
“… a comprehensive study of the technical and business impacts and
implications of cloud computing.”
—Michael Hugos, Author of Business in the Cloud

“… defines a new cloudware paradigm for innovative applications of the
future.”
—Honbo Zhou, Author of The Internet of Things in the Cloud: A Middleware
Perspective

Guide to Cloud Computing for Business and Technology Managers:
From Distributed Computing to Cloudware Applications unravels the
mystery of cloud computing and explains how it can transform the operating
contexts of business enterprises. It provides a clear understanding of what
cloud computing really means, what it can do, and when it is practical to use.

Addressing the primary management and operation concerns of cloudware,
including performance, measurement, monitoring, and security, this
pragmatic book:

• Introduces the enterprise applications integration (EAI) solutions that
were a first step toward enabling an integrated enterprise

• Details service-oriented architecture (SOA) and related technologies
that paved the road for cloudware applications

• Covers delivery models like IaaS, PaaS, and SaaS, and deployment
models like public, private, and hybrid clouds

• Describes Amazon, Google, and Microsoft cloudware solutions and
services, as well as those of several other players

• Demonstrates how cloud computing can reduce costs, achieve
business flexibility, and sharpen strategic focus

Unlike customary discussions of cloud computing, Guide to Cloud
Computing for Business and Technology Managers: From Distributed
Computing to Cloudware Applications emphasizes the key differentiator—
that cloud computing is able to treat enterprise-level services not merely as
discrete stand-alone services, but as Internet-locatable, composable, and
repackageable building blocks for generating dynamic real-world enterprise
business processes.

K22152

w w w . c r c p r e s s . c o m

Information Technology

Guide to
Cloud Computing
for Business and

Technology Managers

G
uid

e to C
loud

 C
om

p
uting

 for
B

usiness and
 Technolog

y M
anag

ers

From Distributed Computing
to Cloudware Applications

Vivek Kale
K

ale

K22152_cover.indd 1 10/21/14 11:33 AM

Guide to
Cloud Computing
for Business and

Technology Managers
From Distributed Computing
to Cloudware Applications

Guide to
Cloud Computing
for Business and

Technology Managers
From Distributed Computing
to Cloudware Applications

Vivek Kale

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20140718

International Standard Book Number-13: 978-1-4822-1923-4 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts
have been made to publish reliable data and information, but the author and publisher cannot assume
responsibility for the validity of all materials or the consequences of their use. The authors and publishers
have attempted to trace the copyright holders of all material reproduced in this publication and apologize to
copyright holders if permission to publish in this form has not been obtained. If any copyright material has
not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmit-
ted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented,
including photocopying, microfilming, and recording, or in any information storage or retrieval system,
without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.
com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC,
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used
only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

To

My wife, Girija,

the keeper of my spirit,

my best friend,

a person of beauty and grace,

and above all,

courage and determination.

vii

Contents

Preface ... xxi
Acknowledgments .. xxix
Author ... xxxi

 1. Increasing Functional Specificity over Increasingly
Commoditized Hardware ...1
1.1 Google’s Vision of Utility Computing ..1

1.1.1 Drivers for Cloud Computing in Enterprises3
1.1.1.1 Business Drivers ...3
1.1.1.2 Technological Drivers ..5

1.2 Modern On-Demand Computing ...7
1.2.1 Grid Computing ...7
1.2.2 Server Virtualization ...9

1.3 Computer Hardware ..9
1.3.1 Types of Computer Systems ... 12

1.4 Parallel Processing .. 15
1.4.1 Multiprogramming .. 16
1.4.2 Vector Processing ... 17
1.4.3 Symmetric Multiprocessing Systems 17
1.4.4 Massively Parallel Processing .. 18

1.5 Enterprise Systems .. 18
1.5.1 Evolution of ES ... 19

1.5.1.1 Materials Requirement Planning (MRP) 19
1.5.1.2 Closed-Loop Materials Requirement Planning21
1.5.1.3 Manufacturing Resource Planning II (MRP II)22
1.5.1.4 Enterprise Resource Planning (ERP)22

1.5.2 Extended Enterprise Systems (EES)23
1.5.2.1 Extended Enterprise Systems (EES)

Framework .. 24
1.5.2.2 Extended Functionality ...25

1.6 Autonomic Computing .. 27
1.7 Summary .. 29

Section I Genesis of Cloudware

 2. Networking and Internetworking ..33
2.1 ARPANET ..34

2.1.1 Ethernet ...36
2.1.2 TCP/IP Protocol..38

viii Contents

2.2 Computer Networks ...40
2.2.1 Network Principles ... 41

2.2.1.1 Protocol .. 41
2.2.1.2 Protocol Layers ...42
2.2.1.3 Protocol Suite ..42
2.2.1.4 Datagram ...43

2.2.2 Types of Network ...43
2.2.2.1 Personal Area Networks ...45
2.2.2.2 Local Area Networks ..45
2.2.2.3 Metropolitan Area Networks46
2.2.2.4 Wide Area Networks ... 47

2.2.3 Network Models ... 47
2.2.3.1 OSI Reference Model ...48
2.2.3.2 TCP/IP Reference Model ... 51

2.3 Internet ...53
2.3.1 Internet Services ...54

2.3.1.1 Electronic Mail (E-Mail) ..54
2.3.1.2 File Transfer Protocol (FTP)55
2.3.1.3 Remote Log-In (Telnet) ..55
2.3.1.4 Voice-Over-IP ...55
2.3.1.5 Listservs ..55
2.3.1.6 Streaming Audio and Video55
2.3.1.7 Instant Messages, Tweets, and Blogs56

2.4 World Wide Web ...56
2.4.1 Origin of the World Wide Web Browser58
2.4.2 Applications of the World Wide Web60

2.5 Semantic Web .. 61
2.6 Internet of Things ... 62
2.7 Summary ..65

 3. Distributed Systems ... 67
3.1 Distributed Applications .. 67

3.1.1 N-Tier Application Architecture...68
3.1.1.1 N-Tier Architecture Advantage 69
3.1.1.2 Limits of the N-Tier Architecture 71

3.1.2 Enterprise Component Architecture72
3.1.3 Enterprise Component Model .. 73
3.1.4 Distributed Application Requirements 73

3.1.4.1 Resource Management .. 74
3.1.4.2 Application Management75
3.1.4.3 Application Deployment ...75

3.2 Component-Based Technologies ...75
3.2.1 Advent of Component-Based Technologies 76

3.2.1.1 Difference between Objects and Components77
3.2.1.2 Case for Distributed Objects and Components79

ixContents

3.2.2 Distributed Computing in the Enterprise 79
3.2.2.1 Component Object Request Broker

Architecture (CORBA) ... 82
3.2.2.2 Microsoft Component Technologies83
3.2.2.3 Java Component Technologies85

3.3 Summary ..88

 4. Enterprise Application Integration (EAI) .. 89
4.1 Enterprise Applications.. 89

4.1.1 Management of Enterprise Applications 91
4.1.1.1 Manageability ... 91
4.1.1.2 Maintainability ... 92
4.1.1.3 Scalability .. 92
4.1.1.4 Interoperability ... 93
4.1.1.5 Security .. 93
4.1.1.6 Reliability .. 94
4.1.1.7 Usability ... 95

4.1.2 Systems Heterogeneity in Enterprises 95
4.2 Integration of Enterprise Applications .. 96

4.2.1 Basics of Integration .. 97
4.2.1.1 Methods of Integration .. 97
4.2.1.2 Modes of Communication..................................... 98
4.2.1.3 Middleware Options ..99

4.2.2 Models of Integration ..99
4.2.2.1 Presentation Integration 100
4.2.2.2 Functional Integration ... 100
4.2.2.3 Data Integration .. 102
4.2.2.4 Business Process Integration 102
4.2.2.5 Business-to-Business Integration 103

4.2.3 Patterns of Integration ... 103
4.2.3.1 Point-to-Point Integration 103
4.2.3.2 Message-Oriented Integration 104
4.2.3.3 Hub–Spoke Integration 104

4.3 Summary .. 105

 5. Integration Technologies .. 107
5.1 Middleware .. 107
5.2 Database Access Technologies .. 110

5.2.1 Microsoft Open Database Connectivity (ODBC) 111
5.2.2 Java Database Connectivity (JDBC)................................... 111

