covered in Chapter 4, review if needed.)

Once this is finished, select the skeleton and export it into an .fbx file (animation only). If you use
“Save As,” it will save your animation, marker data, and anything else in the scene into an .fbx file. That
can be helpful at times but for our current pipeline, let’s export animation data only into an .fbx file.

In Maya open the scene file that you exported the skeleton out of. Then import the .fbx file you just
exported out of MotionBuilder. An option dialog box will pop up. Use the “Merge” option (Figure
8.3). (There may be times when you use “Convert incoming deforming Nulls to Joints” when there
are nodes in the hierarchy that are not used.) You should now see your character moving in Maya.

BTV W W TSR NET WE e WY W W™ Choose the animation take to import
| Show Panels No Animation.

 Exchusive Merge
" Addto new scene
& Meige

Detected destination world unit = Centimeters
1 centimeter = 1 centimeter

I™ Pre-nomalize weights
[¥ Convert incoming c ing Nulls to Joints!

Figure 8.3 Merging an .fbx file into Maya

All of these data on the skeleton are FK data but there are a lot of them. MotionBuilder gives you
several options on how much data to export. 30 Hz data (i.e., 30 frames per second (fps)) is a stan-
dard frame rate, but your end application may want to use another frame rate. Try to match the
frame rate of your final render, if at all possible, to the destination fps rate.

Because there is so much motion data, we use applications that allow us to edit and apply the
motion in layers, such as MotionBuilder. The density of data makes it imperative that we are able
to layer changes on top of the data in order to manipulate it. This is another reason to have a mocap
skeleton, an IK skeleton, and another clean FK skeleton. Those make creating your final anima-
tion easier.

8.2 Key-frame Animation with Inverse Kinematics
Here we are going to look at the basics of IK. This is not meant to be a rigging book, but you need
some understanding of how to set up IK, and it is fairly usual that you want to have an FK/IK rig
setup in whatever application you are using.

@ MoCap for Artists

8.2.1 Key-framing

In 3D animation, key-framing is the process of keying attributes of entities in key-frames (Figure
8.4). Attributes can be translation, rotation, scaling, colors, and any other variables. Entities are
often geometries or joints but can be lights, cameras, shaders, and anything else in a scene. If you
are an animator and already familiar with key-framing, you can skip this intro to key-framing.

| channels Object

Rotate Z 0
ScaleX 1
ScaleY 1
ScaleZ 1

Visibilty on

Figure 8.4 Key-framing the y-rotation of LeftArm

The usual way to set key-frames is to place an object at the primary (or “key”) motion points on a
path of action. The bouncing ball is probably the most common example that is used to demon-
strate fundamental key-framing techniques. To create a bouncing ball animation, have a ball fall in
the air, hit the ground, bounce back into the air, and hit the ground again (Figure 8.5). While the
ball is translating through the space, the height of the bounce needs to decrease after each bounce
in order to mimic the natural effect of gravity. The ball also rotates as it bounces. If the principle of
squash and stretch is applied, the ball also needs to have deformations. All of these key moments for

translation, rotation, and deformation are key-framed.

Once you have key-frames, the animation software will fill in the frames between these keys with
“inbetweens.” Let’s say you start with a ball on the ground at frame 1. You key the translation. At
frame 20 you position the ball in the air and then key the translation there. This will cause the ball
to move directly from frame 1 to 20. Even though you didn’t key any data in frame 10, you'll see
the ball one half of the way between the positions in frames 1 and 20. Another thing you can do is
change the arc of the curve that interpolates data between frames 1 and 20. This can give a little
more hesitation at the beginning or end and make the graph of your translation not look so linear.

You start by roughing in the translations and then add the rotations and the scaling to give the over-
all effect of the ball realistically bouncing. If you are interested in more about animation, there are

Chapter 8: Data Application — Advanced Level @

' Graph Editor

Edt View Select Curves Keys Tangents List Show Help

I ElE e A — X E

Figure 8.5 Key-frames on a graph

several great web sites and books. Anything more than this starts to go beyond the realm of this
book. We only want to demonstrate what a key-frame is and how it is used. In mocap data, there
are no inbetweens because, as stated above, every frame is a key-frame.

8.2.2 IK

Inverse Kinematic (IK) is an animation technique that you specify only the positions of the end effec-
tors. Software calculates all the rotation angles of the middle joints in the joint chain to reach the posi-
tion of an end effector. If you think of your arm as an IK chain, you grab your wrist and move your
arm around by moving the wrist. This is a basic way to think of an IK chain (Figure 8.6). Your shoul-
der should stay in the same location, but the upper and lower arms will rotate as the hand is moved to
different locations.

One IK

End
y movement

Figure 8.6 Arm moved by IK

@ MoCap for Artists

IK is usually used for the limbs of a body and is usually part of a character rig application. The IK
on the arms usually relies on the wrist’s position to position the rest of the arm. The ankle’s posi-
tion usually define the position of the leg. If set up properly, the IK chain knows which way to
bend, so if the foot is brought up oft the floor and close to the body, the knee will flex in the proper
direction and the upper and lower leg joints will rotate to accommodate this. The end of the IK
chain is usually called an end effector (Figure 8.7). The end effector is the device that’s used to posi-
tion the IK chain. Usually the position of the end effector is key-framed.

/& of IK chain

i

T /'

effector

Figure 8.7 IK end effector

Sometimes it is easier to use FK instead of IK. An instance would be a character’s arms swinging
back and forth as the character walks. When you are animating a character’s limbs, IK is a power-
ful tool. If IK weren’t available, it would be very hard and time consuming to key-frame a charac-
ter’s walk since you would have to figure out angles of all the joints in the character’s legs. With IK,
you can prevent a foot from sliding or going through the ground by placing and keeping the foot’s
end effector on the ground for the appropriate number of frames. A combination of IK and FK
gives the maximum amount of flexibility and this usually leads to a better rig.

8.3 Integrating Mocap Animation and
Key-frame Animation

Mocap gives us FK key-frames at every single frame of motion. IK allows us to animate entire joint
chains without having to specify every single joint rotation. Let’s look at what happens when we
mix the two.

Chapter 8: Data Application — Advanced Level @

8.3.1 Why do we want to do that?

Why do we want to mix FK and IK? The answer to the question is simple: to get the best per-
formance possible. Motion capture works great for human motion but people usually conserve
motion and therefore do not have an “animated” quality to their actions. Being able to change the

motion data is one of the keys to getting what’s wanted out of a performance.

Having a way of animating on top of mocap data to add to the actor’s performance will give you a
perfect method for getting the timing and weight transfer of human motion. The ability to exag-
gerate motion will put much more life in the character. Motion capture, at its best, is a tool for ani-
mators to build on. It is what Disney animators did with rotoscoping for classic Disney animation.
They did not simply use the rotoscope to trace over. They pushed the positions further to give even
more energy to the characters’ motions. Motion capture is not a black box that simply produces

data that you are stuck with.

8.3.2 Setting up a skeleton for FK and IK

There are several ways to make custom rigs in Maya and other 3D packages. We are going to con-
centrate on two methods. One that you will have to put some work into, and a simpler one that
Maya gives you for free. Let’s start with the more difficult way first.

Switching between FK and IK has been common with regular animation rigs. Back before this was
automated for you, there was a special process you’d have to go through in order to use FK or IK

data, and this was to use a three skeleton system.

If you are going to use a three skeleton system, the joint orientations and lengths between joints
should be identical among the three skeletons. The method is for applying motion to the skeleton by
blending FK and IK and not for retargeting motion for differently proportioned skeletons.

Your base skeleton is an initial skeleton that has nothing applied to it, no IK or FK. Since mocap
data and IK will be applied to duplicates of the base skeleton make sure that it works with your
motion editing or retargeting software and IK tools. Try a few different variations. Once you have
the best skeleton for your animation, make two duplicates of the base skeleton. One of these will
be for IK and the other will be for FK. The joint rotation angles of these two skeletons will be
blended with weights to generate the joint rotation angles of the base skeleton. For blending we
will use a Blend Colors utility and a little widget that we will create. It allows us to change all the

blending weights for all the joints at once.

”

Rename all the FK joints to something like “FK_...” and the all IK joints to something like
“IK_....” If the three skeletons’ joints share names, it can be confusing and cause problems with

scripts, constraint, and other methods.

Select the IK, FK, and base skeletons by selecting the top joint in each skeleton’s hierarchy. Look
at all of the joints in Hypergraph and click the “Input and Output Connections” button (Figure
8.8). You’ll see just what goes into and out of each joint. Being able to see connections will be
helpful in the next few steps.

@ MoCap for Artists

Ul Hypergraph
Edit View Bookmarks Graph Rendering Options Show Help

EEEEAEEEO

X o N s

25 forts_rotateX

Figure 8.8 Input and output connections

Now we need to connect the nodes together in a way that will allow us to blend IK and FK. We
want to push the rotation angles of the FK and IK joints into a blender that sends the result out to
our base joint. We will do this with a “Blend Colors” utility (Figure 8.9). The Blend Colors utility

U Hypershade
File Edit View Create Tabs Graph
eles|lo@(ax

Create l Bins | 2
w Create Maya Nodes g
@ ampler Into AL
= =
_i;_i Set Range]
H- |
Q =
Studio Clear Coat -
9
3 Uy Chooser
o ”t“n * . Yor Product 2‘
:___\ ~|Color Utilitie: ot
| o}
: . Blend Coloi
_,‘,7 .4.i. I - :t

T M e

0 Gamma Correct
g-}g Hsv To Rgb

Figure 8.9 Blend Colors utility

Chapter 8: Data Application — Advanced Level @

can be found either in the Hypershade or the Create Render Node option under the Rendering
drop-down menu in the Hypergraph.

Create a Blend Colors utility. Connect the Rotate output of a joint in the FK skeleton to the first color
input (Colorl1) of the Blend Colors utility using the Connection Editor (Figure 8.10). Connect the
Rotate output of the corresponding joint in the IK skeleton to the second color input (Color2) of the
Blend Colors utility. Take the output from the Blend Colors utility and connect that to the Rotate
input of the corresponding joint in the base skeleton. You need to do this for every joint, and make
sure that you always put the FK joint’s output in the Blend Colors utility’s first color input (Color1)
and the IK joint’s in the second one (Color2). Make sure it is consistent. (A Maya file with just a sim-
ple joint chain set is on the CD.) The reason for using two copies of the base skeleton is so that all the
joints are aligned in exactly the same direction. If this is not the case, this setup may not work.

1, Connection Editor Q@@

dptions Left Display Right Display Help

Reload Left] Reload Right |
Dutputs from -» to I Inputs
Ghost Frames Ao blendColors4
Ghost Range Start Caching
Ghost Range End Node State
Ghost Driver Blender
b Translate <] Colorl
2 Rotate
Fotai N

Fotote ¥
® Color2

Rotate Order
P Soak
b Shear
b Rotate Pivot
B Rotate Pivot Translate
o €l Diunt

Figure 8.10 Connecting joint’s rotation to Color1 input of Blend Colors

If you are interested in making this faster, write a MEL script that will run through all the joints

and make connections.

We are now going to set up a way to control the FK/IK blend without having to hunt down all the
Color Blend utilities. Let’s start with the FK/IK control for the right arm. Create a NURBS circle
near the right shoulder joint, rename it “rightArmBlend.” Select the circle and go to the “Modify”
selection menu at the top and choose “Add Attribute.” Name it “FKIK Blend.” Set it as a float (float-
ing-point) value, give it a minimum value of 0, 2 maximum value of 1, and a default value of 1. This
means the default will be FK. If you let the default value be 0, the default will be IK.

@ MoCap for Artists

Using Connection Editor, again, connect “rightArmBlend” and one of the Blend Colors utilities
associated with the joints in the right arm. Use “FKIK Blend” as the output of “rightArmBlend”
and the “Blender” as the input to the Blend Colors. Repeat it with the Blend Colors utilities asso-
ciated with other joints in the right arm. Once these are connected, changing “FKIK Blend” will
change the FK/IK blending of all the joints in the right arm. You need to repeat this with the left
arm and both legs.

Now that it’s done, we have an FK/IK switcher. It is not an on/off switch but a slide switch. This
is useful in all types of situations. We explained all the steps so that you understand how a three
skeleton system works. There is also a much easier way. Whenever you create an IK in Maya it will
create an IK Blend attribute on the IK handle that allows you to switch back and forth between FK
and IK. Thus, with IK Blend you can have mocap data on a skeleton and IK to override it using

a single skeleton.

There are other methods as well. Maya has a skeleton system within it now that is very similar to
the full-body IK skeleton in MotionBuilder. If you create a skeleton in the way Maya wants and
assign the full-body IK to the skeleton, Maya will automatically rig the skeleton. Be careful with
using something like this. It has a certain way of doing things and does not allow you to change the
rules. It is possible that it will save you quite a lot of rigging time but it is also possible that you can

lose some flexibility.

You can also use marker data to directly move IK end effectors (IK handles in Maya) if you set
things up correctly. Using marker data and a decent IK setup in Maya, you can create an entire rig
and sidestep the rig in MotionBuilder. We will go over that in Chapter 10 where we describe facial
rigs with IK and again in Chapter 11 where we talk about puppetry.

8.3.3 Adding key-frame animation to mocap

A very common occurrence in motion capture is that after you have captured quite a bit of data on
a generic motion capture skeleton you are reluctant to add any more to the data. We are not talk-
ing about editing the data, but adding to what you have or mixing a few different methods
together. A common example is adding some finger animation to the hands. Many times the hands
are captured as rigid objects that only have three degrees of freedom at the wrists and there is no
motion for the fingers. Adding finger animation to this is creating key-frame animation from
scratch. You need to rig the fingers and animate them. Pay attention to the attitude in the motion
of not only the hand but also the overall body. The observation will give you clues on how fast to
animate the hands or how far to move the fingers. Always go back to your reference video from
the shoot as well to get ideas about what the fingers were doing.

Another area that is commonly added later as key-frame animation is the facial expressions. Some-
times facial expressions are captured but often they are animated by hand. You create a separate

head for facial expressions and generate facial expressions using shape interpolation (shape blend),

Chapter 8: Data Application — Advanced Level @

key-framing, and/or other methods. The animated head has all the facial expressions on it but no
rotation or translation. The skeleton with mocap data has rotational values for the neck and head.
The animated head can be directly added to the mocap skeleton. However, you may need to tweak
the mocaped head motion in order to create the best look for the end product. If you do not, the
character may have facial expressions that look out of character or jerky head motions that do not

match the facial expressions.

This page intentionally left blank

Hand capture is very difficult and at the same time very valuable. Emotions can be conveyed with
subtle movements of hands and fingers. When dealing with motion capture, however, fingers give

you very small areas to place markers on, which create some interesting issues and challenges.

9.1 Anatomy of a Hand
As with any study of motion capture, anatomy is the best place to start. You need to understand
how the hand is structured, how it moves, which type of hand motion you want to capture, and

what kind of motion you are willing to sacrifice for efficiency.

Let’s start with the forearm, which is the arm between the elbow and the wrist. It supplies the
“twisting” of the hand. This rotation around the longitudinal axis of the hand is called the x-axis
rotation of the hand. This twisting of the hand is originated in the forearm by the radius rotating
around the ulna (Figure 9.1). However, in animation rigs it is often treated as rotation applied
directly to the wrist, having nothing to do with the forearm.

) Ulna
Radius

X-axis —

Figure 9.1 The x-axis rotation of
a hand

The hand rotates around the y- and z-axes (two latitudinal axes) of the hand as well. Let the lati-
tudinal axis that sticks out of the hand from its side be the z-axis of the hand. There is almost 180

degrees of rotation around the axis (Figure 9.2).

@ MoCap for Artists

Figure 9.2 The z-axis

rotation of a hand

The y-axis is the other latitudinal axis. It sticks out of the back of the hand. The rotation
around the y-axis has a smaller range than the rotations around the other two axes (Figure 9.3a).
It only rotates about 30 degrees in the adduction (Figure 9.3b) and only 20 degrees in
abduction (Figure 9.3c).

Figure 9.3 (a) The y-axis rotation of a hand; (b) The y-axis
rotation of a hand in the adduction; and (c) The y-axis rotation of a
hand in the abduction

Chapter 9: Hand Motion Capture @

The combination of the three rotations generates the main rotation (i.e., local motion) of the hand,
but we may be interested in other motions, such as finger motion and hand cupping. So, let’s look
at the bones of the hand (Figure 9.4).

Radius

Carpometacarpal

(CMC) N

Metacarpal

&— Metacarpal

é— Metacarpophalangeal
(MCP)

Proximal phalanx

Proximal
phalanx

Distal

phalanx {— Middle phalanx

Distal phalanx

Figure 9.4 Bones of the hand

The bones in the hand include several small bones called the carpal bones. We have been familiar-
ized with the word “carpal” by carpal tunnel syndrome. (Carpal tunnel syndrome is a medical con-
dition caused by the median nerve compressed at the wrist.) The carpal bones are all different in
shape and all have some small amount of motion, but for the sake of simplicity we tend to group
them together into one unit. The base of the group of the carpal bones attaches to the radius and
the ulna. This is normally where we place the origin of our hand axes.

The metacarpals are the longest bones in the hand. These are the bones that allow you to cup your
hand. The thumb’s metacarpal moves more than the other fingers’. That allows the thumb to rotate
and face the other fingers. We use the metacarpals whenever we grip something. The metacarpals
are very frequently overlooked in motion capture but are essential if you want to create natural

hand motion.

Each finger has three bones called phalanges, which are proximal phalanx, middle phalanx, and distal
phalanx, except for the thumb. The thumb has proximal and distal phalanges but not middle pha-
lanx. The joint between the proximal phalanx and the metacarpal is called the metacarpo-phalangeal
(MCP) joint. The MCP is biaxial, in other words, it has two degrees of freedom (DOF) rotation.
On the other hand, joints between two phalanges have one DOF rotation (Figure 9.5). As the
MCP joint is biaxial, all the fingers can rotate around the two latitudinal axes (y- and z-axes).

However, they do not rotate in the longitudinal axis (x-axis) voluntarily. If you place your hand on

@ MoCap for Artists

your desk, you can tap the desk with your fingers by moving them up and down. You can also
spread out your fingers, but you can’t twist your fingers like your forearm. Fingers and thumbs may
be twisted a little when they come in contact with another body, but there are no voluntary mus-
cles to twist them.

Figure 9.5 Tivo DOF at
MCP and one DOF at joints
between phalanges

The joint between the metacarpal and the carpals is called carpometacarpal (CMC). The thumb’s
CMC joint is called a “saddle” joint because it looks like a pair of interlocking saddles. The joint
is biaxial like the MCP joint.

One important note is that, we have opposable thumbs. Our thumb can oppose the other fingers
and allows us to hold things easily and pick up small objects. The thumb does not rotate into the
side of the hand but slightly under the hand (Figure 9.6a). Also the thumb is not on the same plane
as the fingers. It extends down from the hand at an angle (Figure 9.6b). Relax your hand and pay
close attention to how and where the thumb is situated. Setting up the thumb’s MCP joint and
CMC joint properly is very critical to moving the thumb in a realistic manner.