5.3 Asynchronous Middleware ... 112
5.3.1 Store and Forward Messaging ... 112
5.3.2 Publish/Subscribe Messaging.. 112
5.3.3 Point-to-Point Messaging .. 113
5.3.4 Event-Driven Processing Mechanism 113

x Contents

5.4 Synchronous Middleware .. 114
5.4.1 Remote Procedural Call (RPC) ... 114
5.4.2 Remote Method Invocation (RMI) 117

5.5 Messaging-Oriented Middleware (MOM) 117
5.5.1 Integration Brokers .. 119
5.5.2 Java Message Service (JMS) .. 121

5.6 Request/Reply Messaging Middleware .. 122
5.7 Transaction Processing Monitors ... 122
5.8 Object Request Brokers .. 125
5.9 Application Servers ... 127
5.10 Web Services .. 128
5.11 Enterprise Service Bus (ESB) ... 130
5.12 Enterprise Systems .. 131

5.12.1 Replacing a Point-to-Point Integration Architecture
with a Broker .. 131

5.12.2 Enterprise Systems with an Enterprise Model 132
5.13 Summary .. 133

 6. J2EE for Enterprise Integration .. 135
6.1 Choosing an Enterprise Application Integration Platform 135

6.1.1 CORBA... 135
6.1.2 DCOM .. 135
6.1.3 J2EE .. 136
6.1.4 .NET ... 137

6.2 Enterprise Application Integration (EAI) Using J2EE.................. 137
6.2.1 Reference Architecture ... 138

6.2.1.1 User Interaction Architecture 139
6.2.1.2 Service-Based Architecture 139
6.2.1.3 Business Object Architecture 139

6.2.2 Realization of the Reference Architecture in J2EE 140
6.2.2.1 JavaServer Pages and Java Servlets as the

User Interaction Components 141
6.2.2.2 Session Bean EJBs as Service-Based

Components .. 141
6.2.2.3 Entity Bean EJBs as the Business Object

Components .. 141
6.2.2.4 Distributed Java Components 142
6.2.2.5 J2EE Access to the EIS (Enterprise

Information Systems) Tier 142
6.2.3 Model–View–Controller Architecture 142
6.2.4 Overview of J2EE Platform Technologies......................... 143

6.2.4.1 Component Services .. 143
6.2.4.2 Horizontal Services .. 147
6.2.4.3 Communication Services 148

6.3 Summary .. 150

xiContents

Section II Road to Cloudware

 7. Service-Oriented Architecture .. 153
7.1 Defining SOA ... 154

7.1.1 Services .. 155
7.2 SOA Benefits .. 157
7.3 Characteristics of SOA .. 158

7.3.1 Dynamic, Discoverable, Metadata Driven 158
7.3.2 Designed for Multiple Invocation Styles 158
7.3.3 Loosely Coupled .. 158
7.3.4 Well-Defined Service Contracts ... 158
7.3.5 Standard Based .. 159
7.3.6 Granularity of Services and Service Contracts 159
7.3.7 Stateless ... 159
7.3.8 Predictable Service-Level Agreements (SLAs) 160
7.3.9 Design Services with Performance in Mind 160

7.4 SOA Ingredients .. 160
7.4.1 Objects, Services, and Resources 160

7.4.1.1 Objects .. 161
7.4.1.2 Services .. 161
7.4.1.3 Resources ... 162

7.4.2 SOA and Web Services .. 162
7.4.3 SOA and RESTful Web Services .. 164

7.4.3.1 Web Application Description Language
(WADL) .. 166

7.4.3.2 Data Exchange for RESTful Services 167
7.5 SOA Applications .. 168

7.5.1 Rapid Application Integration ... 168
7.5.2 Multichannel Access.. 169
7.5.3 Business Process Management .. 169

7.6 Summary .. 170

 8. Web Services .. 171
8.1 Web Service Standards ... 173
8.2 XML ... 176
8.3 WSDL .. 177
8.4 SOAP and Messaging ... 181
8.5 UDDI ... 183
8.6 Security, Transactions, and Reliability ... 184
8.7 Semantic Web Services ... 185
8.8 Summary .. 186

 9. Enterprise Service Bus (ESB) ... 189
9.1 Defining Enterprise Service Bus (ESB)... 189

9.1.1 Evolution of ESB ... 191

xii Contents

9.2 Elements of an ESB Solution .. 192
9.2.1 Integration Brokers .. 194
9.2.2 Application Servers ... 195
9.2.3 Business Process Management .. 197
9.2.4 ESB Transport-Level Choices ... 198
9.2.5 Connectivity and Translation Infrastructure 199
9.2.6 ESB Scalability ..200

9.3 Event-Driven Nature of ESB .. 201
9.4 Key Capabilities of an ESB ... 202
9.5 Leveraging Legacy Assets ... 206
9.6 Summary .. 209

10. Service Composition .. 211
10.1 Process .. 212
10.2 Workflow .. 213
10.3 Business Process Management (BPM) ... 216
10.4 Business Processes via Web Services ... 217

10.4.1 Service Composition .. 219
10.4.1.1 Orchestration .. 219
10.4.1.2 Choreography ... 219

10.5 Business Process Execution Language (BPEL) 220
10.5.1 Background of WSDL .. 221
10.5.2 BPEL4WS ... 221
10.5.3 BPEL Process Model ..222

10.6 Summary ..227

11. Application Service Providers (ASPs) ..229
11.1 Enterprise Application Service Providers (ASPs) 231
11.2 Fundamentals of ASP ... 232
11.3 ASP Business Model ...233

11.3.1 Service Level Agreements (SLAs)234
11.4 ASP Value Drivers ...234
11.5 ASP Benefits, Risks, and Challenges ..235
11.6 Oracle SAP CRM On Demand .. 237
11.7 Private ASPs ...238

11.7.1 What Does a Private ASP Offer? .. 239
11.8 Summary .. 240

12. Grid Computing .. 241
12.1 Background to Grid Computing ... 241
12.2 Introduction to Grid Computing .. 244

12.2.1 Virtualization ... 246
12.2.2 Cluster ... 247
12.2.3 Web Services ... 247
12.2.4 P2P Network ... 248

xiiiContents

12.3 Comparison with Other Approaches ... 248
12.4 Characteristics of a Grid... 248
12.5 Types of Grids .. 249
12.6 Grid Technologies ... 251
12.7 Grid Computing Standards ...253
12.8 Globus ...254
12.9 Summary ..255

Section III Cloudware

13. Cloudware Basics .. 259
13.1 Cloud Definition .. 260
13.2 Cloud Characteristics ... 260
13.3 Cloud Delivery Models .. 262

13.3.1 Infrastructure as a Service (IaaS) 262
13.3.2 Platform as a Service (PaaS) ... 265
13.3.3 Software as a Service (SaaS) ... 265

13.4 Cloud Deployment Models .. 266
13.4.1 Private Clouds .. 266
13.4.2 Public Clouds .. 266
13.4.3 Hybrid Clouds .. 267
13.4.4 Community Clouds ... 268

13.5 Cloud Benefits .. 268
13.5.1 Flexibility and Resiliency ... 269
13.5.2 Reduced Costs .. 269
13.5.3 Centralized Data Storage .. 272
13.5.4 Reduced Time to Deployment ... 272
13.5.5 Scalability .. 273

13.6 Cloud Challenges .. 274
13.6.1 Scalability .. 274
13.6.2 Multitenancy ... 275
13.6.3 Availability.. 276

13.6.3.1 Failure Detection ..277
13.6.3.2 Application Recovery ... 278

13.7 Summary .. 279

14. Cloudware Economics ... 281
14.1 Drivers for Cloud Computing in Enterprises 281

14.1.1 Total Cost of Ownership (TCO) ...283
14.1.1.1 Payback Method ... 286
14.1.1.2 Accounting Rate of Return on

Investment (ROI) .. 286
14.1.1.3 Net Present Value (NPV) 286
14.1.1.4 Cost–Benefit Ratio .. 287

xiv Contents

14.1.1.5 Profitability Index... 287
14.1.1.6 Internal Rate of Return (IRR).............................. 287
14.1.1.7 Economic Value Added (EVA)288

14.2 Capital Budgeting Models ...288
14.3 Provisioning Configurations ... 289

14.3.1 Traditional Internal IT ... 289
14.3.2 Colocation ... 289
14.3.3 Managed Service .. 289
14.3.4 IaaS Cloud Model ... 290

14.4 Quality of Service (QoS) ... 290
14.4.1 Service-Level Agreement (SLA) ... 297

14.5 Summary .. 298

15. Cloudware Technologies ... 299
15.1 Virtualization... 299

15.1.1 Characteristics of Virtualized Environment 301
15.1.2 Layering and Virtualization ...304
15.1.3 Virtual Machines ...306

15.1.3.1 Virtual Machine Monitor (VMM) 307
15.1.3.2 VMM Solutions ...308

15.2 Types of Virtualization ...309
15.2.1 Operating System Virtualization.......................................309
15.2.2 Platform Virtualization ... 310
15.2.3 Storage Virtualization ... 310
15.2.4 Network Virtualization ... 311

15.3 Service-Oriented Architecture (SOA) .. 311
15.3.1 Operations in the SOA .. 313

15.3.1.1 Publish Operation .. 313
15.3.1.2 Find Operation .. 314
15.3.1.3 Bind Operation ... 314

15.3.2 Roles in SOA ... 315
15.3.2.1 Web Services Provider ... 315
15.3.2.2 Web Services Registry ... 315
15.3.2.3 Web Services Requestor 315

15.3.3 Layers in an SOA.. 316
15.4 Web Services .. 319
15.5 Quality of Service (QoS) ... 321
15.6 Summary .. 322

16. Cloudware Vendor Solutions ... 325
16.1 Infrastructure as a Service (IaaS) Solutions 325

16.1.1 Amazon ... 326
16.1.1.1 Elastic Compute Cloud (EC2) 326
16.1.1.2 Simple Storage Service (S3) 327
16.1.1.3 Elastic Block Store (EBS) 327

xvContents

16.1.1.4 SimpleDB ... 328
16.1.1.5 Simple Queue Service (SQS) 328
16.1.1.6 CloudWatch ...330
16.1.1.7 Auto Scaling ..330
16.1.1.8 Elastic Beanstalk ...330
16.1.1.9 Regions and Availability Zones 331
16.1.1.10 Charges for Amazon Web Services 332

16.2 Platform as a Service (PaaS) Solutions ...333
16.2.1 Amazon Relational Database Service334
16.2.2 Google App Engine (GAE) ...335
16.2.3 Google Cloud Print ..336
16.2.4 Windows Azure ... 337

16.3 Software as a Service (SaaS) Solutions ...340
16.3.1 Google .. 341
16.3.2 Salesforce.com ..342

16.4 Open Source Cloud Solutions ...343
16.4.1 Nimbus ..343
16.4.2 OpenNebula ...344
16.4.3 Eucalyptus ..346
16.4.4 CloudStack ..347
16.4.5 Apache Hadoop..348

16.4.5.1 MapReduce ..349
16.5 Summary ..350

17. Cloudware Application Development .. 351
17.1 Reliability Conundrum .. 351

17.1.1 Functional Programming Paradigm 352
17.1.1.1 Parallel Architectures and Computing

Models ..353
17.1.1.2 Data Parallelism versus Task Parallelism354

17.2 Google MapReduce ... 355
17.2.1 Google File System (GFS) .. 357
17.2.2 Google’s BigTable ... 358

17.3 Hadoop ... 359
17.3.1 Hadoop Distributed File System (HDFS) 362

17.3.1.1 HDFS Architecture...363
17.3.2 HBase ...364

17.3.2.1 HBase Architecture ..365
17.3.3 Hive ..366
17.3.4 Pig ... 367

17.4 Summary .. 369

18. Cloudware Operations and Management ... 371
18.1 Characteristics of Cloud Operations .. 371
18.2 Core Services ... 372

xvi Contents

18.2.1 Discovery and Replication .. 372
18.2.2 Load Balancing ... 372
18.2.3 Resource Management .. 373
18.2.4 Data Governance .. 373

18.2.4.1 Interoperability ... 373
18.2.4.2 Data Migration .. 374

18.2.5 Management Services ... 374
18.2.5.1 Deployment and Configuration 374
18.2.5.2 Monitoring and Reporting 374
18.2.5.3 Service-Level Agreements (SLAs)

Management ... 375
18.2.5.4 Metering and Billing .. 375
18.2.5.5 Authorization and Authentication..................... 376

18.2.6 Fault Tolerance .. 376
18.3 Core Portfolio of Functionality ... 376
18.4 Metrics for Interfacing to Cloud Service Providers380
18.5 Selection Criteria for Service Provider(s) 382
18.6 Service-Level Agreements (SLAs)...383

18.6.1 Quality of Service (QoS) ...385
18.6.2 Pricing Models for Cloud Systems386

18.6.2.1 Cost Types ...386
18.6.2.2 Subscription Types ... 387

18.6.3 Software Licensing .. 390
18.7 Summary .. 391

19. Cloudware Security.. 393
19.1 Governance .. 393

19.1.1 IT Governance .. 394
19.1.2 Security .. 395
19.1.3 Privacy ... 396
19.1.4 Trust ... 397

19.2 Security Risks .. 398
19.3 Dimensions of Security ..400

19.3.1 Identity Management ..400
19.3.2 Network Security ... 401
19.3.3 Data Security ..402
19.3.4 Instance Security ..403
19.3.5 Application Architecture ..405
19.3.6 Patch Management ..405

19.4 Cloud Security Concerns ...406
19.5 Cloud Security Solutions ... 410

19.5.1 Aspects of Cloud Security Solutions 410
19.5.1.1 Operating System Security 410
19.5.1.2 Virtual Machine (VM) Security 411
19.5.1.3 Security Threats from Shared VM Images 412

xviiContents

19.6 Cloudware Security, Governance, Risk, and Compliance 412
19.7 Assessing a Cloud Service Provider ... 415

19.7.1 Requisite Certifications ... 417
19.8 Summary .. 419

20. Migrating to Cloudware .. 421
20.1 Cloud Computing ... 421
20.2 Planning for Migration ..423
20.3 Deployment Model Scenarios ...426

20.3.1 Public Cloud ...427
20.3.2 Private Cloud ..428
20.3.3 Hybrid Cloud ..428

20.4 Cloud Adoption Plan ..429
20.4.1 As-Is (Baseline/Current State) Analysis430

20.4.1.1 Analyzing the Business Context
and Technology Requirements and
Opportunities ...430

20.4.1.2 Analyzing the As-Is Business Architecture430
20.4.1.3 Analyzing the Current IT and IS

Architecture and Systems 431
20.4.2 To-Be (Target/Future State) Analysis 431

20.4.2.1 Data for the Cloud .. 432
20.4.2.2 Applications for the Cloud 432
20.4.2.3 Technology and Infrastructure for

the Cloud...433
20.4.3 Realization ..433

20.4.3.1 Fit–Gap Analysis ..434
20.4.3.2 Change Management ...434
20.4.3.3 Risk Analysis ..435

20.4.4 Go Live ..436
20.5 Summary .. 437

Section IV Cloudware Applications

21. Big Data Computing Applications .. 441
21.1 Big Data .. 441

21.1.1 What Is Big Data? ...442
21.1.1.1 Data Volume ..442
21.1.1.2 Data Velocity ...443
21.1.1.3 Data Variety ..444

21.1.2 Common Characteristics of Big Data Computing
Systems ..444

21.1.3 Big Data Appliances ..447

xviii Contents

21.2 Tools, Techniques, and Technologies of Big Data448
21.2.1 Big Data Architecture ..448
21.2.2 Row versus Column-Oriented Data Layouts450
21.2.3 NoSQL Data Management .. 451
21.2.4 In-Memory Computing ...453
21.2.5 Developing Big Data Applications453

21.3 Additional Details on Big Data Technologies455
21.3.1 Processing Approach ...455
21.3.2 Big Data System Architecture .. 455