(b) ==

Figure 9.6 (a) Thumb rotates under the hand; and (b) Thumb
extends down from the hand at an angle

Chapter 9: Hand Motion Capture @

Important note: Since the thumb is anatomically different from the other fingers it requires
different treatments. To avoid potential confusion, a digit refers to any finger, including the
thumb, and a finger refers to any finger, excluding the thumb, in the rest of this chapter.

Try to get someone to take top, side, and front photos of your hand in a relaxed pose, in a fist, and
with your fingers and thumb spread out. This should give you a pretty good general idea of the
range of motion of the hand. Books on anatomy and biomechanics are great references as well.

Now we are more familiar with how the parts of the hand move. Let’s look at how to rig a hand

for several different variations of hand capture.

9.2 Rig and Marker Set for the Hand

There are several ways to rig a hand for motion capture. Each rigging method calls for a certain
number and configuration of markers. We will be looking at rigging methods and marker sets

together in this section because we can’t talk about one without the other.

All the marker sets for the hand are relatively simple and there are a couple of important criteria
that apply to all the hand marker sets. The first one is that all the markers should be placed on the
backside of the hand, not on the palm side. Markers are more visible to cameras on the back side.
The second one is that markers placed on a finger should be as centered as possible on the finger.
If a marker on a finger is too close to one side, it can be easily covered up when the finger gets close

to another finger next to it.

9.2.1 Rigid hand

Let us start with the simplest setup for the hand. It requires three “hand markers” or markers on
the back of the hand (Figure 9.7) and treats the entire hand as a single rigid piece. The hand motion

Figure 9.7 Marker setup for the rigid hand

@ MoCap for Artists

is derived from the three hand markers. The hand moves as if all the fingers and thumb were bound
together and could not move at all.

All you need from your mocap data is the wrist joint’s rotation. Apply the rotation to your rig’s
wrist to rotate the entire hand. If you do not have rotational or skeletal data, use the translations of
the three hand markers. Create point and aim constraints to have the three hand markers rotate the
hand (Figure 9.8). (See Section 6.2.3 for how to orient an object using three markers and point and
aim constraints. The same method can be applied here.)

‘When you are attaching three markers to a hand, create an irregular triangle with the markers, but
not a regular triangle that has three edges of the same length (Figure 9.7). Varied distances among
the markers make it easier for you and the tracking algorithm in your mocap system to identify the
markers. Add one or two extra markers. They will help you deal with occlusion problems.

Translate X 6.506
Translate Y 0.332

Node State Mormal
Offset® 0
Offsety 10
DifsetZ -22

I HNDA 1

@ Display ¢ Render
Layers Options Help

Figure 9.8 Rigid hand oriented by three hand markers

This method is probably the most commonly used one and useful for many types of projects.
However, your character will lack details in hand motion that would convey meanings, emotions,
intents, directions, and other communications. Ask yourself if capturing the most basic hand
motion is enough for your project. If not, try one of the following methods.

Chapter 9: Hand Motion Capture @

9.2.2 Mitten

The second method is what we call the mitten. A marker on a fingertip, or a “fingertip marker,”
is added to the rigid hand’s marker set and the fingertip marker is used to drive the motion of all
the fingers and thumb (Figure 9.9). Since there is just one marker on the selected finger, usually
the middle finger, and no marker on the other fingers, the rig basically curls all the fingers together
to reach the marker. With this method you have the hand motion (motion of the upper part of the
hand) and the finger motion (motion that is shared by all fingers and thumb).

Figure 9.9 Marker setup for the “mitten”

The rig needs a chain of joints to control the finger motion. Create a chain of four joints. The first
joint should be the MCP joint, the second one at the joint between the proximal and middle pha-
langes, the third one at the joint between the middle and distal phalanges, and the fourth one at the

Translate X ,43?3
Translate ¥ -1.909
Transiate Z 0141
Rotatex 0
Rotate'y 0
RolateZ 0
ScaleX 1
ScaleY 1
ScaleZ 1
SHAPES
ikHandle1_pointConstia
Node State Momal
Offset 019
Difsat -0.856
OffsetZ2 0.027
LIENDWD 1
INPUTS
ikRPenlvar

 Display © Render
Layers Options Help

Figure 9.10 Jjoint chain in the middle finger

@ MoCap for Artists

fingertips. The rig can have either a single joint chain shared by all the fingers or a joint chain in
each finger. In the former case, the skeleton of the hand looks anatomically wrong but works fine
if the skin of all the fingers is bound to the single joint chain appropriately. In the latter case, each
finger’s skin should be bound to the corresponding joint chain and the joint rotation should be
shared across all the joint chains via a script, an expression, or any other method that you choose
(Figure 9.10). Either way, motion looks like the motion of a hand wearing a mitten.

Use either constraints or inverse kinematic (IK) to let the finger’s joint chain be driven by the finger-
tip marker. If you choose to use IK, have the position of the IK end effector (IK handle in Maya)
constrained by the position of the fingertip marker.

Copying the finger rotation to the thumb creates a grasping motion (Figure 9.11). An expression
or script is a good tool for copying the rotation since it can easily scale the finger’s rotation angle
to fit the range of the thumb’s rotation angle.

Node State Nomal

DifsetX 019

Offset'y -0.856
OffsetZ 0.027
L3ENDWO 1

INPUTS
ikRPenluar

Figure 9.11 Grasping

9.2.3 Mitten with an independent thumb

A variation of the “mitten” method adds a marker on the thumb or a “thumb marker,” to the basic
mitten’s marker set. The thumb marker, not the fingertip marker, is used to drive the thumb’s motion
(Figure 9.12).

When you add a joint chain for the thumb to your rig, recall the characteristics of the thumb, for
example, the thumb has two (not three) phalanges, more movement in its metacarpal than other
digits, the thumb’s MCP joint is offset from the upper hand, and the thumb rotates in a different

Chapter 9: Hand Motion Capture @

Figure 9.12 Thumb marker added to the
basic mitten marker

direction from the other digits. Keeping that in mind, create the first joint of the chain at the CMC
joint, the second one at the MCP joint, the third one at the joint between the proximal and distal
phalanges, and the fourth one at the fingertips. The thumb’s joint chain has four joints like the mid-
dle finger’s joint chain but anatomically the joint placement is different (Figure 9.13).

Figure 9.13 Markers on the thumb and middle finger

Use either constraints or IK to let the thumb’s joint chain be driven by the thumb marker in the
same way as the finger’s joint chain is driven by the fingertip marker.

If higher DOF than necessary is given to the thumb, the thumb tends to acquire weird rotations.
So give one DOF rotation to each thumb joint, except for the first joint. The first joint with two

DOF rotation allows the thumb to move to desired locations.

When you are placing markers on the middle finger and thumb, place them on the distal phalanges
but leave a small distance from the fingertips. The small distances prevent markers from being
occluded and being mistaken for one big marker when the digits get close to each other.

@ MoCap for Artists

You can get more with this approach than the basic mitten method but there are still a lot of limitations.
For instance, you can't spread fingers because one finger marker is providing motion for all four fingers.

9.2.4 Mitten that stretches
Another variation of the basic mitten method replaces the fingertip marker in the marker set of the
mitten with an independent thumb with two markers, “index finger marker” and “little finger

marker.”

This configuration of markers gives a fairly natural curl to the hand and allows the fingers to fan
out. The index finger marker provides all the motion for the index finger, 67% of the motion for
the middle finger, and 33% of the motion for the ring finger. The little finger marker provides all the
motion for the little finger, 67% of the motion for the ring finger, and 33% of the motion for the
middle finger. In other words, the motions of the index and little fingers that have markers are aver-
aged with weights to generate motions of the middle and ring fingers that do not have markers
(Figure 9.14). The thumb marker provides the thumb motion independently.

Selected Obi & Altr [R_up_3rotate’’
Defaut Dbject [k_up_4

Convest Unts. & Al Nene © Angust only
Evolision [Abwags ~]
Edtor: [Expression Edice v
Expression;

le_up_2.rotate¥e(0.66)*1lt_up 2.rotace¥+(0.33)*1lc_up_5.rocate¥;
1t_up_3.xotateZ=(0.66)*1t_up_2.rotateZ+(0.33)*lc_up_5.rotated;
1t _mid_3.rotateZ= (0,661 71t_mid_2.rotated+(0.33)"1c_nid_5.rocacel;
lc_low_3.rocateZ={0.66)"lc_low_Z.roraceZ+(0,.33)"lc_low_5.rotacel;

Figure 9.14 Weighted averages of rotations

‘When you are attaching markers to the index and little fingers and the thumb, remember to place
them on the distal phalanges but leave small distances from the fingertips. The markers should be
closer to the fingertips than the third joints but not too close to the fingertips.

9.2.5 Ultimate

For the ultimate in full hand and finger capture, place markers on all five digits’ joints and finger-
nails, and at least three markers on the back of the hand (Figure 9.15).

Chapter 9: Hand Motion Capture @

Figure 9.15 Markers on all finger
Jjoints, fingertips, and back of the hand

‘When you use this many markers, make sure that the real hand (the hand that you mocap) and your
3D model of a hand (the hand that you apply mocap data to) are similar because the markers drive
motion of the fingers, thumb, and metatarsals individually. All major bones of the hand, including
the metacarpals, should be represented as joints in your rig.

The MCP joints of all five digits should have two DOF (or three DOF in rare cases). Usually rota-
tions around the longitudinal axes of the fingers and thumb are ignored. Thus, we assume that
none of the digits “twists” at all. However, our fingers and thumbs can be twisted by external
forces. Your project might require you to accurately represent the twist. If the fingers and thumb
need to twist, give three DOF rotation to the joints to the MCP joints; otherwise, leave them with
two DOF rotation.

The three markers on the back of the hand, “hand markers,” can rotate the whole hand with three
DOF as explained in Section 9.2.1. With skeletal or rotational data and a skeleton for the whole
body, the location of the hand is normally computed using the rotation angles of all the joints that
are above the wrist joint in the full-body skeleton. The hand markers can translate the hand to
wherever it should be in the world space if neither skeletal nor rotational data is available or if the
hand rig does not belong to a full-body skeleton.

One of the hand markers should be placed on the fifth (i.e., little finger’s) metacarpal fairly close to
the knuckle (i.e., MCP joint) (Figure 9.16). The reason to have the fifth metacarpal marker close

@ MoCap for Artists

to the knuckle is that the metacarpal moves more near the MCP joint and less near the CMC joint.
You want the marker to move as much as possible in order to capture the fifth metacarpal motion,
which is an important part of the cupping motion. Your rig should be set up so that the rotation
of the fifth CMC joint is shared with the fourth (i.e., ring finger’s) CMC joint since the fourth
metacarpal moves slightly in a manner similar to the fifth metacarpal. It is important that two DOF
rotation is given to the first (i.e., thumb’s) CMC joint and one DOF rotation to the fourth and fifth
CMC joints. The movement of the second and third metacarpals is insignificant and can be
ignored. No DOF is necessary for the second and third CMC joints.

Metacarpal .
marker \. %

X

P

Figure 9.16 Metacarpal marker

The marker placements of the four fingers should be identical to each other. The thumb’s marker
placement superficially looks similar to that of the four fingers but anatomically different as dis-

cussed in Section 9.2.3.

The biggest issue with placing “joint markers,” or markers on joints, is that the skin over knuckles trav-
els noticeably and a marker placed on top of a knuckle slides when the digit is flexed. So, the markers
for the MCP joints should be placed behind the knuckles but not on the knuckles (Figure 9.17). The
markers for the second and third joints can be placed on or close to the joints. A fingertip marker

should be placed on each digit’s fingertip as well.

Be aware that aim constraints can cause backward bending in some digits if not enough attention
is given to the orientations and locations of the joints’ rotation axes. A little bit of backward bend-
ing is not bad since many people can bend their fingers and thumbs backward slightly but a lot of
bending looks strange. Look at the hand rig on the CD. Since “up” vectors, that would control
where the joint rotation’s y-axis points at, are not set up in the rig when the markers move too
much, the fingers can “flip” their rotations.

When you have a fully articulated hand rig, make sure that the rotation axes of all the finger
joints line up so that the z-rotation is about the same axis and in the same direction for all the

Chapter 9: Hand Motion Capture @

Figure 9.17 Markers right behind knuckles

finger joints. (Remember the thumb is different. Set up the thumb’s joints accordingly.) The
reason why you want to orient the rotation axes of all the finger joints identically is that when
you select finger joints and rotate them about the z-axis, you want all of them to curl in the same
direction.

In summary, two critical factors to a success in full hand and finger capture with the setup
presented above are giving the minimum DOF to all the joints and orienting the joint rotation axes

properly.

9.3 Capturing Hands

When you capture hand motion with some type of finger motion you usually have specific reasons
to do so, such as your character has to interact with a prop, it is important to show the tension in
a character’s hand when it makes fists, or maybe you are researching finger motion and you want
to see if you can replicate the subtle movements of the individual fingers. No matter what your rea-

son is you have to think about the same set of basic issues that we will discuss in this section.

The biggest issue is visibility. How visible are all the markers to the cameras? How many
markers will be occluded if a character makes a fist or two characters shake hands? There are a lot
of concerns related to visibility and it can get complicated very quickly. The majority of
visibility issues comes from the nature of hand/finger motion itself. A good example is trying to

capture someone pointing a finger at something. It is a very simple and universal hand gesture, but

@ MoCap for Artists

when the three fingers fold into the palm of the hand the fingertip markers on these fingers
disappear. There will be other markers that are harder for the cameras to see if the thumb is
curled down over the three fingers. There is no way to capture the finger pointing gesture without
occlusion.

We suggest that you capture all the shots you need, including the ones you know will give you
much less than ideal data. And then find out if you can fix the messy data later. You might decide
that key-framing the shots is more practical than trying to fix the data. If only one or two out of
twenty or thirty shots have serious problems and all the other shots are fine, there is no good rea-
son for you to give up on hand capture. Just use an alternative method for the shots with mocap

data that is too difficult or too time consuming to fix.

Explain to your talent what happens if hands are hidden and markers are covered up, and ask them
to try not to create actions that will hide hands or markers. At the same time, you don’t want your
talent to become too conscious of the markers. You really want them to get used to having mark-
ers on their hands and act as if markers were a part of them. We caution against stopping a per-
formance because you see one or two places where markers are occluded. Unless it is a very long
performance, let it go and finish the shot. Then ask the talent to try it again. Suggest different hand
or finger placements and explain why you’d like to make the change.

Marker size is another one of the major factors that determines how much data you will have and
how reliable it will be. When you are performing the full hand and finger capture, use the smallest
markers possible to get the best separation. This type of capture is often done with a close-up
mocap setup (similar to the facial capture setup that we will see in the next chapter). However,
mocap systems are getting better every year. There are already several systems that can capture
hands, fingers, and full body all at the same time. In the near future non-marker systems may be
able to capture full body, hands, and facial all at once in a reasonably sized space in which capture
subjects can move around freely.

Think again about the actions that you want to capture and check if anything will get in the way
of the markers. If you want to capture someone’s index finger pulling a rifle’s trigger, make sure
that the markers on the index finger do not get caught in the trigger guard. If they do, remove the

trigger guard. Prevent preventable issues as much as you can.

Motion capture is supposed to give you speed and accuracy, but you may want to rethink your
method if you have to spend months cleaning your data. You may be better off reshooting or key-
framing some (or all) of the shots. Knowing the limit of your system helps you when it is time for
you to make decisions.

In the next chapter we will look at facial capture. It presents a set of challenges. Some are similar

to those we saw in this chapter. Others are unique and different.

The face is the only part of the human body where some voluntary muscles attach to other mus-
cles instead of bones. Most of our facial muscles are small, thin, layered, and embedded in fatty tis-
sue. Motion capture of facial expressions is almost exclusively done with optical systems due to the
subtlety of the motion. Small markers of 2 or 3 mm diameters are pasted on a capture subject’s face
with hypo-allergenic glue used for false eyelashes or wigs. If a high-end system has a sufficient
number of high-resolution cameras, it can capture full-body motion and facial expressions simul-
taneously in a capture volume that is large enough to allow the subject to move around. However,
with most optical systems, facial expressions are captured separately from body motion in a smaller
capture volume created by placing cameras around a seated capture subject (Figure 10.1). Facial
data 1s “stabilized” by removing the head motion from the data to isolate the local displacement of
the facial skin caused by the facial muscles underneath the skin. The stabilized data is applied to a
facial rig. Before we examine facial motion capture, let’s look at the anatomy of the face to under-
stand the forms and functions of the bones and muscles in the face.

10.1 Anatomy of a Face

Our most important irreplaceable organ, the brain, and the sensory organs for all of our five senses
(eyes for sight, ears for hearing, tongue for taste, nose for smell, and skin for touch) are in our heads.
The human skull consists of the 8 cranial bones and 14 facial bones and its shape underlies the
appearance of the individual. The total of the 22 skull bones forms multiple cavities; the largest one

to house the brain and smaller ones to house the eyes, ears, nose, and mouth.

The cranium is the dome-shaped part of the skull that contains the brain. It is formed by eight plates
of bones. The plates of the unborn baby are not fused so that the head can deform when it goes
through the narrow birth canal. If you touch the top of a newborn’s head, you can feel a soft spot.
There is another smaller soft spot toward the back of the head. The smaller one closes in a few
months after the birth; the larger one remains soft until about 2 years of age. The frontal cranial bone
is the bone that forms the top part of the face above the eyes and plays the most important role in
the facial features among the cranial bones. Arcus superciliaris, or brow ridge, is a ridge beneath the
eyebrows and a part of the frontal cranial bone. Great apes have more prominent arcus superciliaris

than humans, and men more than women.

The lower front part of the skull, the face, consists of 14 facial bones. The maxilla, or upper jaw

bone, is two bones fused together. During pregnancy, two bones in the embryo’s cheeks grow

@ MoCap for Artists

Figure 10.1 Camera setting for facial capture

toward the center of the face. They meet at the center under the nose and form the maxilla. If they
fuse incompletely or fail to meet, the child is born with a cleft palate. Because our diet consists of
mostly processed and/or cooked foods, our food is much softer than what our ancestors ate. Our
jaws have grown smaller than our ancestors’. That is the reason why we have wisdom teeth, molars
for which our jaws don’t have space for. Men have larger jaws than women but it seems that men
suffer from wisdom teeth as much as women do. The facial bones that are most important for the
facial features are the mandible (lower jaw bone), maxilla, zygomatic (cheek bones), and nasal bone
(Figure 10.2).

The temporalis muscle covers the large temporal area of the face. It starts from a side of the cranium,
goes under the zygomatic arch, and attaches to the top of the mandible. Great apes and monkeys have
larger temporalis muscles than ours. Their temporalis often covers the entire sides of the cranium and
reaches the crest that runs from the arcus superciliaris to the back of the cranium. Our smaller tem-
poralis muscles are another example of devolution that the human has gone through as we evolve.
The masseter muscle starts from the zygomatic arch and attaches to the lower part of the mandible.
There are other muscles that are involved in chewing and moving the tongue, in addition to the

temporalis and masseter. The muscles related to chewing and swallowing food are located in the

Chapter 10: Facial Motion Capture @

Frontal

Cranium —_ X L

Arcus superciliaris

K
’/6% Nasal
> - g _ Zygomatic
’ > o /& Maxilla
-“'ZHJ‘. 7 _
4— Mandible

Figure 10.2 Human skull

sides of the skull and the throat area. A note here is that our mandibles move in all three directions.
We can move our mandibles up and down, front and back, and right and left. But we often simplify
and restrict the movement of a 3D character’s lower jaw by allowing the jaw joint to have only one

degree of freedom (rotation around a horizontal axis).

Facial muscles cover the front part of the cranium, facial bones, fat, cartilage, and other types of tissues
in the face in layers. Combinations of these muscles create facial expressions. The total number of facial
muscles may differ from one anatomy book to another because some of them function together and
are hard to separate. The orbicularis oris muscle is the circular muscle around the mouth. All the other
muscles around the mouth are used to open the mouth, while the orbicularis oris closes the mouth. We
use the orbicularis oris to blow a whistle or a brass instrument. Adjacent to the orbicularis oris, the buccina-
tor muscle is thin and rectangular and covers a relatively large part of the cheek. The buccinator tenses
the cheek and pulls the corner of the mouth and flattens the cheek (Figure 10.3).

Frontalis Temporalis

Orbicularis
oculi
Zygomatic
Masseter arch

Buccinator

Orbicularis oris

Figure 10.3 Facial muscles

@ MoCap for Artists

The orbicularis oculi is the circular muscle around the eye. Similar to the orbicularis oris, the orbicularis
oculi is the only muscle that closes the eye. The frontalis is on the frontal cranial and is not anatom-
ically classified as a facial muscle. However, it is the muscle that raises eyebrows and is important in
facial expressions. Botulinum toxin, a toxic protein, is injected into this muscle as a cosmetic treat-

ment to temporarily smooth wrinkles on the forehead.

There are a number of anatomy books for artists. We suggest that you buy an anatomy book if you
don’t have one yet. It will be beneficial when you design a marker set and a rig for your 3D char-
acter. In addition to anatomy, morphology and morphogenesis of the face are useful. Form follows
function. Every part of our faces (and bodies) has the shape determined by the functions that it has
or used to have. Knowing how all these different skeletal and muscular systems work with each

other will only help you create better outcomes.

10.2 Camera Setup and Capture

You can’t paste many markers of a standard size (e.g., markers with the diameter of half an inch) on
a human face. Even if you succeeded in it, markers would be too close to each other and the mocap
cameras would consider multiple markers as a single giant marker. So, we need to use smaller
markers and higher resolution for facial capture. If your system consists of a good number of high-
resolution cameras, you may be able to do facial capture without removing the cameras from the
walls or reducing the capture volume. If you are not sure, test it. If your cameras cannot track small
markers, you will need to bring the cameras down, adjust the camera lenses’ focuses, and possibly
replace the lenses to allow for focusing on closer objects.

Place a chair to seat a capture subject and the cameras on tripods around the chair (Figure 10.1).
There is no need for cameras to look at the back of the capture subject’s head but make sure that
some cameras are covering the sides of the subject. The coverage of 180 degrees to 200 degrees
around the subject allows the subject to rotate the head from side to side to some degree. If the sub-
ject turns the head too much to one side, some of the markers won't be seen by any cameras. For
instance, if a subject turns his head to his right by 90 degrees, the markers on his right temple won’t be

seen by any of the cameras. You need to talk to your capture subject about it before you start capturing.

The cameras should be placed at various heights. Place one third to one half of the cameras a little
bit above the eye level of the seated capture subject. Place the other cameras below the eye level
and let them look upward at the subject. The passive optical system’s cameras emit bright lights and
being surrounded by them is like being interrogated — it is hot, glaring, and uncomfortable. It is a
good idea to place your cameras so that there is a void of cameras in the middle right in front of
where the subject will be sitting. This gives the subject someplace to focus his/her eyes that isn’t

covered by red lights and is also a convenient place to add a video camera to take reference video.

It is wise to check the camera setup and calibrate the system before asking a capture subject to take
the seat. Instead of the capture subject, you can use an object of an approximately human head size
(e.g., a football). Paste markers on the object and place it roughly at the seated subject’s head posi-
tion (Figure 10.4). The system should be calibrated with a smaller wand with smaller markers instead

Chapter 10: Facial Motion Capture @

Figure 10.4 Checking camera setup with a markered football

of a regular-sized wand that you use for full-body capture. And remember you will be behind the
cameras and lights, and the subject won’t be able to see you. Have a rehearsal with the cameras off

or at a different location with a similar seating arrangement before starting capture sessions.

Have a facial capture kit with small markers, hypo-allergenic glue, tweezers, hair bands, and pins.
Small markers are easier to handle with tweezers. A hair band and pins can keep the capture sub-
ject’s hair off the face. Ask your capture subject to wear a top in a dark color on the capture day
since bright-colored clothes (e.g., a white T-shirt) reflect light. If your capture subject comes in
a light-colored cloth or if you want markers on the chest, you can use a mocap suit. As in full-body
capture, it is a good idea to take reference video when capturing facial data.

10.3 Facial Rig

A facial rig for facial motion captured data can be set up in a number of ways. We will introduce a
few methods here. Try all and find which method works best to achieve the goal of your project.

10.3.1 Facial rig with discrete joints

The simplest way is probably attaching markers to a set of joints that are bound to the facial skin
geometry. To set up a rig with this method first create a set of discrete joints which do not have
hierarchical relations to each other (whereas the joints in a skeleton are normally in a hierarchy).
The locations of the joints on a 3D character’s face should be similar to that of the markers on the
capture subject’s face. Next, bind the skin geometry to the joints. Unless you are animating a
robot’s face, which consists of rigid parts with no flexible part whatsoever, you need to use a skin

@ MoCap for Artists

binding method that allows each vertex of the skin geometry to be influenced by multiple joints in
order to have smooth deformation over the skin. Finally let the position of each joint be con-
strained by that of the corresponding marker with a distance offset.

The main issue of this method is that controlling influences or “painting weights” for each joint
tends to be a time-consuming tedious labor. You need to determine which joints (i.e., markers)
influence which vertices of the skin geometry and how much as you check how the skin geome-

try is deformed by mocap data.

If you are a Maya user, the skin binding method that you want to use for this method is smooth bind,
not rigid bind. Rigid bind divides the vertices of the skin geometry into clusters and attaches a clus-
ter to each joint. As the result rigid bind allows each vertex of the skin geometry to be influenced
by a single joint. You can decide which vertices a particular joint moves by changing the member-
ship of the joint’s cluster. Rigid bind is quicker to set up than smooth bind, but a crease appears on
the skin where two clusters meet, justifying the name of rigid bind. On the other hand, smooth
binding allows each vertex of the skin geometry to be influenced by multiple joints with weights.

When you use a smooth binding method, it is very likely that the automatic default weighting
method initially binds many joints (markers) to vertices in an undesirable manner. Painting weights
in a graphical way allows you to change the weights of vertex points and reassign vertices to appro-
priate joints on a joint by joint basis. This task is easier if all the joints have the names that let you iden-

tify them quickly. This is a very good reason to name your joints in a logical descriptive manner.

Unfortunately painting weights with many vertex points can sometimes reassign some weights to
joints that are far away from the vertex points that you are working on and that should not influence
the points. When all else fails, flood all the vertex points to just one joint, then use the component
editor to weight each point by hand, then smooth all of these out a little. It’s time consuming, but

usually gives better overall results than trying to fix the weights that went out of control.

10.3.2 Facial rig with muscles

Another approach is to create “muscles” that are polygons placed under the facial skin around the
mouth and eyes and on cheeks, forehead, chin, and any other parts of the face you want to be ani-
mated by mocap data. You deform the skin geometry indirectly by attaching markers to the ver-
tices of the muscles and using the muscles as influence objects. Figure 10.5a shows a skin geometry

and Figure 10.5b shows “muscle” polygons for the skin.

To set up this rig in Maya, first create a single joint which can be anywhere in the facial model and bind
the skin geometry to the joint using smooth bind. Secondly create “muscle” polygons in such a way
that the locations of the polygon vertices mimic that of the markers on the capture subject. Triangulate
the muscle polygons and let them be the skin geometry’s influence objects. Thirdly turn on the Use
Components mode which you can find in the skin geometry’s skinCluster node and paint weights for
the influence objects. Finally create a cluster at each vertex of the muscle polygons and point constrain
a marker to the corresponding cluster with the offset position on. Note that the Use Component mode

is off by default and if it is off the skin geometry will not be deformed by mocap data.

Chapter 10: Facial Motion Capture @

Figure 10.5 (a) Skin; and (b) Muscles

With this method you need to paint weights for smooth binding as required for the rig with dis-
crete joints but weights are painted for each muscle, not for each joint, and painting weights is

much less time consuming.

10.3.3 Facial rig with IK

As we saw in Chapter 8, if your 3D animation application allows you to blend inverse kinematics
(IK) and forward kinematics (FK), you can take advantage of it. In case of animation of a full body
(or partial body), rotational mocap data applied to a skeleton is essentially an FK animation for us.
We can modify it (e.g., retarget a limb) using IK. By blending FK and IK we can connect a mocap
driven animation segment and a key-frame animation segment seamlessly as well. If you plan to
manipulate facial expressions after mocap data is applied to a rig or desire to combine key-frame
animation and motion capture data driven animation, having a skeleton with IK in the face of a 3D
character is useful. However, we suggest the use of IK for mocap data driven animation and FK for
key-framing. That is a reverse of what we do with a rig for body mocap data.

The reason for the reversed rolls of IK and FK stems from the fact that the facial muscles move only
the soft tissues but no bones, except for the ones that move the lower jaw, while voluntary skeletal
muscles in the rest of our bodies are designed to move our skeletons. Mocap applications provide
us with a template human skeleton with bone segments that represent major bones in our bodies,
such as spines, femurs, tibias, and humeruses. It is a gross approximation of a human skeleton but
we can agree on a relatively simple skeleton as an effective template; 40—50 markers are enough to
capture the skeletal movement of a single capture subject. Mocap applications compute rotation
angles for each joint in the skeleton.

@ MoCap for Artists

On the other hand, with facial animation the rig can be as simple as or as complicated as an indi-
vidual project requires. Similarly we may use just one dozen markers to a couple of hundred mark-
ers depending on the subtlety of the expressions needed for the animation. There is no standardized
skeleton for the face. Therefore, mocap applications do not provide us with a facial rig that has
rotational data associated with joints. Optical mocap data only gives us positional data. Thus, facial
mocap animation is not FK animation. So, how can we blend it with key-frame animation? We let
positional mocap data drive IK and use FK for key-framing. It is difficult to animate limbs using
FK. Therefore, we use IK for that, but it is easy to key-frame a facial rig with FK. Look at Figure
10.6. The upper eyelid “skin” joint and the lower eyelid “skin” joint are placed on the surface of
the skin geometry. The upper eyelid “muscle” joint and the lower eyelid “muscle” joint are placed
in the interior of the skin geometry. Since the eyelids slide on the eyeball as the eye is opened and
closed, placing the eyelid “muscle” joints at the center of the eyeball deforms the eyelids in a real-

istic manner when the eyelid muscle joints are rotated.

Upper eyelid skin joint

Upper eyelid muscle joint
\ Lower eyelid muscle joint

Lower eyelid skin joint

Figure 10.6 Eye IK

The first step of setting up a facial rig with IK is creating “skin” joints and “muscle” joints. Place
your fingers in front of your ears and open and close your mouth. You can feel where your lower
jaw bone meets your cranium. A “skin” joint for the lower jaw movement can be placed at the cen-
ter of the chin while the “muscle” joint for the lower jaw should be between the two ears at an
equal distance from each ear. Similarly, for other parts of the face place “skin” joints on the surface
of the facial model and corresponding “muscle” joints in the interior of the model. The locations
of skin joints should approximate the positions of markers. If the distances between pairs of skin
and muscle joints are fixed for markers on lips, your 3D character’s lips cannot protrude. Inserting
a middle joint between a skin joint and a muscle joint allows the distance between the skin and
muscle joints to be changed. Middle joints are useful for the mouth and cheeks.

The next step is setting up IK: create an IK from a muscle joint to the corresponding skin joint and
attach a marker to drive the IK. (In Maya, that is point constraining a marker to an IK handle with
a distance offset.) When key-framing is required, turn off IK, and change and key the rotation

Chapter 10: Facial Motion Capture @

angles of the “muscle” joints. Aligning all the “muscle” joints’ local coordinate systems with the
world coordinate system or orienting the “muscle” joints local coordinate systems so that they
rotate in a desired manner will simplify your key-framing.

With this method you need to paint weights for each skin joint. Thus, painting weights can be as
tedious as for the rig with discrete joints in Section 10.3.1 but you have a control mechanism (i.e.,

a skeleton with FK and IK) to manipulate facial expressions driven by mocap data.

10.4 Marker Set

As mentioned in the previous section, the number of markers necessary for facial capture widely
varies from project to project. There are a few rules, though. One is that you should not place
more markers than you need on a capture subject’s face. With full-body motion capture, extra
markers can be used to compute rotation angles and lessen the effect of marker occlusions on the
computation. Extra markers also may be used to form a rigid body to fill in missing data. However,
with facial capture, data generated by extra markers will be disregarded. If two adjacent markers are
close to each other they may be seen as one marker by some cameras. So, if you know one of them

1s not necessary, remove it.

Another rule is to have two kinds of markers: one set of markers to track the displacements of the
facial skin by facial expressions and speech and another set of markers to track the movements of
the head. The latter may be named “stable” or “static” markers, although skin slides in every part
of the human face or head, to some degree. Place your hands on your head, move your eyebrows
up and down, and open and close your mouth. You can feel your muscles and skin moving under
your fingers. The “stable” markers are placed on the parts of the face that are moved the least by
facial expressions or speech, such as along the hairline (or on a hair band) and between the eyes.
Place a fingertip between your eyes and repeat squinting while looking for a spot where the skin
does not move much. If you move your fingertip up or down by just a couple of millimeters, you
can feel much larger displacement of the skin by squinting. See Figure 10.7 for a sample facial
marker set. Among the 38 markers, 5 are stable markers.

Markers on the upper eyelids are the hardest ones to deal with. Both of this book’s authors have
eyes that are difficult for facial mocap. Brian’s brow is high and his upper eyelids can get hidden
under his eyebrows. I have “single eyelids” with no crease on the upper eyelids; common among
Asians, whereas most Caucasians and African people have “double eyelids.” Markers placed close
to my eyelashes disappear when I open my eyes. Markers placed a few millimeters from my eye-
lashes do not move much. Although my son has double eyelids, the creases on his upper eyelids are
very close to his eyelashes, giving him more of an Asian appearance than Caucasian (Figure 10.7).
When I tried to capture my son’s facial expressions, I could not place markers on his upper eyelids
effectively because markers on his upper eyelids disappeared when his eyes were open, just like on
me. The parts of his upper eyelids above the creases do not move much nor the markers placed
there.

@ MoCap for Artists

Figure 10.7 Facial marker set

If you need to capture a subject who has eyes like my sons or mine, and if the subject agrees,
you may paste markers on the eyelashes. (My son didn’t agree... .) It may take a few minutes until
the capture subject gets used to the feeling of the markers moving in such a close-up way and
stops blinking. If your capture subject has eyes with typical double eyelids like my husband’s
(Figure 10.8), place a marker between the eyelash and crease on the upper eyelid to get the maxi-
mum movement of the upper eyelids. Notice that the markers on the upper and lower eyelids are
placed in such a way that they keep a distance even when the eye is closed. If they get too close to
each other when the eye closes, they will be seen as one marker and marker swapping and misla-
beling problems can happen.

Remember that when you capture a face, you capture the movements of soft tissues. On the other
hand when you capture a full body, you capture the skeletal movement. There is a layer of fat
between the facial skin and skull. Also there are fat pods under eyes, in cheeks, and chins. The thick-
nesses of fat pods vary depending on the race, age, gender, and other conditions. These fat pods pro-
vide facial mocap data with secondary motions. The secondary motion is subtle but it can give a
remarkable realism to mocap data driven facial animation. Design a marker set that provides you the
data you need for your project and find a capture subject who has the most suitable facial features
and the ability to act.

Chapter 10: Facial Motion Capture @

Figure 10.8 Markers on eyelids

10.5 Facial Data Stabilization

One way to get rid of the head movement is to not allow the capture subject to move the head in
the first place. To keep a capture subject from moving the head, you can use a chair with a head
support and tie the subject’s head to the head support or use a head brace that is designed to keep
a patient with a neck injury from moving the head. However, it is natural for us to move our heads
while we speak and express our feelings. In fact, head movement is an essential part of our non-ver-
bal communication. So, a better approach is to allow the capture subject to move the head while
capturing facial data. The head movement can be removed from facial mocap data using “stable”

markers discussed in the previous section with relatively simple mathematics.

The Facial Data Stabilizer (FDS) is a script written in MEL (Maya Embedded Language) and is on
this book’s CD. MEL is similar to the C language and if you are not a Maya user we hope FDS will
be rewritten in the scripting or programming language of your choice without difficulty. FDS con-
siders head motion, which we want to eliminate, as the rotation and translation of an object in the
world space while the deformation of facial features, that we want to keep, as translation of the

object’s vertices in the object (local) space.
The usage of FDS follows:

1. Select stable markers in the right temple area.

2. Select stable markers in the left temple area that have the mirrored positions of the right
temple markers selected in Step 1.

3. Select stable markers in the upper forehead area that are on or very close to the line that
divides the face into the right and left halves and/or pairs of markers where the markers of
each pair have mirrored positions in the right and left halves of the face.

4. Select stable markers in the lower forehead area that are pairs of markers where the markers
of each pair have mirrored positions in the right and left halves of the face.

5. Select all the markers to be processed.

6. Stabilize.

@ MoCap for Artists

The main mathematical ideas used in developing the FDS’s algorithm are the following.

A right-handed local coordinate system (local space) with respect to the world coordinate system
(world space) is formed as follows:

e x-axis: a vector from the averaged position of the stable markers in the right side of the face to
that of the left side. After the y- and z-axes are computed the x-axis is recomputed as the cross
product of the y- and z-axes to ensure that x-, y-, and z-axes are perpendicular to each other.

e y-axis: a vector from the averaged position of the stable markers in the lower forehead area
to that of the upper forehead area.
z-axis: the cross product of the x- and y-axes.

Local origin: the averaged position of the stable markers.