21.3.2.1 Brewer’s CAP Theorem and the BASE
Principle ...456

21.3.2.2 BASE (Basically Available, Soft State,
Eventual Consistency) ... 459

21.3.2.3 Functional Decomposition460
21.3.2.4 Master–Slave Replication460

21.3.3 Row Partitioning or Sharding ..460
21.4 NoSQL Databases.. 462

21.4.1 Column-Oriented Stores or Databases 462
21.4.2 Key–Value Stores (K–V Store) or Databases...................... 462
21.4.3 Document-Oriented Databases ..463
21.4.4 Graph Stores or Databases ..465
21.4.5 Comparison of NoSQL Databases465

21.5 Summary ..466

22. Mobile Applications ... 467
22.1 Agile Enterprises ... 467

22.1.1 Stability versus Agility.. 470
22.1.2 Aspects of Agility .. 472
22.1.3 Principles of Built-for-Change Systems 473

22.1.3.1 Reusable ... 473
22.1.3.2 Reconfigurable .. 473
22.1.3.3 Scalable .. 474

22.1.4 Framework for Change Proficiency 474
22.1.5 Enhancing Enterprise Agility .. 475

22.1.5.1 E-Business Strategy .. 475
22.1.5.2 Business Process Reengineering (BPR) 475
22.1.5.3 Mobilizing Enterprise Processes 476

22.1.6 Network Enterprises ...477
22.2 Process-Oriented Enterprise ... 478

22.2.1 Value-Add Driven Enterprise ... 479
22.2.2 Business Process Management (BPM) 481
22.2.3 Business Process Reengineering (BPR) Methodology483

22.3 Mobile-Enabling Business Processes ...484
22.4 Mobile Enterprise ..485

22.4.1 Mobile Business Processes ...486

xixContents

22.4.2 Mobile Enterprise Systems ...486
22.4.3 Redesigning for Mobility .. 487

22.5 Mobile Web Services ...488
22.6 Mobile Field Cloud Services .. 494
22.7 Summary .. 496

23. Context-Aware Applications .. 497
23.1 Decision Patterns as Context ... 499

23.1.1 Concept of Patterns ..500
23.1.1.1 Patterns in Information Technology (IT)

Solutions .. 501
23.1.2 Domain-Specific Decision Patterns 501

23.1.2.1 Financial Decision Patterns 501
23.1.3 CRM Decision Patterns ...505

23.2 Context-Aware Applications ...508
23.3 Context-Aware Mobile Applications .. 510

23.3.1 Ontology-Based Context Model ... 511
23.3.2 Context Support for User Interaction 512

23.4 Location-Based Service (LBS) Applications 513
23.4.1 LBS System Components .. 514
23.4.2 LBS System Challenges ... 516

23.5 Summary .. 520

Appendix: Future of Moore’s Law .. 521
A.1 Cloudware and Moore’s Law .. 523

References ... 525

xxi

Preface

Cloud computing is a major trend in information processing today. It solves
real problems at compelling price levels. Consumers and enterprises alike
are embracing the notion that what they need is computing services, some-
thing that happens, rather than computing devices, something that sits in the
corner. Cloud computing’s flexibility in service delivery makes it an ideal
solution for companies faced with highly variable service demand situations
or an uncertain financial environment.

Companies need IT infrastructures that enable them to operate more
efficiently and accommodate continuous, incremental changes in business
operations. To that end, many companies are already using server virtual-
ization, and some are also using service-oriented architecture (SOA), to bet-
ter leverage their existing IT investments and get additional flexibility and
responsiveness from their existing systems infrastructure. Cloudware ven-
dors are becoming more and more like utilities, offering reliable computing
power and basic applications like e-mail, ERP, CRM, and a growing array of
industry- and domain-specific applications.

Over the coming years, these vendors will develop economies of scale and
expertise that would enable them to offer their services at a much lower cost
than what most companies would spend to deliver those services internally.
Consequently, companies will outsource more and more of their basic IT
operations to manage their costs for basic IT services; this will enable compa-
nies to shift more of their time and attention to doing things with IT resources
that add value to their products and provide meaningful differentiation in
the eyes of their customers—IT will be used to deliver competitive advantage.

Cloud computing is a promising paradigm for delivering IT services as
computing utilities. Cloud computing comes into focus only when you think
about what IT always needs: a way to increase capacity or add capabilities
on the fly without investing in new infrastructure, training new personnel,
or licensing new software. Cloud computing refers to the hardware, systems
software, and applications delivered as services over the Internet. Cloud
computing is an information-processing model in which centrally adminis-
tered computing capabilities are delivered as services, on an as-needed basis
and charged on an as-utilized basis, across the network to a variety of user-
facing devices.

While these clouds are the natural evolution of traditional data centers,
they offer subscription-based access to infrastructure, platforms, and appli-
cations that are popularly referred to as IaaS (Infrastructure as a Service),
PaaS (Platformas a Service), and SaaS (Software as a Service) and employ a
utility pricing model where customers are charged based on their utiliza-
tion of computational resources, storage, and transfer of data. While cloud

xxii Preface

computing has increased interoperability and usability and reduced the cost
of computation, application hosting, and content storage and delivery by sev-
eral orders of magnitude, there is still a significant amount of complexity
involved in ensuring that applications and services can be scaled as needed
to achieve consistent and reliable operation under peak loads.

Abstraction is a critical foundational concept for cloud computing because
it allows us to think of a particular service—an application, a particular
communication protocol, processing cycles within a CPU, or storage capac-
ity on a hard disk—without thinking about the particular piece of hardware
that will provide that service. Ultimately, this explains how migrating to
cloud computing solutions engenders transition from managing technol-
ogy to managing business processes, that is, from a fixed cost to a variable
cost model. It is this variable cost operating model that allows companies to
replace capital expenses with operating expenses, which is critical to any
organization operating in high-change, unpredictable environments.

What Makes This Book Different?

This book interprets the cloud computing phenomenon of the 2000s from
the point of view of business as well as technology. This book unravels the
mystery of cloud computing environments and applications and their power
and potential to transform the operating contexts of business enterprises.
Customary discussions on cloud computing do not address the key differ-
entiator of cloud computing environments, and applications from earlier
enterprise applications like ERPs, CRMs, and SCMs: cloud computing, for
the first time, is able to treat enterprise-level services not merely as discrete
stand-alone services, but as Internet-locatable, composable, and repackage-
able building blocks for generating dynamically real-world (extended) enter-
prise business processes.

Reflecting the reality in the market, on balance, this book is focused more
on the what rather than the how of cloud computing—even though it has
multiple chapters related to the implementation of cloud computing applica-
tions like cloudware operations and management, cloudware security, and
migrating to cloudware.

Here are the characteristic features of this book:

 1. It enables IT managers and business decision-makers to get a clear
understanding of what cloud really means, what it might do for
them, and when it is practical to use cloud. It explains the context
and demonstrates how the whole ecosystem works together to
achieve the main objectives of cost reduction, business flexibility,
and strategic focus.

xxiiiPreface

 2. It gives an introduction to the enterprise applications integration
(EAI) solutions that were a first step toward enabling an integrated
enterprise. It also gives a detailed description of service-oriented
architecture (SOA) and related technology solutions that paved the
road for cloud computing solutions, that is, cloudware applications.

 3. It addresses the key differentiator of cloud computing environ-
ments, namely, that cloud computing, for the first time, is able to
treat enterprise-level services not merely as discrete stand-alone
services, but as Internet-locatable, composable, and repackageable
building blocks for generating dynamically real-world enterprise
business processes.

 4. It provides a very wide treatment of cloud computing that covers
delivery models like IaaS, PaaS, and SaaS, as well as deployment
models like public, private, and hybrid clouds.

 5. It also addresses some of the main concerns regarding the operations
and management of cloud computing environments or cloudware,
including performance, measurement, monitoring, and security.

 6. It is not focused on any particular vendor or service offering. While
there is good description of Amazon’s, Google’s, and Microsoft’s
cloud services, the text introduces solutions from several other play-
ers as well.

In the final analysis, cloud computing is an extension of the network is com-
puter vision, namely, network is service provider. I wanted to write a book pre-
senting cloud computing from this novel perspective; the outcome is the
book that you are reading now. Thank you!

How Is This Book Organized?