The relationship between the coordinates of a point in the local space and the coordinates of the
same point with respect to the world space is defined as follows:

P * A + local origin = P', where

P = [x, y, z] are the coordinates of a point in the local space
A is a3 X 3 matrix such that

1st row of A is the x-axis of the local space

2nd row of A is the y-axis of the local space

3rd row of A is the z-axis of the local space

P’ =[x, y', 2'] are the coordinates of the point in the world space

We know the marker positions in the world space but not in the local space (i.e., P’ is known and
P is unknown for us). As described above, the matrix A and local origin can be computed. Thus,
they are known as well.

By moving local origin to the right side, the above equation becomes:
P* A= P' — local origin
By multiplying both sides by a matrix B, an inversion of A:
P* A* B= (P — local origin) * B
Since A * B is an identity matrix [
P* [= (P — local origin) * B
Thus,

P = (P' — local origin) * B.

Hence, by finding a matrix B that is an inverse matrix of A we can compute the marker positions

in the local space. Since the matrix A’s rows (the axes of the local space) are perpendicular to each

Chapter 10: Facial Motion Capture @

other, the determinant of A is never 0. A is never singular and A’s inverse always exists. So, a sim-
ple algebraic method for inverting a 3 X 3 matrix works fine here.

Let M be a matrix A at the current frame when the script is executed (or the frame the user selects).
P * M gives us P", the coordinates of a marker in the world space without the head movement.

Note that A and B are different for each frame but M stays the same for all frames in the sequence.
P"=P* M= (P — local origin) * B* M
Let N = B * M then
P" = (P" — local origin) * N

Thus, the coordinates of the markers in the world space without the head movement can be com-

puted by one 3 X 3 matrix multiplication per marker.

If mocap data has large head movements and/or “stable” markers are not as stable as we want them to
be, FDS leaves some head movement in the processed data. If that happens, apply FDS again to the
processed data. Applying FDS to the data two or three times should remove head movement sufficiently.

The Head Movement Isolator (HMI) is another MEL script on the CD. It isolates the head move-
ment using stable markers on the subject’s chest area. The HMI’s algorithm is identical to the
FDS’s. The data stabilized by HMI can be used to add the head movement back to the mocap
driven facial animation. To use HMI, remember to place at least four markers on the capture sub-
ject’s chest area. The chest markers should form a rectangle (or a regular shape with more than four

edges) and should not all line up on a single straight line.

If you need facial animation and full-body animation both driven by mocap data and if your sys-
tem can capture both at the same time, do so. If you need to combine facial animation driven by
facial data and animation driven by full-body data, the head movement can come from either facial
data or body data. When the 3D character to which the motion is applied is far from the camera
(e.g., in a long shot) then the facial expressions will not be too readable for the audience and facial
expressions and head movement do not have to match. (In such cases facial expressions are not cru-
cial to have in the first place anyway.) So, you can use the head movement from the body data.
When the character is in a close-up or medium shot, you want the head movement to match the
facial expressions. So, it is better to use the head movement from the facial data than from the body
data. When the character is not too close to the camera or too far from the camera (e.g., in a wide
shot) it is your call.

For a Maya-based facial animation project that required the head motion driven by mocap data in
addition to animations of facial expressions and speech by mocap data and key-framing, I used both
FDS and HMLI. I set up two skeletons for the face. One skeleton has skin joints, muscle joints, and
FK/IK as described in Section 10.3.3 for the facial expressions. The other skeleton is much sim-
pler than the first one. It has just a few neck joints for the head movement. For facial animation the
skin was bound to the FK/IK skeleton by smooth bind and the skeleton was animated by the
mocap data stabilized by FDS. For the head motion a lattice deformer of the skin was bound to the

@ MoCap for Artists

simpler skeleton by rigid bind and the skeleton was animated by the mocap data stabilized by HMI.
In short by using the smooth bind and indirect rigid bind on a lattice, the same skin geometry was
animated by two types of mocap data: one that had facial animation and the other that had head
movement.

See the frames from two animation sequences: the top one was created using FDS, and the bottom
one was created using FDS and HMI (Figure 10.9). You can see that the animation with head

motion is more expressive than the one without.

Figure 10.9 Facial expressions without head movement (top row) and with head movement (bottom row)

10.6 Facial Data Editing

Our faces are not like Mr. Potato Head. Our facial expressions are displacements of our facial fea-
tures that can’t switch places. You can raise your hand above your shoulder or lower it below your
knees but no matter how hard you move your nose it stays above your mouth and below your eyes
(unless you stand on your hands). Especially after stabilizing facial data the x-, y-, and z-translations
of facial markers stay within relatively small ranges. By looking at an upper eyelid marker’s y-
translation we can tell when the capture subject blinked or squinted and when the eye was wide
open. By looking at the y-translations of lip markers, we can tell when the capture subject opened
and closed the mouth. The x-translations of markers at the mouth corners can tell us when the cap-
ture subject smiled or pouted. Of course, we can tell when a foot of a full-body capture subject was
on the floor or not by looking at the y-translation of a marker on the foot. However, it is not easy to
figure out what’s going on in the x- and z-translations of the marker since the capture subject could
have been moving in any direction. We can say facial mocap data behaves in a more predictable way.

The above fact makes it easier to edit facial data than full-body data. When a facial marker’s data
goes out of its normal range you can tell that the marker was occluded and/or mislabeled. For

Chapter 10: Facial Motion Capture @

instance, when you find a frame range in which the y-translation value of the right upper eyelid
marker is higher than the lower bound of the y-translation of the right eyebrow marker, you can
tell there is a problem. Simply lowering the y-translation value or copying the y-translation value
of the left upper eyelid marker for the frame range can fix the problem.

Let’s say the y-translation value of a marker is too low (or too high) for a frame range. If you

delete the keys for the marker’s y-translation for the frame range and let a spline interpola-
tion fill in the gap, then the subtle jittering that is a characteristic of mocap data will be lost.
You could move each key but that is a time-consuming task if the frame range is not short.
Lattice Deform Keys Tool in Maya’s Graph Editor is a useful tool to edit facial data. It is one
of the Transformation Tools and you can find the tools under Edit in the Graph Editor.
Lattice Deform Keys Tool allows you to move multiple keys quickly without losing the
jittering (Figure 10.10).

(b)
Figure 10.10 Before (a) and after (b) keys are moved by Lattice Deform Keys Tool

No matter what you're looking to do, or which approach you want to take, make sure that the ends
justify the means. If you only need a few points to get corners of the mouth and eyebrows, then
only use markers for that and not a full facial rig. If you need an extremely expressive and precise
face, go all out with the markers and don’t rely on any interpolation to make up for gaps between
markers. Think facial capture through before you start using it and you’ll get better results. Facial
capture can be very frustrating to work with, but with adequate preproduction and some testing
you’ll get very convincing results.

This page intentionally left blank

Motion capture of puppets, or “puppetry capture,” is capturing a puppet’s movement that a pup-
peteer creates. Markers are attached to the puppet and the puppeteer’s motion is captured indirectly.

Physical puppets that you motion capture do not have to be real puppets. They can be anything
that you can attach markers to. Digital characters that you apply mocap data to can be anything too.
Anything from computer generated counterparts of real puppets to set pieces, props, shape-shifting
geometries, changing colors and lights, etc.

In puppetry capture, a puppeteer manipulates a puppet with his/her hand. This motion may
become a digital character’s foot or eye or something else. You have to think about your end char-
acter and what you are trying to capture for the character, not about a puppeteer’s arm being the

arm of a character.

Think about how you can construct a motion for a digital character using the motions from dif-
ferent parts of a puppet (and a puppeteer) and how a puppeteer can manipulate these parts. There
are all kinds of tricks and original ways to create complex digital characters; you just have to start

thinking in a new way.

Puppetry capture merges motion capture and puppetry art to create a unique hybrid. This may let

you see motion capture in a difterent light.

11.1 Background

I spent approximately 8 years doing all kinds of motion capture professionally. There were a lot of
video games and a handful of film projects that were all exciting to work on. However, for the most
part, it was all about the same. Every couple of weeks I captured someone walking, running, shoot-
ing, throwing, etc. After a while, they all started to merge together. It was around that time I asked
myself “What else can I do with these little balls of reflective tape?”

I grew up with the Muppets and always enjoyed puppets, especially the ones created by Jim
Henson. After watching behind the scenes on movies with live action puppets (such as the “Dark
Crystal” and “Labyrinth”) I realized that there were many more interesting ways to take a human
form and create something totally different. I wanted to create all kinds of creatures and merge

them with motion capture.

@ MoCap for Artists

Since then I have created simple marionettes, made puppets out of foam, attached rigs to my body,
mimicked full-body puppets, and captured a folding chair. The idea is to take rather simple objects
and drive them with complex human manipulation. The overall effect is something unique and

different, and at times very useful and charming.

Puppetry capture is not new. One example would be where people have captured the motion of
prosthetics and magnetic markers embedded in puppets. What’s been missing is a comprehensive
overview of the methodology of puppetry capture, which will enable motion capture to become a
much more creative medium than simply a tool that seems to be dedicated to tracking a person’s
movement and applying it to a digital character.

Most of the puppetry capture works I have done to date (some of which will be discussed in
Section 11.5) are along the lines of prototypes and proof of concepts, but I hope they will encour-
age others to explore new innovative ways to use motion capture. In the next few sections I will
try to highlight several of the characteristics of puppetry capture.

11.2 Benefits

One of the benefits of puppetry capture is that you don’t need to retarget the puppets at all because
you can build a physical puppet to the exact proportion of a 3D puppet (or vice versa). This helps
tremendously in post-processing. The data from puppetry capture usually needs very little cleanup.
It is normally limited to the areas where there is occlusion. The data from puppetry capture can be
attached almost immediately to a 3D puppet skipping the intermediate steps that human mocap
data goes through.

Interaction between characters normally requires a fair amount of post-processing to look right for
the characters and scene. Interaction between puppets requires very little attention. If you create a
pair of physical puppets with two different sizes, A and B, and a pair of digital puppets with sizes,
C and D, so that A:B = C:D, you will not encounter retargeting issues common for multiple sub-

ject capture.

Puppets have a good amount of secondary action or what I call “physics for free.” A secondary
action is one of the principles of animations and is a direct result of another motion. For instance,
when a person walks his/her hair swings. Secondary actions add realism to animation. When you
produce a key-frame animation you work in a 3D space with no physical rules. You have to create
everything from scratch, including secondary actions and other aspects of motion caused by the
laws of physics. Animators need to painstakingly key-frame or use a dynamic simulator to add real-
ism to the actions of a character and the motions of everything else that moves in a scene. On the

other hand, it is inherent for puppetry capture to catch the laws of physics in action.

Another advantage is that puppets never have to change, for example, puppets do not need to take
a bathroom break, which would necessitate a human capture subject’s mocap suit to come oft and
on and move the markers attached to the suit. Thus, the markers on a puppet stay where they are

supposed to be. There are no shifted or lost markers that you experience with human capture.

Chapter 11: Puppetry Capture @

You can have just one physical puppet and have many different puppeteers perform with it for a
number of 3D puppets. The first time the puppet is calibrated is the last time unless some markers
are knocked off or added/removed. A lot of content can be rapidly created with just one puppet.

Puppets can be big time-savers since they are always there and ready to be captured. Also there are
puppeteers in almost any town. Skilled ones can show you amusing puppetry techniques that you
may have not imagined and can be added to your production.

Puppeteers can help you create characters with items from local dollar stores. You would be surprised
how easy it is to create fairly complex creatures from everyday objects. If you have a larger budget or
access to a machine shop, then there is little limit to what you can produce; however, it does not really
matter how the physical puppet looks like since the 3D puppet is the only one that people will see. It
always helps to put eyes on the puppet so the puppeteer knows where the puppet is looking,.

During a performance a lot of improvisation and unscripted interaction among performers often-
times happen. The nature of live action performance can generate an extremely large amount of
content in a short amount of time. This only works if the pipeline for physical puppets and 3D
puppets has been established in preproduction. A few experiments beforehand will create a

smoother pipeline.

11.3 Ideas/Inspiration
Traditional puppetry works are often inspirational. For instance, one idea came from Big Bird to use a
hand to operate the head and mouth of a character. A broken hierarchy (Figure 11.1) was created for

Figure 11.1 Full-body broken rig setup

@ MoCap for Artists

the entire skeleton and used a regular marker set to move all of the different skeletal parts. A broken
hierarchy is a segmented hierarchy that consists of joint chains that can be moved independently.

Another idea is capturing a puppeteer’s motion directly and indirectly simultaneously to drive cer-
tain aspects of a digital character. Markers are placed on a puppeteer’s body and the props (e.g.,
PVC pipes) attached to the puppeteer. Both the puppeteer’s motion and the puppet’s motion
(props’ motion, in this case) are captured at once. The puppeteer’s motion and the props’ motion
can be used as the motion of different limbs of a character, a parameter for shape interpolation, the
color of a digital character, or anything else. The combinations are as endless as your imagination.

Once I worked on an idea about capturing a human hand alone and creating creatures with the
hand data, so I used two of my students, Eric Camper and Josh Huber, to help with creating and
capturing the motion. There was a good amount of data with an interesting quality quickly gen-
erated and I only used a small amount of it. The end results were imaginary creatures that resem-
bled jellyfish and a crab and that ran around.

I recommend watching behind the scenes on live action puppetry films, such as the “Dark Crystal”
and “Labyrinth”. See how puppets were created and how puppeteers used innovative techniques.
These films help you design a marker setup that suits your creature and more importantly they will

fuel your imagination.

11.4 Performance

There is a direct connection between the puppeteer and the puppet. They can give very complex
human motion to simple objects. The puppeteer’s motion creates an illusion of life in the puppet.
In a recent conversation with master puppeteer Phillip Huber, he offered the following comments:
“The good thing about motion capture is that you also capture all the idiosyncratic actions. That
has been my argument for the direct link with a good puppeteer, because it is essential that the soul
of the puppeteer is projected clearly through the strings, sticks, or even remote controls. I am not
sure why or how this works, I only know what I feel when I see good performance that comes
from the heart. I do think the little imperfections help to bring a performance closer to reality.”

Motion capture is capable of preserving the spontaneity and all the little things that are so hard and
time consuming for other methods to replicate. The performance is the key to any motion capture,
whether based on acting or puppetry.

There have been times I created a puppet and performed with it having no clear idea on what the
digital character would look like. The majority of these experiments ended with poor results. The
best performance comes out of puppetry capture when a digital character is at least sketched out
prior to capture and the puppeteer has some idea about how it will look. Show a 3D model of your
digital character to the puppeteer, if you have it modeled already. If not, have some sketches. It is
hard to describe it with just words.

Puppetry capture allows you to think about a puppeteer’s movements and how they influence the

digital character in different dimensions. For example, you can generate a lot of unique ideas with

Chapter 11: Puppetry Capture @

just legs. The feet are in connection with the floor, but why do the legs need to be connected to
the feet? Who’s to say how long or short the legs need to be? If you make the legs shorter, you now
have the rest of the legs to use to influence motion. If you decide to make the legs longer, you
could forego a torso for your character and have the legs connect directly to the head.

You can break all of your physical puppet’s motion into parts. One puppeteer can be responsible
for the head of a digital character, another the legs, etc. You can have body parts flying all over the
place if you want.

Generally a single puppeteer is best to create the performance for one digital character. Set up a
collection of objects and devices so that a single puppeteer can manipulate and create the entire
motion for a character by herself/himself. Occasionally a character needs to be operated by mul-
tiple puppeteers but it is difficult to synchronize everyone, especially if there is any improvisation.

11.5 Projects

This section has brief descriptions of some of the puppetry capture projects that I worked on over
the years. The prime goal of the projects was to prove that they could be accomplished, they were
repeatable, and they could be quickly set up after some initial testing.

In one puppetry capture I asked two people to be in different parts of the mocap space, (myself and
a student, Fran Kalel), to provide motion for one character. One moved a chair with markers on it
while holding a stick with three markers in front. The chair became the body of the creature float-
ing through the air, and the stick became the creature’s giant eyeball (Figure 11.2a).

The other was in a corner of the capture space moving a “markered” prop from side to side in a
corner of the capture space. This caused the giant eyeball to rotate in its socket. The second per-
son occasionally waved a single marker vertically in the air. That motion drove the blinking of the
eye (Figure 11.2b).

Figure 11.2 (a) Chair and rod puppet; and (b)
Markers controlling eye

@ MoCap for Artists

(b)
Figure 11.2 Continued

The data was written out of the mocap system with no cleanup other than filling in data gaps
caused by occlusion. See the movie file in this chapter’s folder on the CD. You can see some of the
jitteriness of the character in the movie. The data was not filtered because the unfiltered motion
worked better for the character.

The goal for the next project was to mimic what a real hand puppet could do using a bare hand.
Several markers were attached to a hand directly. Initially there were too many markers. The num-
ber of markers was reduced down to the minimum necessary to make a digital character move as if
it were manipulated by a puppeteer via a real hand puppet. It seemed that simply replicating a real
puppet’s performance could not justify the time and effort put into the project unless something
different could be done with it. As the result, two characters flying around in a cosmos were oper-
ated by one puppeteer (Figure 11.3).

Figure 11.3 Tivo characters manipulated by one
puppeteer

Chapter 11: Puppetry Capture @

After that project, I created a puppet with multiple controls. Overall movement of the puppet was
controlled by one of my hands, the eyes by my feet, and the eyebrows by my other hand (Figure
11.4). It took a little while for me to get use to coordinating everything, but once I had it figured
out, it worked well.

Figure 11.4 One puppet
with multiple controls

In another project, I placed markers on my waist and feet, on the water bottles attached to the PVC
pipe that was hanging oft of me, and on a couple of flashlights in front of me. The dynamics of the
water bottles swinging around created interesting motion (Figure 11.5).

Figure 11.5 Odd placement of markers
for a creature

11.6 Methods

There are several methods for applying puppetry capture data to a 3D character. One is to use con-
straints. For instance, a combination of point constraint and aim constraint can be used to translate
and rotate the root joint of the 3D character and the IK end effectors of the character’s limbs.

@ MoCap for Artists

Let’s suppose that you are creating constraints for the root joint of a digital character in Maya. Create
two transform nodes (empty groups). Parent one of the empty nodes under the other and parent the
root joint under the two transform nodes so that the joint is at the bottom of the hierarchy. You will
be using the top transform node for translation and the node below for rotation (Figure 11.6). In
this way, if you decide to apply stretch and squash to the character, you can insert another trans-
form node between the two existing nodes and apply scaling to the new middle node while ensur-
ing that rotation, scaling, and transformation are applied to the character in that order. (Read the
next chapter for the order of transformation.)

Figure 11.6 Setting up position and aim for a joint using mocap markers

Select a marker that will provide the location of the root joint. Let’s call it the base marker. Point
constrain the base marker to the translation node. Select another marker that the x-axis of the root
will point toward. Let’s call it the aim marker. Select one other marker that the y-axis of the root
will point toward. Let’s call it the up-vector marker. Aim constrain the aim marker to the rotation
node using “Object Up” option as “World Up Type” and the up-vector marker as “World Up
Object” (Figure 11.7). Here, you are using three markers to orient the root joint of the character,
which orient the whole character’s skeleton. This is identical to how a prop is oriented using three
markers as seen in Chapter 6.

When you use this method, make sure the local rotation axes of the transform nodes and the joint
are oriented identically. Having them oriented in the same way makes it easier to determine if the

aim constraint is working or not. This is because in Maya you can see joints but not transform

Chapter 11: Puppetry Capture @

master_aim_aimConstraint] |

aimConstraint; [master_aim_amConstraint o) | Focis
(e e
Dffset {0.000 |0.000 {0.000 4
Aim Vector |1.000 |0.000 |0.000
Up Vector |0.000 |1.000 {0.000
WoldUpType [DbectUp +]
Woild Up Vector [0.000 J1.000 f0.000

World Up Object |C3D:RCT

Constiaint Rotate 112860 |-29.235 |77.473

Constraint Vector |0.260 j1an j0671
[F Ershle Dact Pasitinn

Motes: master_aim_aimConstraint1

Figure 11.7 Aim constraint with Object Up option

nodes. You can turn on the option to display local rotation axes, but since the two nodes and joint

are all stacked on top of each other in a 3D space, you can’t see their rotation axes.

If you do not use “Object Up” option as “World Up Type” in the aim constraint, the character
may not rotate as you expect. Let’s suppose that two markers, instead of one marker, are used as aim
markers for the aim constraint and that the two markers are rotating around the stationary point
that is at the shortest equal distance away from both markers. As the two markers rotate, the root
joint (and the character) should rotate around the x-axis of the root joint. However, without
“Object Up” option, the character won't rotate because the x-axis of the root joint will keep point-
ing at the point between the two aim markers while the y-axis of the root joint will keep pointing
upward in the world space. If “Object Up” option is selected as “World Up Type” and a marker
that rotates around with the two aim vectors is selected as “World Up Object,” the y-axis (and
z-axis) of the root joint will rotate around the x-axis of the root joint, that is, the character will

rotate around the root joint’s x-axis.

For the arms and legs, create IK. Point constrain appropriate markers to the IK handles (Figure 11.8).
You may want to place markers on the character’s elbows and knees or wherever you want the limbs
to bend. In the rig, let the limbs bend toward the markers. (In Maya pole vector constraint does that.)

Try to keep your rig as simple as possible. Usually the simplest solutions are the most effective and
least likely to break.

The broken rig allows each segment of a character to be an independent object. One example, the
hips and spine in one hierarchy; the head and neck in another; each arm, leg, hand, and foot in its
own. A broken hierarchy can be used eftectively with unfiltered marker data. The combination of

@ MoCap for Artists

Figure 11.8 IK chain moved by mocap markers

a broken hierarchy and unfiltered marker data preserves a lot of secondary action and weight/
balance transfer that tend to be lost when marker data is fit into a skeleton. Since there is some
stretching and pulling between the segments of a character with a broken hierarchy it has a differ-

ent look from a character with a normal connected hierarchy.

11.7 RealTime

Real-time feedback is very important for puppetry capture. Jenny Stoessner whose Ph.D. disserta-
tion is on puppetry researched the role of puppetry in TV. Through several conversations, she
informed me that puppeteers seeing their creations in the monitors, even though the motion was
reversed from their perspective, played a very important role in the quality of their performances.
Being able to see how the digital character acts and what is around the character on the screen as
you perform is essential.

When you look into puppetry, especially shows such as Sesame Street and the Muppet Show, you can
see how puppeteers give lifes to the puppets. When a new puppet is created, a puppeteer works
with it until the puppeteer finds a voice, movements, and personality for the puppet. There have
been times when a puppet doesn’t work well with a puppeteer, another puppeteer takes it, and a
whole new puppet character, voice, and actions come out. There is a special connection between
the puppet and the puppeteer and having a real-time feedback is essential.

Chapter 11: Puppetry Capture @

There are some drawbacks with real-time puppetry capture. One is that an initial setup may take
time. That means the puppeteer needs to be on set for a long time for the first time or two but with
good preproduction that will work out.

Another disadvantage of real-time capture is that when the mocap equipment goes down either
because of hardware or software glitches, it may or may not come back on in a timely manner. This
can be a cause for alarm for the production staft. So, do your best to minimize all production dif-
ficulties. Make sure that puppeteers are not wearing light reflective clothing or shoes. Tell them
how large the capture volume is, so they will not take the puppet out of the space. Make some
commonsense judgments and always test the equipment out before performers arrive.

A drawback, that is getting to be less of an issue these days, is the look of real-time digital charac-
ters. We used to use low-resolution character models for real-time puppetry capture. Low-
resolution characters did not look as nice as characters in non-real-time applications. This is still
somewhat true, but the graphics cards are getting so powerful that the divide between real time and
non-real time is getting smaller. Puppeteers tend to have a pretty good imagination, so let them
work with low-resolution characters if your graphics card can’t handle real-time rendering of

complex models.

If you use a bluescreen you can place digital characters and real actors on a virtual set. Have the
puppeteers wear blue. Actors, puppets, and props can have any colors except blue on them. They
are filmed in front of a bluescreen. By keying blue out, the puppeteers and the background (i.e.,
the bluescreen) become transparent and only the digital puppets, actors, and props are composed
over the virtual set. This is all possible in real-time and can broaden the capabilities for content
creation. However, be careful with the logistics when setting this up. There are a number of

elements that need to come together seamlessly to make this work.

The right arm of a hand puppet (or a human capture subject) does not always have to move the
right arm of a digital character. Try indirect manipulations with puppets and props. Make abstract
characters and think of ways to have the characters move and emote. Have a character manipulated

by multiple people. Try real-time capture.

There will be projects for that the above information is useful. There will be times when a combi-
nation of performers and markers creates a life form that is no longer confined to a body with two
arms and two legs but something unique is created, but some characters can be better animated by
key-framing or procedurally. Find and use the best approach to create the world that matches the

vision of the project.

This page intentionally left blank

In this chapter we will look at mocap data generation, data types and formats commonly used in
mocap, and mathematical definitions and concepts that frequently appear in mocap and other areas of
3D computer graphics and animation. Mathematical topics covered in this chapter are coordinates

and coordinate systems, order of transformation, Euler angles, gimbal lock, and quaternions.

Artists can take full advantage of motion capture technology without knowing how mocap data is stored
in a file format or mathematics involved in the technology. However, the information presented in this
chapter will help you understand commonly used jargon that you might have already encountered
in software manuals, professional web sites, and conversation with programmers. That understanding
should let you get the results that you want with less time spent on trial and error. We believe that the
knowledge that you gain in this chapter will be especially useful when you are setting up and trou-
bleshooting a production pipeline or when you face a technical problem while working on a project.

Mathematics is like a foreign language. It has its own vocabulary, symbols, and grammar (rules).
Mathematical notations are designed to represent matters in our world as mathematical equations
in a precise and abstract matter. For those who are fluent in the language of mathematics, mathe-
matical equations are a beautifully convenient way to express ideas and communicate with others.
However, for those who are not mathematically trained, most of mathematics beyond arithmetic
is incomprehensible. Mathematical equations make many creative people say “It’s Greek to me!”
So, we will try to explain mathematical concepts with the least number of equations.

12.1 How Data Is Created

Before we look at types and formats of mocap data or mathematics, let us look at how mocap data
is created. As we looked at Chapter 1, there are three popular types of mocap systems that are used
and each type generates data in a different manner.

12.1.1 Optical systems

Optical systems generate data in several steps. First the cameras in an optical system capture a
sequence of grayscale images (or black and white images) of the lights reflected or emitted by mark-
ers on a performer. Image processing methods are applied to the images to minimize the noise and

separate the markers from the background. To determine the center of each marker, circles are fitted

@ MoCap for Artists

to all the markers (and items other than markers, such as reflective materials on sneakers in a camera
view if you are not careful); 2D camera data is created by determining the 2D coordinates of the cen-
ter of each circle for each camera view. Sometimes instead of using circle fitting, a centroid calcula-
tion is performed to determine the center of the marker. The centroid calculation can be used with
circle fitting to obtain a better estimation of the position of the marker’s center, resulting in better 3D
data. This is because markers in the distance and partially occluded markers often appear as irregularly
shaped blocks of pixels, far from circular shapes, in camera views. Using the 2D camera data, camera
coordinates, and triangulation of the 3D coordinates of each marker are computed and the trajectory
of the marker throughout the captured sequence is identified in a 3D coordinate system.

At this point the data has sequential 3D coordinates (moving positions) of each marker but no rota-
tional information. This translational data may be used for facial animation with no further processing.
‘When the translational data is fitted to a skeleton (a set of joints in a hierarchy), translational and rota-
tional data is computed for the root joint (the top joint of a skeletal hierarchy, sometimes also referred
to as the hips) and rotational data (but no translational data) is computed for all the other joints. Such
data is called skeletal data. A skeleton driven by skeletal data is essentially a forward kinematics anima-
tion. Thus, when an animation sequence of the skeleton is rendered, the position of a joint (other than
the root joint) will be computed using the position of the root joint and the rotation angles of all the
joints above the joint in the hierarchy. In some systems, translation or scaling along the axis of the back

and neck is also calculated to represent the compression and tension of the spine.

12.1.2 Magnetic systems

Data generation is more straightforward with magnetic systems than optical systems since both the
positions and orientations of tracking sensors placed on a performer are captured. Three mutually
orthogonal sets of coils in the transmitter source or “box” produce an electromagnetic field of
three frequencies that fills the tracking space. The tracking sensors must be in this field for detec-
tion. Three orthogonal coils in each tracking sensor generate a resonant response and the system
detects the orientations as well as the positions of sensors. Magnetic systems are sometimes called
“six degrees of freedom systems” because x-, y-, and z-translations and x-, y-, and z-rotations are
captured. One word of caution with a magnetic field is that one side of the field is “up” and the
other is reversed, so if the data appears upside-down, have your mocap subject move to the other

side of the field and the data will be right side up.

12.1.3 Mechanical systems

Mechanical systems measure joint rotations using potentiometers or similar measurement devices.
The relative positions of joints are computed using the rotational information. Global translation is
not measured unless an electromagnetic sensor or some other positioning device (e.g., an inertial sen-
sor) is added. Recall that optical systems capture positions and compute rotation angles. Mechanical
systems are opposite: they capture rotation angles and compute positions. Some systems will also
measure how far someone has walked by estimating it with footsteps. Because the feet need to be in

contact with the ground, you won't see data for motions like jumping or rolling on the ground.

Chapter 12: MoCap Data and Math @

12.2 DataTypes and Formats

There are two main types of motion capture data: translational data and rotational data. As we saw
above, due to how data is generated, translational data is native to optical systems; rotational data
to mechanical systems; both to magnetic systems. Translational data is useful for facial animation,
puppeteering, and real-time applications. Rotational data is useful for full-body animation with

a skeleton. In the rest of this section we will look at how data is stored in a few popular formats.

The C3D, ASF/AMC, BVH, and FBX formats are probably the most commonly used formats
for motion capture data. C3D, ASF/AMC, and BVH are the formats that have been developed
specifically for motion capture, whereas FBX is for 3D animation in general. The ASF/AMC and
BVH formats store hierarchical skeleton data, while the C3D format does not. Let’s look at them
individually.

12.2.1 C3D

C3D is a binary file format for motion capture data used in animation, biomechanics, and gait
analysis to store motion capture data. The format is flexible enough to store 3D coordinates and
any numeric data in a single file. For instance, it can store 3D data and analog data in a synchro-
nized manner. The C3D format is composed of a number of 512-byte blocks of information,
where this 512-byte block size is simply an artifact originated from the early development of the

format in the Fortran programming language.

The header section is the first block in the C3D file. The header allows software applications to
quickly obtain information about the file content without reading the next section (parameter sec-
tion) which has a more complex structure for the rest of the file. The first word in the header points
to the start of the parameter section in the file. The header contains other information, such as the
number of trajectories, the number of analog channels, the trajectory sample rate, and the analog

sample rate.

The parameter section normally starts at the second block in the C3D file. The length of the param-
eter section varies. This section contains the information necessary to read the data contained in
the file, such as the name, data type, dimension, and location of each parameter, where parameters
are descriptions of types of the data stored in the file, but not actual data.

The data section contains actual data which can be 3D data, 2D data, analog data, or any combina-
tion. The C3D format is in the public domain and the detailed information necessary for imple-
mentations with the format can be found at www.c3d.org.

12.2.2 ASF/AMC

ASF (Acclaim Skeleton File) and AMC (Acclaim Motion Capture) are files of the mocap data for-
mat developed by Acclaim Entertainment, Inc. Acclaim was a video game company, one of the key
contributors to the development of optical motion capture technology, but went out of business in

2004. Acclaim invented a unique procedure for generating skeletal data from optical marker data

@ MoCap for Artists

along with this file format. After the format went into the public domain, Vicon adopted it as its
output format.

The two files that the format consists of are: ASF and AMC. The paired file format was developed
due to the fact that the same skeleton is often used for many different motions. A skeleton is stored
in a single file, instead of multiple motion files. One advantage of the ASF/AMC format (and the
BVH format) over other file formats is that each joint can have its own order of transformations
while in other formats the same order of transformation is applied to all the joint segments.
Another advantage of the ASF/AMC format is that the files contain both global rotational data and

hierarchical (local) rotational data of all the segments.

The ASF file contains all the information of the skeleton, such as its units, documentation, root
node information, bone definitions, degrees of freedom, limits, hierarchy definition, and file names
of skin geometries, but not the data itself. In addition, the ASF file contains the initial pose to
which all data in the associated AMC files is relative. The ASF file is divided into sections and each

section starts with a colon and a keyword (e.g., :units, :documentation, :skin, and :root).

Note that the ASF file format does not allow a child segment to attach to its parent segment with
an offset. As a result, when a gap is needed between a parent segment and a child segment, you need
to create an additional segment with no degree of freedom between them to fill the gap. Another
restriction of the ASF file format is that only one root can exist in a file. Thus, if two skeletons are

needed, you need to attach them to the shared root.

The AMC file contains the actual motion data for the skeleton defined by an ASF file. The bone
data is sequenced in the order as the order of transformation specified in the ASF file.

12.2.3 BVH

The BioVision Hierarchical (BVVH) file format was originally developed by BioVision, a motion cap-
ture service company which specialized in sports analysis and animation and is no longer in business.
The BVH format is more widely used than the BVA format, that is, BioVision’s earlier and simpler
format. The BVA format is an ASCII file that contains no skeleton hierarchy but only the motion
data with a fixed order of transformation. The BIH format is a binary file that contains both a skele-
ton and motion capture data and allows each segment of a skeleton to have a specified order of trans-
formation. A drawback of the BVH format is that it lacks a full definition of the initial pose. Another
drawback is that the format has only translational offsets of children segments from their parents. No
rotational offset can be defined. Moreover, the BVH format is often implemented difterently in dif-
ferent applications, that is, one BVH format that works well in one application may not be interpreted

in another. All the same the format is very flexible and it is relatively easy to edit BVH files.

The BVH format has two sections: the hierarchy section and the motion section. The hierarchy
section contains the definition of a joint hierarchy within nested braces like source code written in
the C programming language. Each joint in a hierarchy has an offset field and a channels field. The

offset field stores initial offset values for each joint with respect to its parent joint. The channels

Chapter 12: MoCap Data and Math @

field defines which “channels” of transformation (translation and/or rotation) exist for the joint in
the motion data section of the file. The channels field also defines the order of transformation. A
channel is either x-, y-, or z-translation or local x-, y-, or z-rotation. All the segments are assumed

to be rigid and scaling is not available.

The motion section of the file contains the total number of frames in the animation, the frame
speed in frames-per-second, and a numeric entry for each channel in the same order as in the chan-

nels field in the hierarchy section.

12.2.4 FBX

While the data formats we have looked at, C3D, ASF/AMC, and BVH, were developed specifically
for motion capture, FBX was not. FBX was originally developed by Kaydara for its 3D animation
package “FilmBox,” which later became “MotionBuilder.” Kaydara was acquired by Alias in 2004
and Alias was acquired by Autodesk in 2006. The FBX format is designed to describe animation
scenes and is supported by many 3D animation software packages to transfer files among them.

The FBX format can contain geometries, textures, cameras, lights, markers, skeleton, and anima-
tion. The FBX file is either ASCII or binary and the entire file is formatted by nested braces like
C code. The file is divided into sections and each section starts with a keyword and a colon (e.g.,
FBXHeaderExtension:, Definitions:, Relations:, Connections:, and Takes:). Each section has sub-
sections that start with keywords and colons as well. The topological relations between segments in
a hierarchy are stored in the Connections section and translational data (marker data) is stored in
the Relations section. Rotational data (rotation angles of the joints in a skeleton) is stored as ani-
mation keys in the Takes section. The FBX software development kit that allows software devel-

opers to transfer files into the FBX format is available at Autodesk’s web site.

One large advantage that MotionBuilder has over other 3D animation packages is that it can take
any of the other file formats (ASF/AMC, BVH, or C3D) and translate them into the .fbx format.
This allows MotionBuilder to work as a type of “universal translator” between not only different
animation systems, but different types of skeletal structures.

In the rest of this chapter let’s look at mathematical definitions and concepts that are useful and

important for motion capture and many other areas of 3D computer graphics and animation.

12.3 Coordinates and Coordinate Systems

Coordinates are an “ordered” set of values which specify a location relative to an origin. The word
“ordered” is important and emphasized for a reason. Normally with mathematical sets, in what
order set members appear in the list of members does not matter. For instance, a set {Roo, Max,
Madeline} is the same as {Max, Madeline, Roo}. However, with coordinates the order of the
members (values) is important. Sets that have the same values in different orders, for example, (2,
4) and (4, 2), specify different locations. Going two blocks east and four blocks south is different

from going four blocks east and two blocks south.

@ MoCap for Artists

A coordinate system is a system that defines how coordinates are assigned to each point location in
the space. Two coordinates that specify locations in two different ways cannot belong to the same
coordinate system. If you talk to your friend about meeting her at a coffee shop by walking two
blocks east and four blocks south from the subway station on the 34th street and if your friend
walks two blocks east and four blocks south from the subway station on the 28th street, you and
your friend will end up at two different coftee shops. You can think of a coordinate system as a set
of coordinates that all share the same rules or as a space in which positions are described by the same
rules. There are a variety of coordinate systems that we use. Let’s look at a few.

12.3.1 2D and 3D coordinate systems

A 2D coordinate system is used to specify locations in 2D space. For instance, 2D camera data
mentioned earlier in this chapter is the coordinates of centers of optical markers seen from a cam-
era described in a 2D coordinate system. It is natural to use a 2D coordinate system for the camera
data since images captured by cameras are two dimensional and the data is two dimensional not
three dimensional at this point. Another example is the locations of pixels. Pixels are the smallest

picture elements in a digital image and their locations are described in a 2D coordinate system.