This book traces the road to cloud computing, the detailed features and char-
acteristics of cloud computing solutions and environments, and the last part
of the book presents high-potential applications of cloud computing, that is,
cloudware applications.

Right from its inception, the computer industry has been dominated by
an unassailable trend toward increasing functional specificity over increas-
ingly commoditized hardware. Chapter 1 presents an overview of this
trend of progress toward massively parallel processing hardware accom-
panied by a parallel progression toward industry- and domain-specificity
of the applications software. These two inexorable parallel drives have con-
verged, resulting in the emergence of cloud computing environments, or
cloudware.

xxiv Preface

Section I: Genesis of the Cloud

This section introduces the various milestones on the path to developing
EAI solutions for enterprises. Maintaining competitiveness in the face of
changing business environments necessitated changes in the enterprises’
information systems. Evidently, few companies will attempt to replace
their entire information systems. There have been many years of develop-
ment invested into the existing applications, and reimplementing all of this
functionality would require a lot of knowledge, time, and resources. Thus,
replacing existing systems with new solutions will often not be a viable
proposition. Therefore, standard ways to reuse existing systems and inte-
grate them into the global, enterprise-wide information system must be
defined. The resulting integrated information systems will improve the
competitive advantage of the enterprises with a unified and efficient access
to information.

This section starts with Chapter 2 tracing the genesis of the cloud to
the networking and internetworking technologies of the 1980s. Chapter 3
describes the concepts of distributed systems. EAI methods and models are
described in Chapter 4. Middleware and related integration technologies are
described in Chapter 5. Finally, Chapter 6 introduces the game-changing
J2EE environment, the model-view-controller (MVC) architecture and the
corresponding reference architecture for enterprise applications.

Section II: Road to Cloud Computing

Enterprises require much more agility and flexibility than what could be
provided by EAI solutions. IT can fulfill its role as a strategic differen-
tiator only if it can enable enterprises to provide sustainable competitive
advantage—the ability to change business processes in sync with changes
in the business environment and that too at optimum costs! These will
be built on a foundation of SOA that exposes the fundamental business
capabilities as flexible, reusable services. Section II discusses SOA, which
along with the constituting services, is the foundation of modern cloud
computing solutions. The services support a layer of agile and flexible busi-
ness processes that can be easily changed to provide new products and
services to keep ahead of the competition. For a service, responsiveness
trumps both efficiency and effectiveness. And, to realize this, people need
to be able to conceptually describe what they want and not have to worry
about how it is accomplished logically or physically. The most important
value of SOA is that it provides an opportunity for IT and the business to
communicate and interact with each other at a highly efficient and equally

xxvPreface

understandable level; that common, equally understood language is the
language of services.

Chapter 7 presents the basic concepts and characteristics of SOA. The
defining architecture of Web Services is described in Chapter 8. Chapter 9
explains the basic design of an enterprise service bus (ESB), and Chapter
10 introduces the principles of service composition and the related business
process execution language (BPEL). This section wraps up with a description
of two different service delivery models, namely, applications service pro-
viders (ASP) and grid computing in Chapters 11 and 12, respectively.

Section III: Cloudware

Section III presents a detailed discussion on various aspects of a cloud com-
puting solution or cloudware. The approach adopted in this book will be
useful to any professional who must present a case for realizing cloud com-
puting solutions or to those who are involved in cloud computing projects.
It provides a framework that will enable business and technical managers
to make the optimal decisions necessary for successful migration to cloud
computing environments and applications within their organizations.
Chapter 13 introduces the basics of cloud computing, cloud delivery models,
as well as deployment models such as public, private, and hybrid clouds. It
details cloud delivery models such as IaaS, PaaS, and SaaS. IaaS involves ser-
vices from enabling technologies such as virtual machines and virtualized
storage, to sophisticated mechanisms for securely storing data in the cloud
and managing virtual clusters. PaaS deals with the design and operation
of sophisticated autoscaling environments. IaaS is related to the delivery of
cloud-hosted software and applications.

Chapter 14 presents the advantages of cloud computing by detailing the
economics of migrating to cloud computing solutions. Chapter 15 describes
the various technologies employed for the realization of cloud comput-
ing solutions. Chapter 16 details with presently available cloud computing
environments and the services they offer. Chapter 17 describes cloudware
development paradigms and environments including Google MapReduce
and the Hadoop ecosystem. Chapter 18 presents operations and man-
agement issues related to cloud computing that become critical as cloud
computing environments become more complex and interoperable; these
issues include risks, governance, resource management, and Service Level
Agreements (SLAs). Chapter 19 provides an overview of governance, risks,
and compliance issues confronted while availing cloud computing services.
Chapter 20 presents details on how companies can successfully prepare
and transition to cloud environments as well as achieve production readi-
ness once such a transition is completed.

xxvi Preface

Section IV: Cloudware Applications

This section presents an overview of the areas of cloudware applications
significant for the future, namely, big data, mobile (i.e., enterprise mobiliza-
tion), and context-aware applications. Chapter 21 defines and identifies the
common characteristics of big data applications along with corresponding
tools, techniques, and technologies. Enterprise agility and its realization
through mobilization applications are described in Chapter 22. Context-
aware applications can significantly enhance the efficiency and effectiveness
of even routinely occurring transactions. Chapter 23 introduces the concept
of context as constituted by an ensemble of function-specific decision pat-
terns. This chapter discusses location-based services applications as a par-
ticular example of context-aware applications. This chapter highlights the
fact that any end-user application’s effectiveness and performance can be
enhanced by transforming it from a bare transaction to a transaction clothed
by a surrounding context formed as an aggregate of all relevant decision
patterns in the past. The generation of context itself is critically dependent
on employing big data and mobilized applications, which in turn need cloud
computing as a prerequisite.

Who Should Read This Book?

All stakeholders of a cloud computing project should read this book.
All those who are involved in any aspect of a cloud computing project

will profit by using this book as a road map to make a more meaningful
contribution to the success of their cloud computing initiative and the actual
migration project(s).

The following is a list of recommended tracks of chapters that should be
read by different categories of stakeholders:

• Executives and business managers should read Chapters 1 and 13
through 23.

• Operational managers should read Chapters 1, 4, and 11 through 23.
• Project managers and module leaders should read Chapters 1

through 4 and 11 through 23.
• Technical managers should read Chapters 1 through 23.
• Professionals interested in cloud computing should read Chapters 1

through 4, 11 through 16, and 18 through 23.
• Students of computer courses should read Chapters 1 through 13, 15,

17, and 21 through 23.

xxviiPreface

• Students of management courses should read Chapters 1, 4, 11
through 16, and 18 through 23.

• General readers interested in SOA and cloud computing
phenomena should read Chapters 1, 2, 4, 11 through 14, 16, 18, and
20 through 23.

xxix

Acknowledgments

I would like to thank all those who have helped me with their clarifications,
criticisms, and valuable information during the writing of this book, were
patient enough to read the entire or parts of the manuscript, and made many
valuable suggestions. They include Nitin Kadam, Mandar Barve and Shirish
Panse.

I would like to thank my friend Nilesh Acharya, who has been the pillar of
support for my various book projects in the last few years.

I would like to thank my editor, Aastha Sharma, for realizing this proj-
ect and for her unfailing support in bringing this book project to comple-
tion. I would also like to thank the extended publishing team consisting of
Richard Tressider, Marsha Pronin, S. Vinithan, A. Arunkumar, and a host of
other people who were involved with the production of this book.

Most of all, I would like to thank my wife, Girija, and our beloved daugh-
ters, Tanaya and Atmaja, for all their love and support. Without them, I would
not be where I am now in my life today.

Vivek Kale
Mumbai, India

xxxi

Author

Vivek Kale has more than two decades of professional IT experi-
ence during which he has handled and consulted on various aspects
of enterprise-wide information modeling, enterprise architectures,
business process redesign, and, e-business architectures. He has been
CIO of Essar Group, the steel/oil and gas major of India, as well as,
Raymond Ltd., the textile and apparel major of India. He is a seasoned
practitioner in transforming the business of IT, facilitating business
agility and enabling the Process Oriented Enterprise. He is the author
of Implementing SAP R/3: The Guide for Business and Technology Managers,
Sams (2000), A Guide to Implementing the Oracle Siebel CRM 8.x, McGraw-
Hill, India (2009), and Implementing SAP CRM: The Guide for Business
and Technology Managers, Chapman & Hall (2014).