A 3D coordinate system is used to specify locations in 3D space. Users of 3D animation packages
and 3D game developers are familiar with this type of coordinate systems. If we use an example
from the optical mocap data generation again, 3D translational data is the 3D coordinates of mark-
ers in a 3D space described in a 3D coordinate system. 3D translational data is generated from 2D
camera data using triangulation and camera positions. You will often hear the third coordinate
called z-depth since characters and objects in animations could move around only in the x- and
y-directions of a 2D screen space, but the z-depth allows us to see how far “into” the screen they
can go. The z-depth is the essential building block of modern 3D video games and 3D animation
applications.

12.3.2 Cartesian, spherical, and cylindrical coordinate systems
Cartesian coordinate systems are also called rectangular coordinate systems. With the 2D Cartesian
coordinate system each location in a 2D space is specified by an ordered set of two distances: an
x-coordinate and a y-coordinate. The two distances are measured from the coordinate system’s ori-
gin along the x- and y-axes which are perpendicular to each other. The two coordinates are rep-
resented as (x, y). The two coordinates are “ordered” because their order is important. The
x-coordinate of a point location comes first; the y-coordinate comes next. For instance, (2, 3) and
(3, 2) specify two different locations.

With the 3D Cartesian coordinate system each location in a 3D space is specified by an ordered set
of three distances from the system’s origin (an x-coordinate, a y-coordinate, and a z-coordinate).
The coordinates are represented as (x, y, z). The three axes of a 3D Cartesian coordinate system

are orthogonal.

Chapter 12: MoCap Data and Math @

With the spherical coordinate system each location in a 3D space is specified by a distance and two
angles. Spherical coordinate systems are used in some 3D packages to let you navigate through the
world space by allowing you to change your camera position in terms of the camera’s yaw and pitch
and its distance from the point of interest (see Figure 12.4 for yaw and pitch). With the cylindrical

coordinate system each location in a 3D space is specified by two distances and one angle.

Among the three types of 3D coordinate systems, 3D Cartesian, spherical, and cylindrical coordi-
nate systems, we use 3D Cartesian coordinate systems most frequently.

12.3.3 Right-handed and left-handed systems

Within 3D Cartesian coordinate systems there are two kinds: right-handed 3D Cartesian coordi-
nate systems and left-handed 3D Cartesian coordinate systems (Figure 12.1). How do we know
which 3D Cartesian coordinate systems are right-handed and which ones are left-handed? If you
want to test whether a 3D Cartesian coordinate system is right-handed, you want to use your right
hand for the test. First, extend all of the fingers and thumb of your right hand. Align your thumb
with the x-axis and your fingers with the y-axis by rotating your hand while keeping all the fingers
extended. Next without rotating your hand, try to align your fingers with the z-axis by bending
them. If your fingers bend in the direction that your hand would make a fist, it is a right-handed
system. If you have to bend your fingers backward overextending them trying to reach the z-axis,

it is not a right-handed system; it is a left-handed system.

y-axis Y-axis
\ A
Left-handed Right-handed
X-axis X-axis
Z-axis z-axis

Figure 12.1 Left-handed system and right-handed system

Positive rotation in a 3D Cartesian coordinate system can be determined in the following way.
Extend your right fingers and thumb and align the thumb with one of the x-, y-, and z-axes of a
3D Cartesian coordinate system. If it is a right-handed coordinate system, the direction of a posi-
tive rotation around the axis is the direction in which your right hand’s fingers curl up to make a
fist. On the other hand, in a left-handed coordinate system, the direction of a positive rotation
around the axis that you selected (i.e., the axis that you align your left thumb with) is the direction
in which your left hand’s fingers curl up to make a fist.

@ MoCap for Artists

Right-handed 3D Cartesian coordinate systems are used in mathematics and much more com-
monly used in 3D computer animation than left-handed 3D Cartesian coordinate systems.

12.3.4 Object space and world space

Each object is defined in its object space, which is also called an object coordinate system or local
coordinate system. A scene containing an arbitrary number of objects is defined in the world space,
which is also called the world coordinate system or global coordinate system. Object spaces are
used to generate individual objects while a world space is used to build a scene with objects. Object
spaces and world space work together. For instance, if an object is centered at the origin of its
object space and if the object is placed at the origin of the world space (i.e., placed at (0, 0, 0) in a
scene), as you expect, it will be centered at the origin of the world space. However, if an object is
not centered at the origin of the object space and the object is placed at the origin of the world

space, it will be oft-centered in the world space.

Maya, MotionBuilder, and many other 3D animation packages use a right-handed 3D Cartesian
coordinate system in which the x-axis is the horizontal axis pointing at your right, the y-axis is the
vertical axis pointing upward, and the z-axis is the axis pointing toward you when you aim your
camera at the origin of the coordinate system from the positive z-axis direction. However, in some
other 3D packages (e.g., CAD applications) the z-axis is the vertical axis. So, when you are trans-
ferring objects from one application to another, be aware of any differences in the coordinate sys-
tems between the applications.

12.4 Order of Transformation
Order of transformation specifies in what order transformations (e.g., scaling, rotation, and trans-
lation) are applied to an object. Depending on the order of transformation, the same transforma-

tion values may yield difterent results.

One of the reasons why order of transformation is important is that rotation and scaling are applied
to an object with respect to the origin of the object space but not the center of the object. If you
scale an object that is centered at its object space’s origin you will have a result that is difterent from
scaling an identical object that has been translated away from its object space’s origin prior to scal-
ing. Similarly, if you rotate an object that is centered at its object space’s origin you will have a result
that is different from rotating an identical object that has been translated away from its object
space’s origin prior to rotation.

Some 3D applications (e.g., Maya) do not allow the user to change the order of transformation,
which is inconvenient in some cases. For example, when you are making an animation of a tex-
tured ball that is rotating, stretching, and squashing while bouncing, you want to rotate the ball
before you stretch or squash it as you see in Figure 12.2 (top row). However, Maya applies trans-
formations in the fixed order — scaling, rotation, and translation. Thus scaling comes before rota-

tion as you see the bottom row in Figure 12.2.

Chapter 12: MoCap Data and Math @

e-¢-@

No transformation Rotation Scaling

€&

No transformation Scaling Rotation

Figure 12.2 Order of transformation

To use an order of transformation of your choice which is different from Maya’s fixed order a
linear hierarchy of transform nodes is useful. First create three empty transform nodes (i.e.,
empty groups). Parent the nodes and the object so that they form a linear hierarchy in which
one of the nodes is at the top, the object at the bottom, and the other two are in between.
Rename the nodes appropriately (see Figure 12.3). Now use a different node for each type of
transformation, instead of applying all the transformations directly to the object. Thus, do not
use the scaling, rotation, and translation attributes of the object. Leave them alone. With this
hierarchy of transform nodes in place, the transformations are applied from the one assigned
to the lowest node in the hierarchy to the one assigned to the highest node. Make sure that
the appropriate transform node is selected when you are working on transformation. For
example, when you are key-framing rotation of an object, you need to have the node for rota-
tion selected, not the node for scaling or translation nor the object itself.

Figure 12.3 Hierarchy of transform nodes

MoCap for Artists

When scaling an object, the order of x-, y-, and z-scaling is not important because they are inde-
pendent from each other and no matter in what order x-, y-, and z-scaling is applied to an object,
the result will be the same as long as the same set of x-, y-, and z-scaling values is used. Similarly
regardless of the order of x-, y-, and z-translation, the result will be the same if the same set of x-,
y-, and z-translation values is used. However, when rotating an object, depending on the order of
Xx-, y-, and z-rotation, the result will be different even if the same set of x-, y-, and z-rotation val-

ues is used. We will talk more about rotation in the next two sections.

12.5 Euler Angle

‘Why do we need to know what Euler angles are? Because we use them. Many commercial 3D
computer animation packages that are available today use Euler angles to describe and change ori-
entations of objects. Most likely you have used Euler angles implemented in your 3D application.
A set of three Euler angles and their order describe the orientation of an object in 3D space. You
can think of them as the yaw, pitch, and roll of airplane navigation (Figure 12.4). Euler angles are

commonly used because they are intuitive but there are some problems with Euler angles.

Yaw

Roll
Pitch

Figure 12.4 Yaw, pitch, and roll

One of the problems with Euler angles is that they do not represent angles uniquely. In other
words, the same orientation can be represented by multiple sets of Euler angles. For instance, let’s
think about rotating a vertical line that is initially aligned with the y-axis. If we rotate it around the
z-axis by 60 degrees first and then rotate it around the y-axis by 45 degrees, we get the same result
as rotating the line around the x-axis by 60 degrees first and then rotating it around the y-axis

by —45 degrees. This is because Euler angles are not unique. On the contrary any location on a

Chapter 12: MoCap Data and Math @

globe is uniquely represented by a pair of a longitude and a latitude because two angles are enough
to do the job. With Euler angles we use three rotation angles (yaw, pitch, and roll) to describe the
orientation of an object. The third number seems redundant. Why do we need three rotation
angles? Because we want to “roll” an object as well as yaw and pitch. When what you are rotating
is a line, rolling has no eftect on it. But when you are dealing with a 3D object with a volume,
rolling does turn the object around. When you are piloting an airplane, you don’t want to roll your

airplane too much. If you rolled it by 180 degrees, you would be upside down.

As described earlier in this chapter, magnetic and mechanical motion capture systems measure joint
rotation angles but optical systems do not. With an optical system the rotation angles (orientation)
of each skeletal segment relative to its local coordinate system are computed from translational data
at each time step. Suppose that at time f the orientation of a skeletal segment S can be represented
by two different ordered sets of Euler angles, A = (;317;) and B = (,3,7,), which do not have
similar values but represent identical orientations. If somehow your application decides to repre-
sent the orientation of the segment S by A at t and by angles close to B before and after ¢, there will
be sudden changes in all or some of the rotation angles a, 3, and ~ at ¢, although in reality there is
no sudden change in the orientation of the segment S at .

The animation of the skeleton may look fine when it is played without skin. You will notice the
problem when you play the animation after binding skin geometries to the skeleton or applying
inverse kinematics to the skeleton. The skin geometry bound to the segment S may get twisted and
the inverse kinematics applied to S may go wild at . Such abnormalities appear as “peaks” in the
graphs of the rotation channels. Delete the peaks and fill in the gaps with an appropriate method
(e.g., a spline for a small gap as described in Chapter 4).

Another common problem is that an angle o can be represented as o — 360, o + 360, o — 720,
a + 720, etc. For instance, —60 degrees is same as 300 degrees. Rotation angles are normally com-
puted between 0 and 360 degrees and that can cause an issue. Suppose that your 3D character’s
right arm is by its side when the right shoulder’s roll angle is 0 degree. You can let the arm swing
by key-framing the shoulder’s roll angle at —20 degrees and 20 degrees; the two degrees are inter-
polated for in-between frames. At the mid-point of the two key-frames, the shoulder’s roll angle is
0 degree. That places the arm by the character’s side. There is no problem here.

Suppose that a performer’s arm swinging, similar to the arm swing of the 3D character above, is
captured by an optical motion capture system. When rotation angles are computed for the skele-
ton’s segments from translational data using angles between 0 and 360 degrees, —20 degrees would
be 340 degrees. In this case, the arm of the skeleton rolls from 340 degrees to (very close to) 360
degrees and then from 0 degree to 20 degrees. Thus, over time the rotation angle increases, sud-
denly drops, and then increases again. The graph of the rotation angle looks discontinuous
although the arm swings smoothly. Many 3D applications have a filter to clean this up. So, if you
face this problem, look for a filter.

When rotation angles are computed as Euler angles in your 3D application, you may encounter
gimbal lock in addition to the problems that have been discussed above. Let’s look at gimbal lock
in the next section.

@ MoCap for Artists

12.6 Gimbal Lock

A gimbal is a mechanical device that consists of concentric rings that rotate. Gimbal rings are
mounted on axes so that the axes of two adjacent rings make a perpendicular angle to each other.
In aviation a gimbal measures the rotation of an aircraft using Euler angles and controls the aircraft’s
orientation. Gimbal lock occurs when two of the three gimbal rings align together and one degree
of freedom is lost. Let us explain this in more detail.

Look at the gimbal in Figure 12.5. Suppose that the global space and the local space are defined in
such a way that the y-axes point up, the x-axes point at your right, and the z-axes point toward you.
The orientation of the global space does not change, whereas the local space’s orientation changes
as the gimbal rings rotate. Let the three gimbal rings make perpendicular angles to each other and
that be the initial state of the device (Figure 12.5). Imagine rotating one ring at a time and rotating

the ring back to its initial position before rotating another ring for now. The outer ring that is

Figure 12.5 Initial state of a gimbal device

attached to the base rotates around the y-axis (yaw). The middle ring rotates around the x-axis
(pitch). The inner ring rotates around the z-axis (roll). Thus, the device has three degrees of free-
dom. Now let’s suppose that you rotate the middle ring by 90 degrees so that it aligns with the outer
one (Figure 12.6). Now the outer ring (yaw) and the inner ring (roll) rotate in the same manner —
both rings rotate around the global y-axis. Thus, one degree of freedom is lost. This is gimbal lock.

Gimbal lock occurs when Euler angles are used to perform a rotation. With Euler angles, the rota-
tion around each axis is performed one after the other. In the case of the gimbal device in Figures 10.5
and 10.6, the order of rotations is y, x, and z. Because of the three sequential rotations performed

Chapter 12: MoCap Data and Math @

Figure 12.6 A gimbal lock

on an object, the object’s local axes may have been rotated in such a way that by the time the rota-
tion is performed around the third axis, one axis is aligned with another. When two of an object’s
local axes are aligned, performing a rotation on the object creates this puzzling result which is often

very annoying as well.

Users of the 3D graphics applications that rotate objects using Euler angles experience gimbal lock.
Let’s think about a shoulder joint’s rotation using your shoulder. We will do a couple of experiments.
First stretch your right arm out so that it parallels the floor. Extend your fingers and let your palm face
the floor. Imagine that an airplane is pointing at the direction that your fingers are pointing at. This is
your arm’s initial orientation (Figure 12.7). Keep your arm stretched, that is, don’t bend your arm at
your elbow while performing the experiments. Moving your arm up and down by rotating it at your
shoulder is pitch (x-axis rotation). Moving your arm back and forth by rotating it at your shoulder is
yaw (y-axis rotation). Twisting your arm is roll (z-axis rotation). Let’s use a right-handed 3D Cartesian
space. Recall that in a right-handed space if you align your right thumb with one of the axes, pointing
the thumb at the positive axis direction, and curl your fingers up, then the direction that an object

rotates by a given positive rotation angle is the direction that your curled fingers point to.

Apply a yaw of 90 degrees to your arm, that is, move your arm to your front keeping your palm
facing the floor (Figure 12.8a). Then apply a pitch of 90 degrees. Thus twist your arm so that your
palm faces your left while keeping your arm stretched in front of you (Figure 12.8b). And apply a
roll of —90 degrees. That brings your arm by your side (Figure 12.8¢). Varying the roll angle, say
between —70 and —110 degrees, lets you swing your arm back and forth. The first experiment has
been completed. Remember three steps (a 90 degree yaw, a 90 degree pitch, and a —90 degree roll)

brought your arm by your side and you were able to swing your arm. Let’s try another experiment.

@ MoCap for Artists

Y-axis

X-axis (,

Pitch

Figure 12.7 Initial state

(a) ' (b) I! (©) I

Figure 12.8 (a) 90 degree yaw; (b) 90 degree pitch; and (c) — 90 degree roll

Chapter 12: MoCap Data and Math @

Bring your right arm back to the initial orientation (Figure 12.7). This time apply a pitch of 90
degrees. That moves your arm down (i.e., places your arm by your side) (Figure 12.9a). Recall that
in the first experiment it took three steps, a yaw, a pitch, and a roll, to bring your arm by your side.
This time a single step, a pitch, brought your arm to the same position. This is a much more intu-
itive way to place a character’s arm by its side but in this way you face a problem, gimbal lock.
Recall what happened to the gimbal device when the outer and middle rings aligned (Figure 12.6).
By placing your arm by your side using a pitch of 90 degrees, you let the local y-axis align with the
local z-axis (Figure 12.9a). As the result both yaw and roll have become aligned as you were twist-
ing your arm (Figure 12.9b). Because one degree of freedom is lost there is no rotation that allows
you to swing your arm as you did in the first experiment. This can happen to the arms of a 3D
character if your application is implemented with Euler angles.

Gimbal lock does not occur in the application that uses quaternions, described in the next section,
instead of Euler angles. When you experience gimbal lock, check if your 3D application has any
tools that prevent gimbal lock. For instance, Maya has an option to use quaternion rotation, instead
of Euler angle rotation.

(a) (b)

Figure 12.9 (a) 90 degree pitch; and (b) Gimbal lock

@ MoCap for Artists

12.7 Quaternions

Euler angles can be understood as pitch, yaw, and roll by imagining being a pilot of an airplane.
Quaternions are not so easily understood as Euler angles because quaternions are four dimensional.
We are residents of a 3D world and it’s rather hard for us to imagine 4D things. But let us try to
give you some ideas about what quaternions are. First of all, quaternions are an extension of com-

plex numbers. A complex number is the number of the form:
a + bi,
where a and b are real numbers and 7 is the imaginary unit.

The imaginary unit i has a peculiar nature (i.e., # = —1). Thus, 2i X 3i = —6. Quaternions are a

little bit more complex than complex numbers. They have the form of:

a+ bi+ g+ dk,

where a4, b, ¢ and d are real numbers and i# = j2 =k =—1.

Secondly quaternion multiplications are not commutative. In usual algebra of real numbers that we
are accustomed to, multiplications are commutative (i.e., xy = yx). Thus, 2 X 3 equals to 3 X 2.

However, a X b does not equal b X a when a and b are quaternions.

Most importantly, quaternions do not suffer the drawbacks that Euler angles do; therefore, they
provide us with a wonderful method to compute 3D rotations. Quaternions cannot be easily visu-
alized or understood because they are four dimensional. However, implementing rotations (and
interpolation of rotations) with quaternions and conversions between quaternions and Euler angles
are not so difficult. Therefore more and more 3D software packages are offering implementations

of quaternions that supplement or replace the Euler angle representation.

Alexander, R. McNeill. Exploring Biomechanics: Animals in Motion. Scientific American Library, New
York, NY, 1992.

Calais-Germain, Blandine. Anatomy of Movement. Eastland Press, Vista, CA, 1993.

Caputp, Tony C. Visual Storytelling: The Art and Technique. Watson-Guptill Publications, New
York, NY, 2003.

Edgerton, Harold E and James R. Killan, Jr. Moments of Vision. The MIT Press, Cambridge, MA, 1979.
Hass, Robert Bartlett. Muybridge: Man in Motion. University of California Press, Berkeley, CA, 1976.