1

1
Increasing Functional Specificity over
Increasingly Commoditized Hardware

A move toward clouds represents a fundamental change in how we handle
information. It is almost the computing equivalent of the evolution in elec-
tricity supply from a hundred years ago, when farms and businesses closed
down their own power generators and bought power instead from efficient
industrial utilities. Until the end of the nineteenth century, businesses had
to run their own power-generating facilities, producing all the energy to
run their machinery. As industrial technology advanced, generators grew
more sophisticated but were still located at the site of a business and main-
tained by its employees. Power generation was assumed to be an intrinsic
part of running a business (much as data processing is now). The invention
of the alternating-current electric grid at the turn of the century overturned
that assumption. Supplying electricity to many users from central stations
achieved huge economies of scale, and the price of electricity fell rapidly.
The transformation in the supply of computing promises to be as dramatic
as that in electricity supply (Figure 1.1).

1.1 Google’s Vision of Utility Computing

The electricity utility comparison model fits neatly with Google’s grand
vision, established a decade ago, to organize the world’s information and make
it universally accessible. While its software and search strategy has already
undermined Microsoft’s dominance, Google has further plans to reshape the
sector based on its search strengths. Google does not just use its comput-
ing grid to process Web searches but also to supply services such as word
processing, spreadsheet, and e-mail programs—applications that have long
been the mainstays of Microsoft’s profitability. By supplying business com-
puting as a set of simple services, Google (and other utility providers like
Salesforce.com and Amazon Web Services) threatens to render large parts
of the IT industry obsolete. Google operates a globe-spanning network of
computers that answer search queries instantly by processing mountains

2 Guide to Cloud Computing for Business and Technology Managers

of data—whirring away in large, dark, refrigerated data centers. People at
Google call this network the cloud.

One challenge of programming at Google is to leverage the cloud—to
push it to do things that would overwhelm other machines and networks.
For example, a partnership with IBM aims to plug universities around the
world into Google-like computing clouds. Google engineers teach the cloud
new tricks as it grows in size and sophistication—in 2007, they added four
new data centers, at an average cost of $600 million a piece. Importantly,
in building this cloud, Google is poised to take a new role in the computer
industry. Google’s cloud is a network of hundreds of thousands—by some
estimates 1 million—of cheap servers, each storing huge amounts of data, to
make searches faster. Unlike its predecessor, the supercomputer, Google’s
system never ages—as individual computers die, they are replaced individu-
ally with newer, faster boxes. This means the cloud regenerates as it grows,
almost like a living thing.

As the concept of computing clouds spreads, it expands Google’s footprint
way beyond search, media, and advertising, and Google could become, in
effect, the world’s primary computer. No corporate computing system can
match the efficiency, speed, and flexibility of resources of Google’s cloud. It is
estimated that Google can carry out a computing task for one-tenth of what it
costs a typical company. Big data centers linked to form a cloud encapsulate
the full disruptive potential of utility computing. If people and businesses
can rely on central stations to fulfill all (or most) of their computing needs,
they will be able to drastically reduce their expenditure on their own hard-
ware and software—revenue that currently goes to Microsoft and the other
tech giants.

Similarly, Amazon has opened up its own networks of computers to pay-
ing customers, initiating new users to cloud computing. Significantly, as the
volumes of data from business and scientific research expand, computing

Utility computing

XaaS customerXaaS customer

CasS, IaaS, SaaS, PaaS, MaaS

Cluster computing

Super computing

Grid computing

FIGURE 1.1
Evolution of computing services.

3Increasing Functional Specificity over Increasingly Commoditized Hardware

power is turning into a strategic resource or a form of capital. For clouds
to reach their potential, they need to be as easy to program and navigate
as the Web. This suggests growing markets for cloud search and software
tools—a natural business for Google and competitors like Amazon.com. As
this strategy unfolds, people are starting to see Google as poised to become
the dominant force in the next stage of computing. Companies and research
organizations may eventually hand over most of their high-level computing
tasks to a world-spanning network of computers forming a cloud. It is likely
that all sorts of new business models will emerge.

The pioneers in a position to dominate this field are as follows:

 1. Google—The only search company built from scratch around hard-
ware, investing more than $2 billion a year in data centers, and the
leader in cloud computing; Salesforce.com is partnering with Google
in a joint venture—Google’s cloud is best at sifting through data, but
Salesforce.com has strengths in running business applications like
accounting packages and lets companies write their own programs
to run on its servers.

 2. Yahoo!—Smaller and poorer than Google, with software not perfectly
suited to cloud computing, but as the leading patron of Hadoop
(a free software framework that supports distributed applications
running on large clusters of commodity computers processing huge
amounts of data), it could end up with a lead.

 3. IBM—Dominant in business computing and traditional supercom-
puters, IBM is teaming up with Google to get a foothold in clouds.
IBM is launching a pilot cloud system for the government of Vietnam
and has built a showcase cloud center in Ireland.

 4. Microsoft—Still currently dominated by its proprietary software,
Microsoft is strong on the fundamentals of cloud science and is
building massive data centers in Illinois and Siberia.

 5. Amazon—The first to sell cloud computing as a service (Amazon
Web Services); while smaller than rivals, its expertise in this area
could provide a boost for the retailer in the next generation of Web
Services from retail to media.

1.1.1 Drivers for Cloud Computing in Enterprises

1.1.1.1 Business Drivers

At present, companies have to survive and develop competitive advantage
in a dynamic and turbulent environment of global competition and rapid
business change. Companies are under constant pressure to simultane-
ously grow revenue and market share while reducing costs. To meet these
requirements, companies have been changing, and three major trends can

4 Guide to Cloud Computing for Business and Technology Managers

be observed that have impact on company requirements upon Information
Technology (IT) support:

 1. Striving toward high agility
 2. Globalization of activities to be able to take advantage of opportuni-

ties provided by a global economy
 3. Increased mobility

In dynamic business environments, agility is considered the key success
factor for companies. Only companies with high agility can be successful
in today’s rapidly changing business environments. In literature, there are
various definitions for the term agility: from general ones, for example, “the
ability of firms to sense environmental change and respond readily,” to more
specific ones, for example, “…an innovative response to an unpredictable
change.” Business agility is the ability to sense highly uncertain external
and internal changes and respond to them reactively or proactively, based
on innovation of the internal operational processes, involving the customers
in exploration and exploitation activities while leveraging the capabilities
of partners in the business network. Business agility is therefore the ability
to swiftly and easily change businesses and business processes beyond the
normal level of flexibility to effectively manage unpredictable external and
internal changes (see Section 22.1, “Agile Enterprises”).

One basic obstacle for achieving agility is the prevailing IT infrastructure
of enterprises. Despite efforts to increase flexibility of corporate IT, most pre-
vailing corporate IT still involves hardwired processes and applications that
cannot be changed quickly and easily. This results in long lead times before
the IT infrastructure can follow and support new business process and prod-
uct concepts. Thus, an agile company is only possible with an agile IT infra-
structure that can quickly and efficiently be adjusted to new business ideas.
Enterprises would like to have an IT infrastructure that can realign itself
expeditiously to new business priorities. They require rapid and predictable
turnaround times for provisioning computing power, storage, information,
and application flows. Virtualization of resources (computers and data) and
their flexible integration and combination to support changing business con-
cepts has the potential to increase IT and business agility in companies (see
Section 15.2, “Types of Virtualization”).

Another development trend affecting the requirements upon the IT
infrastructure in companies is the increasing globalization of companies.
Companies are increasingly acting as global companies with activities
spread over many locations worldwide. The globalization of companies
resulted in globalization of their IT. To support the activities of remote com-
pany parts, IT resources and data as well as data centers are also scattered
worldwide. Despite the global spread of activities, companies strive to use
the competitive advantage of the involved regions in a synergetic way and
to create a Global One Company. Thus, there is a growing need for IT support

5Increasing Functional Specificity over Increasingly Commoditized Hardware

of global processes in an integrated and follow-the-sun principle (e.g., global
supply chains) by relying on and integrating globally scattered IT resources.
Virtualization and virtual centralization of available resources in cloud com-
puting could provide the necessary integration of resources by keeping at
the same time their physical distribution.