Hendricks, Gordon. Eadweard Muybridge: The Father of the Motion Picture. Grossman Publishers,
New York, NY, 1975.

Heraldson, Donald. Creators of Life: A History of Animation. Drake Publishers, Inc., New York, NY,
1975.

Jussim, Estelle and Gus Karafas. Stopping Time: The Photographs of Harold Edgerton. Harry N.
Abrams, New York, NY, 1987.

Kardong, Kenneth V. Vertebrates: Comparative Anatomy, Function, Evolution. McGraw Hill, New
York, NY, 2002.

Maltin, Leonard. Of Mice and Magic: A History of American Animated Cartoons. Revised Edition.
Plume, New York, NY, 1987.

Menache, Alberto. Understanding Motion Capture for Computer Animation and Video Games. Morgan
Kaufmann, San Francisco, CA, 1995.

Muybridge, Eadweard. Animals in Motion. Dover Publications, Inc., New York, NY, 1957.
Muybridge, Eadweard. The Human Figure in Motion. Dover Publications, Inc., New York, NY, 1955.

Parent, Rick. Computer Animation: Algorithms and Techniques. Morgan Kaufmann Publishers, San
Francisco, CA, 2002.

Sieg, Kay W. Illustrated Essentials of Musculoskeletal Anatomy. Megabooks, Inc., Gainesville, FL, 2002.
Solomon, Charles. Enchanted Drawings: History of Animation. Alfred A. Knopf, New York, NY, 1989.

Thomas, Frank and Ollie Johnston, Disney Animation: The Illusion of Life. Abbeville Press, New
York, NY, 1981.

Vogel, Steven. Life’s Devices. Princeton University Press, Princeton, NJ, 1988.

&

This page intentionally left blank

Appendix A: Shot List for
Juggling Cow

Scene Shot Shot name Description
Scenel
Shot 1 Jco1o1 Cow enters the back of an old barn
Shot 2 JCo0102 Still shot of bowling ball, chainsaw and pool cue.
Shot 3 JCo0103 Cow jumps as if startled blend
Shot 4 JCo0104 Cow walks toward objects
Scene 2
Shot 1 JC0201 Cow timidly picks up the bowling ball
Shot 2 JC0202 Cow throws bowling ball in the air a
few times, gaining confidence
Shot 3 JC0203 Cow uses hoof to toss other objects
into the air
Scene 3
Shot 1 JC0301 Cow is juggling all three objects
Shot 2 JC0302 See cow from over head and hear a
loud oft screen yell of “Bessy! Milkin’ Time!”
Shot 3 JC0303 Cow is startled and drops all the props
Shot 4 JC0304 Cow soberly walks back out of the barn

This page intentionally left blank

Appendix B: Sample Mocap Production Pipeline and
Data Flow Chart

Capturing, cleaning, and editing data

Circle fitting Triangulation

[e]

2D image —» 2D camera data ——» 3D markers positions —— Trajectories
Reconstruction

editing

Data cleaning and

Positional data

... —

Subject calibration

* Capture range of motion (ROM)
* Reconstruct trajectories of ROM

* Label markers

VST
Subject
template

Process that you
go through just

once per character

Character setup

* Create a skeleton
* Bind skin to the skeleton
* Rig the character

Calibrated
subject

OSU/UTD mocap production
pipeline and data flow chart

MAYA

Process
that you
repeat for
each shot

Rendering

* Merge the rigged character (MB) and
the skeleton with motion data (FBX)

¢ Edit motion (IK/FK blend, Trax)

* Render

P

Actor Setup /

¢ Place markers on

Actor (intermediate
skeleton)

MOTION
BUILDER

Markers set

Skeleton only

@ Maya scene file

Character setup

* Correlate:
l» Actor (C3D, HIK)
and
Character (FBX)
¢ Skeletal editing and
blending
* Bake motion data to
the skeleton

«:

FBX

<
<

Skeleton with motion data
(joint rotation angles)

This page intentionally left blank

2D coordinate system A 2D coordinate system is used to specify locations in 2D space.

3D Cartesian coordinate system With a 3D Cartesian coordinate system each location in a
3D space is specified by an ordered set of three distances from the system’s origin (an x-coordinate,
a y-coordinate, and a z-coordinate). The coordinates are represented as (x, y, z). The three axes of
a 3D Cartesian coordinate system are orthogonal.

3D coordinate system A 3D coordinate system is used to specify locations in 3D space.

Animatic A series of drawings and/or rough animations with sound which are created to test

timing and continuity.

Bake To permanently assign key-frames to a keyable attribute of an object that is driven by a
method other than key-framing.

Broken hierarchy A hierarchy that consists of disjointed chains of joints. An example is a skele-
ton where the arms and legs are not attached to the hips and spine, but can still follow them if

needed.
Calibrate To determine or check the accuracy of a system.

Coordinates Coordinates are an “ordered” set of values which specify a location relative to an

origin.

Coordinate system A coordinate system is a system that defines how coordinates are assigned

to each point in the space.
Creep Slow, small movements.

Cylindrical coordinate system In a cylindrical coordinate system each location in a 3D space
is specified by two distances and one angle.

Degrees of freedom (DOF) DOF of an object is the number of independent variables that
specifies the location of the object. In 3D space, a rigid object can have the maximum of six DOF
that are the x-, y-, and z-translations and x-, y-, and z-rotations.

Ease in/ease out See slow in and slow out.

Effector (end effector) An effector is the end point in a chain of joints that is placed at a desired

position. Inverse kinematics is used to compute the rotation angles of the middle joints in the chain

d

to reach the position. (See Inverse kinematics.)

@ Glossary

Euler angles Euler angles were developed by an 18th-century mathematician, Leonhard Euler.
The orientation of an object in 3D space is specified by a sequence of three rotations described by
the Euler angles.

fbx A 3D data format designed to describe animation scenes and is supported by many 3D ani-

mation software packages to transfer files among them.

Floating motion Motion that looks unnaturally fluid because the accelerations and velocities of

the motion have been compromised by data editing or filtering.

Forward kinematics Forward kinematics is a method of animating a skeleton where the ani-
mator specifies and keys the position of every joint in the skeleton in one frame, moves to another
frame, and repeats it until the desired motion is achieved.

Gimbal lock Gimbal lock occurs when two of the three axes of a 3D Cartesian system align

together and one degree of freedom is lost.

Hierarchy A system of relationships among elements where each element is a subordinate (a
child) of a single dominant element (a parent). The element at the top of a hierarchy is called the
root. Each element (except for the root) has one parent and an arbitrary number of child elements.
A transformation applied to a parent is applied to its child as well, but a transformation applied
to a child is not applied to the parent. Geometries, markers, and joints are often structured in
hierarchies.

Inbetweens Inbetweens fill the gaps between key-frames. In the production of a traditional
hand-drawn animation, inbetweens are drawn by less experienced animators while key-frames are
drawn by skilled animators. In the production of a 3D animation the parameter values for inbe-

tweens are generated by interpolating the parameter values of the key-frames.

Inverse kinematics (IK) Inverse kinematics is a method of animating a skeleton where the ani-
mator specifies only the position of the end eftector. The software calculates all the rotation angles
of the middle joints in the chain to reach the position of the end eftector.

............... B4l H1°E A L) L S R S 5))

Glossary @

Key See Key-frame.

Key-frame A key is a defining moment of a motion. In a 3D animation sequence a key is cre-
ated where an attribute (a parameter value) of an entity (e.g., an object, a light, a camera) is at its
extreme. A key for an entity’s attribute is specified by two values: the time of the key moment
(frame number) and the parameter value at the key moment. The number of keys in an animation

sequence depends on how complicated the movement is.

Left-handed system If you can align your left thumb with the x-axis of a 3D Cartesian coor-
dinate system, your left index finger with the y-axis, and your left middle finger with the z-axis,
then the coordinate system is left-handed.

Marker See Sensors.
Mocap Short form of motion capture.

Object space Each object is defined in its object space, which is also called an object coordinate
system or local coordinate system.

Occlusion Hiding of one object. In the case of optical motion capture, hiding or covering a

marker from the view of one or several cameras.

Order of transformation Order of transformation specifies in what order transformations
(e.g., scaling, rotation, and translation) are applied to an object. Depending on the order of trans-
formation, the same transformation values may yield different results.

Pole vector A vector that is used with an IK to define the plane that the middle joints in the IK

chain lie on. (See Inverse kinematics.)

Principles of animation While animation was maturing from a novelty to an art form enjoyed
by many families in the 1930s, animators at the Disney Studios created 12 principles of animation.
The principles were developed to guide production of traditional hand-drawn animation, espe-
cially character animation, and to train younger animators. These principles can help us create
believable characters and situations for key-frame animation and animation driven by mocap data.
The principles are: (1) Squash and stretch, (2) Anticipation, (3) Staging, (4) Straight ahead action
and pose to pose, (5) Follow through and overlapping action, (6) Slow in and slow out, (7) Arcs,
(8) Secondary action, (9) Timing, (10) Exaggeration, (11) Solid drawings, and
(12) Appeal. Read Disney Animation: The Illusion of Life by Frank Thomas and Ollie Johnston to

learn more about the principles.

Quaternion Mathematically speaking quaternions are a non-commutative extension of complex
numbers. Quaternions are used to compute angles and rotations of objects in 3D space in place of
Euler angles because quaternions do not suffer from gimbal lock.

@ Glossary

Render To create an image from descriptions of 3D objects in a scene.

Right-handed system If you can align your right thumb with the x-axis of a 3D Cartesian
coordinate system, your right index finger with the y-axis, and your right middle finger with the

z-axis, then the coordinate system is right-handed.

Root joint The highest joint in a skeleton’s hierarchy. A skeleton can have only one root joint,
while it can have multiple chains of joints that branch out.

Rotoscoping Rotoscoping is a method of producing an animation by drawing, frame by frame,
over live action reference.

Script A narrative structure that formats incidents and dialog for film making.

Sensors A type of device that transmits some form of information or from which information
can be derived. Magnetic sensors give both positions and orientations while optical markers give

positions only.
Shot list A list of actions or motions that will be compiled together to create a scene.

Skeleton A hierarchically articulated structure of joints. It is used for posing and animating
deformable objects (skin geometries) that are bound to the structure.

Slow in and slow out One of the principles of animation. Rather than instantly moving at full
speed and just as suddenly stopping at the close of the action, apply slowly in at its start and slow
out at its closure builds in acceleration and deceleration into the action, which creates more real-
ism in the motions of animated characters and objects. In 3D animation slow in and slow out are
often achieved by use of the spline interpolation. With a properly shaped spline curve, a spline
interpolation method, instead of a linear interpolation method, 1s applied to data in order to gen-
erate inbetweens from key-frames.

Spherical coordinate system In a spherical coordinate system each location in a 3D space is
specified by a distance and two angles.

Squash and stretch One of the principles of animation. It gives a non-rigid object an organic
flexibility by distorting its shape in accordance to the stressor acting upon it or the degree of phys-
icality of'its action.

Storyboard A set of drawings and accompanying dialog, which serves as a 2D visual represen-
tation of the script.

Glossary @

Thumbnail sketch A quick, small sketch that’s used to illustrate basic visual ideas, such as the
actions of the characters and camera positions.

T-pose A generic standing pose with feet shoulder width apart, back straight, and arms out to
the side with palms down. It is usually a starting position for human motion capture performers.

World space A scene containing an arbitrary number of objects is defined in the world space,

which is also called the world coordinate system or global coordinate system.

This page intentionally left blank

2D Coordinate systems, 184, 201 packages, 3D, 186

3D Animation packages, 186 principles of, 203
3D Cartesian coordinate system, 201 Ankles, 77
3D Characters, 31-33, 43—44 Arcus superciliaris bone ridge, 151
3D Coordinate systems, 184, 201 ASF (Acclaim Skeleton File) format,
181-182
A Attributes, 128
Abel, Robert, 7 Audio references, 36 —37
AC (alternating current) systems, 10 Autodesk company, 183
Accelerometers, 11 Auxiliary effectors
Acclaim Entertainment, Inc., 181 created at foot, 90
Acclaim Motion Capture (AMC) format, props and, 27
181-182 pulling entire leg, 91
Acclaim Skeleton File (ASF) format,
181-182 B
Action, script, 14 Baking key-frames, 97, 101, 201
Active markers, 8 Balance, character, 118—119
Actor, MotionBuilder, 62—67 Base markers, 110
Aim constraints, 148, 175 Bases of stability, 119
Alexander, R. McNeill, 21 Beginning frames, 94
Alias company, 183 Beiman, Nancy, 17
Alternating current (AC) systems, 10 Betty Boop, 6
AMC (Acclaim Motion Capture) format, Binding methods, 156
181-182 BioVision company, 182
Anatomy BioVision Hierarchical (BVH) format,
face, 151-154 182—-183
hand, 137-141 Blend Colors utility, Hypergraph, 132—133
in motion capture, 19-21 Blending motions
Anatomy of Movement book, 19 difficult cases, 86 —87
Angles, Euler, 188—-189 matching positions, 86
Animatics, 16—17, 201 overview, 79—80
Animation selecting blending point, 80 —85
forward kinematics, 125—-127 Blind spots, capture volume, 23
integrating mocap and key-frame, 130-135 Bluescreens, 177
key-frame with IK, 128—-130 Bodies, rigid, 56—59, 92-93

o7

@ Index

Bones Casting, facial animation, 18
facial, 151-153, 157 Centroid calculations, 180
hand, 139 CGI (computer generated imagery), 2
skeleton setup for 3D characters, 31-33 Channels, transformation, 183
understanding structure of, 19-20 Character Ctrl: Reference node,
Botulinum toxin, 154 MotionBuilder Control Rig, 95
“Brilliance” computer animation, 7 Character, MotionBuilder, 62—63, 6972
Broken hierarchies, 169—-170, 201 Character names, in scripts, 14
Brow ridge, 151 Character rigs
Buccinator muscle, 153 combining FK and IK, 130135
Butterworth filter, 60 forward kinematics animation, 125-127
BVH (BioVision Hierarchical) format, inverse kinematics, 129-130
182183 key-framing, 128-129
overview, 125
C Characters, 3D, 31-33, 43—44
C3D format, 181 Child elements, 40
Calais-Germain, Blandine, 19 Chronophotographic fixed-plate cameras, 2—3
Calibrations Cleaning data
defined, 201 marker
subject, 34-36 eliminating gaps, 51-54
system, 33—34 eliminating spikes, 54 —56
Cameras extent of, 61—62
animating moves of, 17 filters, 59—-61
capture volume, 21-23 labels and identification, 49-51
chronophotographic fixed-plate, 2—3 optical marker data, 47
setup, and facial motion capture, overview, 47
154-155 rigid bodies, 5659
slate, 37 skeletal data, 48
underwater, 3 suggestions for, 48 —49
Vicon, 9 translational and rotational data, 47—48
Camper, Eric, 170 overview, 39—40
Capture Clients, motion capture, 14
preparation for CMC (carpometacarpal) joint, 140
marker sets, 1821 Computer generated imagery (CGI), 2
props, 2628 Connection Editor, Maya, 133—-134
rehearsals, 25-26 Connections section, FBX files, 183
shot list, 23—-24 Contact, floor, 88—92
suits and markers, 28 —29 Contour Reality Capture system, Mova, 9
talent, 17-18 Control points, 53
sessions, 36 —39 Control Rig, MotionBuilder, 88, 95
Capture schedules, 24 -25 Coordinate systems, 184186, 201
Capture volume, 21-23 Coordinates, 183—184, 201
Carnivores, 21 Cousteau, Jacques, 3
Carpal bones, 139 Cranium anatomy, 151
Carpometacarpal (CMC) joint, 140 Creep, 201

Cartesian coordinate systems, 184 Cubic splines, 52

Cutting marker data, 50 -51
Cylindrical coordinate systems, 184, 201

D
Data
See also Markers
cleaning, 39—-40
creation of, 179—180
editing, 40—43
facial
editing, 164—-165
stabilization, 161—-164
formats, 181-183
forward kinematics, 121
integrating with character rigs
combining FK and IK, 130-135
forward kinematics animation, 125—-127
key-frame animation with IK, 128-130
overview, 125
inverse kinematics, 121
overview, 179
recorded, 9
rotational, 9, 47—48, 181
skeletal, 40 —41, 48
translational, 47—48, 180—-181
Data application. See Motions; Props
Data flow chart, sample, 199
Data section, C3D files, 181
DC (direct current) systems, 10
Degrees of freedom (DOF), 32, 201
Depth of field, 22
Dialog, in scripts, 14
Digital mocap, 6—8
Direct approach, to assigning markers, 43
Direct current (DC) systems, 10
Discrete joints, facial rigs with, 155-156
Disney, Walt, 6
DOF (degrees of freedom), 32, 201
Double eyelids, 159

E
Ease in/ease out, 201
Edgerton, Harold, 3
Editing

See also Skeletal editing

Index @

applying marker data to skeletons
Actor, 63—67
Character, 69-72
skeleton, 67— 69
facial data, 164—165
marker data
eliminating gaps, 51-54
eliminating spikes, 5456
extent of, 61—62
filters, 59—61
labels and identification, 49-51
optical marker data, 47
overview, 47
rigid bodies, 5659
skeletal data, 48
suggestions for, 48—49
translational and rotational data, 47—48
overview, 40—43
Effector Pinning section, MotionBuilder,
95-97
Effectors, 201
Eight camera setups, 21
Ending frames, 94
Entities, 128
Euler angles, 188—-189, 202
Exo-skeletal mocap systems. See Mechanical
systems
Eyes
double eyelids, 159
facial rig with muscles, 156
inverse kinematics, 158

F
Facial Data Stabilizer (FDS) script, 161-164
Facial motion capture
anatomy, 151-154
camera setup and, 154—-155
casting for, 18
editing, 164-165
Facial Data Stabilizer script, 161-164
facial rigs
discrete joints, 155—-156
inverse kinematics, 157—159
muscles, 156—157
marker set, 159—-161
overview, 151

@ Index

Fat, facial, 160

FBX (.tbx) format, 183, 202

FDS (Facial Data Stabilizer) script, 161-164
Filters, 59—61

Fingertip markers, 143

Fitz the dog character, 6

FK (forward kinematics), 121, 131-134, 202
Fleischer, Max, 4—6

Flexible objects, 109-111

Floating motion, 78, 202

Floor contact, 88 —92

Flying logos, 7

Focal length, 22

Foot sliding, 76 -78

Forearms, 137

Formats, data, 181-183

Forward kinematics (FK), 121, 131-134, 202
Frame rates, 45—46

Frames, wasted, 94

Frontal cranial bone, 151

Frontalis muscle, 154

Full motion videos, 40

Full-body broken rig setup, 169

FX Fighter game, 8

G

Gaps, data, 51-54

Giant Studios system, 9
Gimbal lock, 190—-193, 202
Global translation, 180
Graph Editor, Maya, 165
Gravity, 118

Grips, 27

H
Hand motion capture
anatomy, 137-141
capturing hands, 149-150
overview, 137
rig and marker set
mittens, 142—146
overview, 141
rigid hand, 141-142
ultimate placement, 146149
Hays Production Code, 6

Head Movement Isolator (HMI), 163
Header section, C3D files, 181
Herbivores, 20
Hierarchies

broken, 169—170, 201

data editing, 40

defined, 202
High-frequency noise, 60
Hip Effector, MotionBuilder, 97
Hips, 78
HMI (Head Movement Isolator), 163
Huber, Josh, 170
Huber, Phillip, 170
Hypergraph, Maya, 131-133

I
Identifications, marker, 49—-51
IK (inverse kinematics)
chains and excess motion removal, 120
character rigs and, 129-130
defined, 202
end effectors and, 130
facial rig with, 157-159
setting up skeletons for, 131-134
skeletal editing, 88
Spline tool, 111
turning data into FK data, 121
In points, 85
Inbetweens, 128, 202
Index finger markers, 146
Input and Output Connections button, Maya
Hypergraph, 131-132
Interpolation
linear, 51-52
shape, 134
spline, 52-53
Inverse kinematics. See IK

J

Joints
facial rigs with discrete, 155—-156
full hand, 148
local rotation axes of, 44
mechanical systems, 11
mittens, 143

root, 204
shoulder, 32
skeleton, 68
Juggling cow, shot lists for, 197

K
Kardong, Kenneth V., 21
Kaydara company, 183
Key Controls, MotionBuilder, 100
Key-frames
defined, 203
forward kinematics and, 126
integrating mocap animation and,
130-135
overview, 128—-129
poses, 100—-101
Knee rotation, 76
Koko the Clown character, 6

L
Labels, marker, 49-51
Lattice Deform Keys Tool, Maya Graph
Editor, 165
LEDs (light-emitting diodes), 8
Left-handed coordinate systems, 185—-186,
203
Light-emitting diodes (LEDs), 8
Linear interpolation, 51-52
Linear points, 107
Little finger markers, 146
Local origins, right-handed local coordinate
systems, 162
Local rotation axes of joints, 44
Logos, flying, 7
Loops, motion
overview, 93
preparation for, 93—-94
taking out translation, 95-98
walking down z-axis, 94—95
Lower body motions
decomposing and composing, 113-116
overview, 113
synchronizing, 116-118
Low-pass filters, 59—60
Low-resolution characters, 177

Index @

M
Magnetic systems, 10—-12, 180
Mandibles, 152
Marceau, Marcel, 8
Marey, Etienne-Jules, 2
Markers
anatomy, 19-21
applying to skeletons
Actor, 63—67
Character, 69-72
overview, 62—63
skeleton, 67— 69
base, 110
capturing hands, 150
cleaning data
eliminating gaps, 51-54
eliminating spikes, 5456
extent of, 61—62
filters, 59—-61
labels and identification, 49-51
optical marker data, 47
overview, 47
rigid bodies, 56 -59
skeletal data, 48
suggestions for, 48 —49
translational and rotational data, 47—48
data, 40—41, 49
facial motion capture, 159-161
hand motion capture
full hand, 146—149
mittens, 142—146
rigid hands, 141-142
motion type, 19
overview, 8
preproduction, 2829
shaking, 39
stable, 159
staggering, 110
static, 159
sticks
with three markers, 105—109
with two markers, 103—-105
system limitations, 18
thumb, 144
wrist, 109

@ Index

Masseter muscle, 152
Match Translate option, MotionBuilder, 100
Mathematics
coordinate systems, 184 —-186
coordinates, 183—184
Euler angles, 188—-189
gimbal lock, 190-193
order of transformation, 186—188
overview, 179
quaternions, 194
Maxilla bone, 151-152
Maya
facial rigs with muscles, 156
Graph Editor, 165
IK Spline tool, 111
importing skeletons to MotionBuilder, 69
merging .fbx files into, 127
order of transformation, 186—187
orienting objects with markers in, 108-109
puppetry capture, 174-176
removing motion, 120-121
scale difference with MotionBuilder, 68
setting up skeletons for FK and IK, 131-134
Trax editor, 116—-117
Maya Embedded Language (MEL), 161
MCP (metacarpo-phalangeal) joint, 139
Mechanical systems, 11-12, 180
MEL (Maya Embedded Language), 161
Metacarpals, 139, 148
Metacarpo-phalangeal (MCP) joint, 139
Milk-Drop Coronet photo, 5
Mittens, 142—146
Mocap (motion capture)
history of
digital mocap, 6—8
early attempts, 2—4
rotoscoping, 4—6
magnetic, 10-11
mechanical, 11-12
optical, 8—12
overview, 1-2
Mocap suits, 4, 8, 28—29
Morphology, 119
Motion blending
difficult cases, 86 —87
matching positions, 86

overview, 79—-80
selecting blending point, 80 —85
Motion capture. See Mocap
MotionBuilder application
applying marker data to skeletons
Actor, 63—67
Character, 69-72
overview, 62—73
skeletons, 67— 69
FBX format, 183
floor contact, 89—-91
forward kinematics animation, 126 —-127
inverse kinematics, 88
looping motion, 93—-98
matching positions, 86
Pose tool, 98101
taking out translations, 95—98
walking down z-axis, 94—-95
Motions
See also Hand motion capture
applying to 3D character, 43 —44
balance, 118—119
breaking apart, 119-123
floating, 78, 202
looping
overview, 93
preparation for, 93—94
taking out translation, 95-98
walking down z-axis, 94—95
overview, 113
type of, and markers, 19
upper and lower body
decomposing and composing,
113-116
overview, 113
synchronizing, 116-118
Mova Contour Reality Capture system, 9
Muscles, facial, 151-154, 156—-159
Muybridge, Eadweard, 2

N

Narrative videos, 17

Nasal bone, 152

National Canned Food Information
Council, 7

Non-linear points, 107

(@)
Object space, 186, 203
Occlusions
capture sessions and, 38—-39
defined, 203
markers and, 9
stick with two markers, 103-104
Off=site rehearsals, 25
Optical marker data, 47
Optical mocap systems, 810, 179-180
Orbicularis oculi muscle, 154
Orbicularis oris muscle, 153
Order of transformation, 186—188, 203
Organization, capture session, 37—38
Orient constraint, 115-116
Out of the Inkwell, Inc., 5
Out points, 85
Opverlying data, 50

P
Painting weights, 156
Parameter section, C3D files, 181
Parent elements, 40
Parent-child constraint, 91
Passive markers, 8
Pencil tests, 45
Performance, puppetry capture, 170-171
Phalanges, 139
Pick points, 19
Pipeline
applying motions to 3D characters, 43—44
capture sessions, 36 —39
cleaning data, 39—40
editing data, 4043
overview, 31
rendering and post-production, 44 —46
sample, 199
skeletons for 3D characters, 31-33
subject calibration, 34 —-36
system calibration, 3334
Pitch
Euler angles, 188—-189
gimbal lock, 190-193
quaternions, 194
Pivot points, 86
Placement, marker, 108 —109

Index @

Planning, pre-capture, 14—17
Plotting character motion, 126
Point constraint, 115-116
Pole vectors, 203
Poses, 98—101
Post-production, 44 —46
Pre-capture planning, 1417
Preproduction
importance of, 13
overview, 13
pre-capture planning, 14-17
preparation for capture
capture schedule, 24 -25
capture volume, 21-23
marker sets, 18—-21
overview, 17
props, 2628
rehearsals, 25—-26
shot list, 23—-24
suits and markers, 28 —29
talent, 17—18
Principles of animation, 203
Production pipeline. See Pipeline
Props
flexible objects, 109-111
overview, 26—28, 103
sticks
with three markers, 105—109
with two markers, 103—-105
Pull modifiers, 79
Puppetry capture
background, 167-168
benefits of, 168—-169
ideas and inspiration, 169—-170
methods, 173-176
overview, 167
performance, 170-171
projects, 171-173
real time, 176—-177

Q
Quaternions, 194, 203

R
Radius bone, 137
Range of motion trials, 35

@ Index

Real time
animation, 8
puppetry capture, 176177
Recorded data, 9
Reference nodes, 68
Reflective markers, 8
Rehearsals, 25-26
Relations section, FBX files, 183
Rendering, 44—46, 204
Retargeting
3D character motions, 44
foot sliding, 76 —78
overview, 73
reducing need for, 73-74
scaling skeleton, 75-76
spine, 7879
Right-handed coordinate systems, 185-186,
204
Rigid binding method, 156
Rigid bodies
marker data, 5659
skeletal editing, 92—-93
Rigid hands, 141-142
Rigs, character. See Character rigs
Roll angles
Euler angles, 188—189
gimbal lock, 190-193
quaternions, 194
Root joints, 204
Rotate plane solver, 120
Rotation axes, local, of joints, 44
Rotational data, 9, 47—48, 181
Rotations, 43, 105
Rotoscoping, 4—6, 204

S

Scaling, 64—65, 75-76
Scene headings, in scripts, 14
Schedules, capture, 24 —25
Scripts, 14—15, 204
Scriptwriters, 14

Sensors, 10—11, 47, 204
Sessions, capture, 36 -39
“Sexy Robot” computer animation, 7
Shaking markers, 39

Shape interpolation, 134

ShapeWrap mechanical system, 11
Shooting the Apple photo, 5
Shot lists
defined, 204
for juggling cow, 197
overview, 23—24
pre-capture planning, 15-16
Shots
grouping, 24
in scripts, 14
Shoulder joints, 32
Single eyelids, 159
Six degrees of freedom systems, 180
Skeletal data, 4041, 48
Skeletal editing
floor contact, 88—-92
inverse kinematics, 88
looping motion
overview, 93
preparation for, 93—94
taking out translation, 95-98
walking down z-axis, 94—95
motion blending
difficult cases, 86 —87
matching positions, 86
overview, 79—80
selecting blending point, 80 —85
overview, 73
poses, 98—101
retargeting
foot sliding, 7678
overview, 73
reducing need for, 73-74
scaling skeleton, 75-76
spine, 7879
rigid bodies, 92-93
Skeletons
applying marker data to
Actor, 63—67
Character, 69-72
overview, 62—73
skeletons, 67— 69
applying motions to 3D characters,
43—-44
defined, 204

importing from Maya to MotionBuilder, 69

setting up for 3D characters, 31-33
setting up for FK and IK, 131-134
Skin binding methods, 156
Skulls, 153
Slate cameras, 37
Slow in and slow out principle, 204
Smooth binding method, 156
Smoothing filters, 61
“Snow White and Seven Dwarfs” feature
length animation, 6
Software, 39
Sound elements, 16
Source skeletons, 44
Spherical coordinate systems, 184, 204
Sphygmographs, 2
Spikes, data, 54-56
Spine, 32, 78—79
Spline interpolation, 52—53
Squash and stretch principle, 204
Stability, bases of, 119
Stabilization, facial data, 161-164
Stable markers, 159
Stable points, 86
Staggered markers, 110
Stanford, Leland, 2
Static markers, 159
Sticks
with three markers, 105—109
with two markers, 103—105
Stiffness modifiers, 79
Stoessner, Jenny, 176
Story tool, MotionBuilder, 69
Storyboards, 15, 204
Straight line segments, 110
Subject calibration, 34 —-36
Suits, mocap, 4, 8, 28—-29
Swapping, marker, 50
Synchronization, upper and lower body
motion, 116—118
System calibration, 3334

T

Talent, 17-18

Target skeletons, 44
Temporalis muscle, 152
Tests, pencil, 45

Index @

Thumbnail sketches, 205

Thumbs, 140, 144

Time code, 37

Toes, 77

“Total Recall” movie, 7

T-poses, 32, 35, 48, 205

Tracking sensors, 10, 47
Transformation, order of, 186—188, 203
Transformations, 40, 183

Transitions, in scripts, 14

Translation, taking out of motion, 95-98
Translational data, 47—48, 180-181
Trax editor, Maya, 116-117

U

Ulna bone, 137

Underwater cameras, 3

Universal translators, 183

Upper body motions
decomposing and composing, 113-116
overview, 113
synchronizing, 116-118

Use Components mode, Maya, 156

v

Vicon cameras, 9

Video games, 8

Video references, 36 —37
Visibility, marker, 148

Visual elements, animatics, 16
Vogel, Steven, 21

Volume, capture, 21-23

\%

Walk motion, 94—-95
Wasted frames, 94
Wavefront Technologies, 7
Weighting methods, 156
World space, 186, 205
Wrist markers, 109

X
X-axis
defined, 162
in right-handed 3D Cartesian coordinate
system, 186

@ Index

X-axis (Contd)
rotation of hand, 137
setting up skeletons for 3D characters, 31-32

Y
Yaw
Euler angles, 188—-189
gimbal lock, 190-193
quaternions, 194
Y-axis
defined, 162
in right-handed 3D Cartesian coordinate
system, 186
rotation of hand, 138
setting up skeletons for 3D characters, 31-32
Y-translations, 164 —165

V4
Z-axis
defined, 162
in right-handed 3D Cartesian coordinate
system, 186
rotation of hand, 138
setting up skeletons for 3D characters,
31-32
walking down, 94-95
Z-depth coordinates, 184
Zero keys, 100-101
Zeroing out motion, 95-97
Zone approach, to camera setup, 22
Zoopraxiscopes, 2
Zygomatic arch, 152

	MoCap for Artists: Workflow and Techniques for Motion Capture
	Copyright Page
	Contents
	Acknowledgments
	Introduction
	Chapter 1: An Overview and History of Motion Capture
	1.1 About This Book
	1.2 History of Mocap
	1.2.1. Early attempts
	1.2.2. Rotoscoping
	1.2.3. Beginning of digital mocap

	1.3 Types of Mocap
	1.3.1. Optical mocap systems
	1.3.2. Magnetic mocap systems
	1.3.3. Mechanical mocap systems

	Chapter 2: Preproduction
	2.1 Importance of Preproduction
	2.2 Pre-capture Planning
	2.2.1. Script
	2.2.2. Storyboard
	2.2.3. Shot list
	2.2.4. Animatic

	2.3 Preparation for Capture
	2.3.1. Talent
	2.3.2. Marker sets
	2.3.3. Capture volume
	2.3.4. Shot list
	2.3.5. Capture schedule
	2.3.6. Rehearsals
	2.3.7. Props
	2.3.8. Suits and markers

	Chapter 3: Pipeline
	3.1 Setting up a Skeleton for a 3D Character
	3.2 Calibrations
	3.2.1. System calibration
	3.2.2. Subject calibration

	3.3 Capture Sessions
	3.3.1. Audio and video references
	3.3.2. Organization
	3.3.3. Preventing occlusions

	3.4 Cleaning Data
	3.5 Editing Data
	3.6 Applying Motions to a 3D Character
	3.7 Rendering and Post-production

	Chapter 4: Cleaning and Editing Data
	4.1 Cleaning Marker Data
	4.1.1. Types of data
	4.1.2. What to clean and what not?
	4.1.3. Labeling/identifying
	4.1.4. Data cleaning methods
	4.1.5. When to stop?

	4.2 Applying Marker Data to the Skeleton
	4.2.1. Actor
	4.2.2. Skeleton
	4.2.3. Character

	Chapter 5: Skeletal Editing
	5.1 Retargeting
	5.1.1. Reducing need for retargeting
	5.1.2. Scaling a skeleton
	5.1.3. Fixing foot sliding
	5.1.4. Working on the spine

	5.2 Blending Motions
	5.2.1. Selecting a blending point
	5.2.2. Matching positions
	5.2.3. Dealing with less than ideal cases

	5.3 Inverse Kinematics
	5.4 Floor Contact
	5.5 Rigid Body
	5.6 Looping Motion
	5.6.1. Getting motion ready
	5.6.2. Setting up the loop

	5.7 Poses
	5.7.1. Deciding what to use
	5.7.2. Creating a pose
	5.7.3. Key-framing a pose

	Chapter 6: Data Application — Intro Level: Props
	6.1 A Stick with Two Markers
	6.1.1. When it fails: Occlusion
	6.1.2. When it fails: Rotation

	6.2 A Stick with Three Markers
	6.2.1. Three markers with equal distances
	6.2.2. Three markers on a single straight line
	6.2.3. Placement of three markers that works

	6.3 Flexible Objects

	Chapter 7: Data Application — Intermediate Level: Decomposing and Composing Motions
	7.1 Mapping Multiple Motions
	7.1.1. Decomposing and composing upper and lower body motions
	7.1.2. Synchronizing upper and lower body motions

	7.2 Balance
	7.3 Breaking Motion Apart
	7.3.1. When you don't need all the motion
	7.3.2. Re-use of motion data for non-motion purposes

	Chapter 8: Data Application — Advanced Level: Integrating Data with Character Rigs
	8.1 Mocap as Forward Kinematics Animation
	8.2 Key-frame Animation with Inverse Kinematics
	8.2.1. Key-framing
	8.2.2. IK

	8.3 Integrating Mocap Animation and Key-frame Animation
	8.3.1. Why do we want to do that?
	8.3.2. Setting up a skeleton for FK and IK
	8.3.3. Adding key-frame animation to mocap

	Chapter 9: Hand Motion Capture
	9.1 Anatomy of a Hand
	9.2 Rig and Marker Set for the Hand
	9.2.1. Rigid hand
	9.2.2. Mitten
	9.2.3. Mitten with an independent thumb
	9.2.4. Mitten that stretches
	9.2.5. Ultimate

	9.3 Capturing Hands

	Chapter 10: Facial Motion Capture
	10.1 Anatomy of a Face
	10.2 Camera Setup and Capture
	10.3 Facial Rig
	10.3.1. Facial rig with discrete joints
	10.3.2. Facial rig with muscles
	10.3.3. Facial rig with IK

	10.4 Marker Set
	10.5 Facial Data Stabilization
	10.6 Facial Data Editing

	Chapter 11: Puppetry Capture
	11.1 Background
	11.2 Benefits
	11.3 Ideas/Inspiration
	11.4 Performance
	11.5 Projects
	11.6 Methods
	11.7 Real Time

	Chapter 12: MoCap Data and Math
	12.1 How Data Is Created
	12.1.1. Optical systems
	12.1.2. Magnetic systems
	12.1.3. Mechanical systems

	12.2 Data Types and Formats
	12.2.1. C3D
	12.2.2. ASF/AMC
	12.2.3. BVH
	12.2.4. FBX

	12.3 Coordinates and Coordinate Systems
	12.3.1. 2D and 3D coordinate systems
	12.3.2. Cartesian, spherical, and cylindrical coordinate systems
	12.3.3. Right-handed and left-handed systems
	12.3.4. Object space and world space

	12.4 Order of Transformation
	12.5 Euler Angle
	12.6 Gimbal Lock
	12.7 Quaternions

	Bibliography
	Appendix A: Shot List for Juggling Cow
	Appendix B: Sample Mocap Production Pipeline and Data Flow Chart
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	O
	P
	Q
	R
	S
	T
	W

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