The third trend in companies that has impact on requirements upon their
IT infrastructure is increasing mobility of employees and resources. Due to
globalization, an increasing number of employees are mobile and require
mobile support. At the same time, with the maturity of ubiquitous comput-
ing and the Internet of Things, an increasing number of external devices
are expected to be involved as sensors in the IT infrastructure of companies
(see Section 2.6 “Internet of Things”). Mobile computing resources and data
as well as data sources as sensors need to be supported remotely in an effi-
cient manner and at the same time need to be integrated into the existing
infrastructure in a flexible way.

In order to support agility, flexible infrastructure is required that can be
fast adapted to new processes. Virtualization and abstraction of the physical
location of resources, support for services and their flexible bundling, as well
as higher scalability and flexibility through inclusion of external resources
based on Cloud Computing have the potential to provide an IT infrastruc-
ture that addresses the demands of business while utilizing the IT resources
most efficiently and cost-effectively.

1.1.1.2 Technological Drivers

IT in companies has been constantly changing its shape in the last decades.
This is driven by the changes in the way how companies conduct business
described in the earlier section and by technological developments and inno-
vation. At the beginning, there were centralized data centers with main-
frames. More than a decade ago, a shift from large centralized mainframe
computers toward more distributed systems started to transform corporate
IT. First, PCs were added to support each single user in addition to main-
frames that increasingly became distributed. Recently, mobile end devices
have been added to support and enable greater mobility of employees.
Initially, computing power and storage of mobile devices were limited, and
mobile devices were mainly used for voice communication. Today, they have
caught up and increasingly compete with PCs. A new trend is ubiquitous
computing and the enhancement of the environment as well as products
with sensors.

Overall, there is a trend toward distribution and decentralization of IT
resources that at the same time is confronted with the need for consolidated
and efficient use of IT resources. This results in several problems:

• Ever-increasing demand for storage and computing power at each
data center

6 Guide to Cloud Computing for Business and Technology Managers

• Many and scattered data centers with underutilization of their
resources

• Increasing maintenance costs of data centers

Business changes like globalization and mobility resulted in an increasing
number of distributed data centers. At present, prevailing practice is to opti-
mize each data center mostly independent of other data centers. This means
that each data center is designed to accommodate high peak demand for
computation power and data. As a result, there is an ever-increasing demand
for storage and computing power. For example, the volume of digital content
is constantly increasing. In 2007, the amount of information created exceeded
available storage capacity for the first time ever. This implies technological
challenges as well as challenges with regard to information governance for
businesses.

The increasing number of data centers resulted in a disproportionate
increase in their maintenance costs, in particular with respect to power
and cooling costs. Energy efficiency of IT is a concern that becomes increas-
ingly important. The continuously increasing amount of digital information
requires increasing computing power, bigger storage capacities, and more
powerful network infrastructure to transmit information. This ultimately
results in increasing carbon footprint of IT. By 2020, ICTs are estimated to
become among the biggest greenhouse gas emitters, accounting for around
3% of all emissions. Growth in the number and size of data centers is esti-
mated to be the fastest increasing contributor to greenhouse emissions.

Cloud computing has been among the first attempts to manage the high
number of computing nodes in distributed data centers and to achieve better
utilization of distributed and heterogeneous computing resources in com-
panies. Advances in virtualization technology enable greater decoupling
between physical computing resources and software applications and prom-
ise higher industry adoption of distributed computing concepts such as the
Cloud. The continuous increase of maintenance costs and demand for addi-
tional resources as well as for scalability and flexibility of resources is lead-
ing many companies to consider outsourcing their data centers to external
providers. Cloud computing has emerged as one of the enabling technolo-
gies that allow such external hosting efficiently.

It is important to consider that Cloud Computing is not only changing
the IT infrastructure in a company but has the potential to provide sig-
nificant business value. As mentioned earlier, increased agility, that is, an
enterprise’s increased ability to respond and adjust quickly and efficiently
to external market stimuli, is considered a key success factor for compa-
nies today. Existing IT infrastructure is considered to be a major obstacle
to a company’s agility. Prevailing IT infrastructure reflects the inflexible
built-to-order structure: thousands of application silos, each with its own
custom-configured hardware, and diverse and often incompatible assets
that greatly limit a company’s flexibility and thus reduce time to market;

7Increasing Functional Specificity over Increasingly Commoditized Hardware

what is therefore needed is an architecture that, in a similar way as the elec-
tricity grid, decouples the means of supporting the day-to-day operations of
users from the underlying functional infrastructure that underpins them.
This would also allow the business to reconfigure its operational strategy
without necessarily amending its underlying IT systems. With the function-
ality described earlier, Cloud Computing has the potential to provide the
decoupling layer in companies. In conclusion, the biggest benefit of cloud
computing is the increased potential for companies to achieve new levels
of innovation capabilities that can differentiate their business from com-
petitors. Cloud Computing enables implementing of new business processes
and applications that companies would not be able to implement by using
conventional information technology. Cloud computing provides a virtual,
resilient, responsive, flexible, and cost-effective infrastructure that fosters
innovation and collaboration.

1.2 Modern On-Demand Computing

On-demand computing is an increasingly popular enterprise model in which
computing resources are made available to the user as needed. Computing
resources that are maintained on a user’s site are becoming fewer and
fewer, while those made available by a service provider are on the rise. The
on-demand model evolved to overcome the challenge of being able to meet
fluctuating resource demands efficiently. Because demand for computing
resources can vary drastically from one time to another, maintaining suf-
ficient resources to meet peak requirements can be costly. Over-engineering
a solution can be just as adverse as a situation where the enterprise cuts costs
by maintaining only minimal computing resources, resulting in insufficient
resources to meet peak load requirements. Concepts such as clustered com-
puting, grid computing, and parallel computing may all seem very similar
to the concept of on-demand computing, but they can be better understood
if one thinks of them as building blocks that evolved over time and with
techno-evolution to achieve the modern cloud computing model we think
of and use today.

1.2.1 Grid Computing

In the late 1980s, computers were clustered together to form a single larger
computer in order to simulate a supercomputer and harness greater process-
ing power. This technique was common and was used by many IT depart-
ments. Clustering, as it was called, allowed one to configure computers using
special protocols so they could talk to each other. The purpose was to balance
the computational load across several machines, divvying up units of work

8 Guide to Cloud Computing for Business and Technology Managers

and spreading it across multiple processors. To the user, it made little dif-
ference which CPU executed an application. Cluster management software
ensured that the CPU with the most available processing capability at that
time was used to run the code. A key to efficient cluster management was
engineering where the data were to be held. This process became known as
data residency. Computers in the cluster were usually physically connected
to magnetic disks that stored and retrieved data while the CPUs performed
input/output (I/O) processes quickly and efficiently.

In the early 1990s, Ian Foster and Carl Kesselman presented their concept
of The Grid. They used an analogy to the electricity grid, where users could
plug in and use a (metered) utility service. They reasoned that if companies
cannot generate their own power, it would be reasonable to assume they
would purchase that service from a third party capable of providing a steady
electricity supply. The same should apply to computing resources: if one
node could plug itself into a grid of computers and pay only for the resources
it used, it would be a more cost-effective solution for companies than buy-
ing and managing their own infrastructure. Grid computing expands on the
techniques used in clustered computing models, where multiple indepen-
dent clusters appear to act like a grid simply because they are not all located
within the same domain. A major obstacle to overcome in the migration
from a clustering model to grid computing was data residency. Because of
the distributed nature of a grid, computational nodes could be anywhere in
the world.

The issues of storage management, migration of data, and security pro-
visioning were key to any proposed solution in order for a grid model to
succeed. A toolkit called Globus was created to solve these issues, but the
infrastructure hardware available still has not progressed to a level where
true grid computing can be wholly achieved. The Globus Toolkit is an open-
source software toolkit used for building grid systems and applications. It
is being developed and maintained by the Globus Alliance and many oth-
ers all over the world. The Globus Alliance has grown into a community
of organizations and individuals developing fundamental technologies to
support the grid model. The toolkit provided by Globus allows people to
share computing power, databases (DBs), instruments, and other online tools
securely across corporate, institutional, and geographic boundaries without
sacrificing local autonomy.

In 2002, EMC offered a Content-Addressable Storage (CAS) solution called
Centera as yet another cloud-based data storage service that competes with
Amazon’s offering. EMC’s product creates a global network of data centers,
each with massive storage capabilities. When a user creates a document,
the application server sends it to the Centera storage system. The storage
system then returns a unique content address to the server. The unique
address allows the system to verify the integrity of the documents whenever
a user moves or copies them. From that point, the application can request

9Increasing Functional Specificity over Increasingly Commoditized Hardware

the document by submitting the address. Duplicates of documents are saved
only once under the same address, leading to reduced storage requirements.
Centera then retrieves the document regardless of where it may be physi-
cally located. EMC’s Centera product takes the sensible approach that no one
can afford the risk of placing all of their data in one place, so the data are
distributed around the globe. Their cloud will monitor data usage and auto-
matically move data around in order to load-balance data requests and better
manage the flow of Internet traffic. Centera is constantly self-tuning to react
automatically to surges in demand. The Centera architecture functions as a
cluster that automatically configures itself upon installation. The system also
handles failover, load balancing, and failure notification.

1.2.2 Server Virtualization

Virtualization is a method of running multiple independent virtual operating
systems on a single physical computer. This approach maximizes the return
on investment for the computer. The term was coined in the 1960s in refer-
ence to a virtual machine (sometimes called a pseudo-machine). The creation
and management of virtual machines has often been called platform virtual-
ization. Platform virtualization is performed on a given computer (hardware
platform) by software called a control program. The control program creates
a simulated environment, a virtual computer, which enables the device to
use hosted software specific to the virtual environment, sometimes called
guest software.

The guest software, which is often itself a complete operating system,
runs just as if it were installed on a stand-alone computer. Frequently,
more than one virtual machine is able to be simulated on a single physical
computer, their number being limited only by the host device’s physical
hardware resources. Because the guest software often requires access to
specific peripheral devices in order to function, the virtualized platform
must support guest interfaces to those devices. Examples of such devices
are the hard disk drive, CD-ROM, DVD, and network interface card.
Virtualization technology is a way of reducing the majority of hardware
acquisition and maintenance costs, which can result in significant savings
for any company.

1.3 Computer Hardware

The mechanical loom invented by a Frenchman named Joseph Jacquard
was an invention that made a profound impact on the history of indus-
trialization, as well as in the history of computing. With the use of cards

10 Guide to Cloud Computing for Business and Technology Managers

punched with holes, it was possible for the Jacquard loom to weave fab-
rics in a variety of patterns. Jacquard’s loom was controlled by a program
encoded into the punched cards. The operator created the program once
and was able to duplicate it many times with consistency and accuracy.
Herman Hollerith eventually adapted Jacquard’s concept of the punched
card to record census data in the late 1880s. Hollerith’s machine was highly
successful; it cut the time it took to tabulate the result of the census by two-
thirds, and it made money for the company that manufactured it. In 1911,
this company merged with its competitor to form International Business
Machines (IBM).

First Generation: Vacuum Tube Technology, 1946–1956

The first generation of computers relied on vacuum tubes to store and pro-
cess information. These tubes consumed huge amount of power, were short-
lived, and generated a great deal of heat. First-generation computers were
colossal in size, had extremely limited memory and processing capability,
and their usage was restricted to limited areas in science and engineering.
The maximum main memory size was approximately 5000 bytes (5 kilo-
bytes), with a processing speed of 10 kilo instructions per second. This gen-
eration employed rotating magnetic drums for internal storage and punched
cards for external storage. Jobs such as running programs or printing reports
had to be coordinated manually.

Second Generation: Transistors, 1957–1963

In the second generation, the vacuum tubes were replaced by transistors
for storing and processing information. Transistors were much more stable
and reliable than vacuum tubes; they generated less heat and consumed less
power. However, each transistor had to be custom made and wired into a
printed circuit board—a slow and tedious process. Magnetic core memory
was the primary storage technology of this period. It was composed of small
magnetic doughnuts with 1 mm diameter, which could be polarized in either
of two possible directions to represent a bit (binary digit) of data. This whole
system had to be assembled by hand and, hence, was time consuming and
very expensive. Second-generation computers had a random access memory
(RAM) of up to 32 kilobytes and processing speeds of about 200 kilo instruc-
tions per sec to 300 kilo instructions per second. The enhanced processing
power and memory of the second-generation computers enabled them to be
used most widely not only for scientific and engineering work, but also for
business work (like payroll and billing).

Third Generation: Integrated Circuits, 1964–1979

Third-generation computers relied on integrated circuits, which were made
by printing hundreds and later thousands of tiny transistors on small silicon

11Increasing Functional Specificity over Increasingly Commoditized Hardware

chips. These devices came to be called semiconductors. Computer memories
expanded to 2 megabytes of RAM memory, and processing speeds acceler-
ated to 5 million instructions per second (MIPS). The third-generation com-
puters introduced software that could be used by people without extensive
technical training, making it possible for a much larger section of people to
use them in their respective areas in business.

Fourth Generation: Very-Large-Scale Integrated Circuits, 1980–1990

Fourth-generation computers relied on very large-scale integrated circuits
(VLSIC), which were packed with hundreds of thousands, and later millions,
of circuits per chip. These devices came to be called microprocessors. Computer
memory sizes ballooned to over 2 gigabytes (GB) or more, while processing
speeds exceeded 200 MIPS or more. Correspondingly, costs fell precipitously
making possible inexpensive desktop computers that were widely used in
business and everyday life. The fourth generation of computers was charac-
terized by further miniaturization of circuits, increased multiprogramming,
and virtual storage memory.

VLSIC technology has fuelled a growing movement toward
microminiaturization, entailing the proliferation of computers
so small, fast, and cheap that they have become ubiquitous and
almost invisible. For example, many of the intelligent features

that have made automobiles, stereos, toys, watches, cameras, mobiles,
and other equipment easier to use are enabled by microprocessors.

Fifth Generation: Non–von Neumann Architectures, 1990–Present

Fifth-generation computers are based on non-von Neumann architectures
entailing massively parallel processing for handling multimedia data (voice,
graphics, images, and so on). Processing speeds exceed 500 MIPS or more.
Conventional computers are based on the von Neumann architecture, which
processes information serially, one instruction at a time. Massively parallel
computers have a huge network of processor chips interwoven in a com-
plex and flexible manner. As opposed to parallel processing, where a small
number of powerful but expensive specialized chips are linked together,
massively parallel processing (MPP) machines chain hundreds or even thou-
sands of inexpensive, commonly used chips to attack large computing prob-
lems, attaining supercomputer speeds. MPP have cost and speed advantages
over conventional computers because they can take advantage of off-the-
shelf chips to accomplish processing at one-tenth to one-twentieth the cost of
conventional supercomputers.

12 Guide to Cloud Computing for Business and Technology Managers

The Mauchly–Eckert–von Neumann concept of the stored pro-
gram computer used the basic technical idea that a binary num-
ber system could be directly mapped to the two physical states
of a flip-flop electronic circuit. In this circuit, the logical concept

of the binary unit “1” could be interpreted as the on (or conducting
state) and the binary unit “0” could be interpreted as the off (or not
conducting state) of the electric circuit. In this way, the functional con-
cept of numbers (written on the binary base) could be directly mapped
into the physical states (physical morphology) of a set of electronic flip-
flop circuits. The number of these circuits together would express how
large a number could be represented. This is what is meant by word
length in the digital computer. Binary numbers must not only encode
data but also the instructions that perform the computational opera-
tions on the data. One of the points of progress in computer technology
has been how long a word length could be built into a computer.

The design of the early computer used a hierarchy of logical opera-
tions. The lowest level of logic was the mapping of a set of bistable
flip-flop circuits to a binary number system. A next step-up had circuits
mapped to a Boolean logic (AND, OR, NOT circuits). A next step-up
had these Boolean logic circuits connected together for arithmetic oper-
ations (such as add and subtract, multiply and divide). Computational
instructions were then encoded as sequences of Boolean logic opera-
tions and/or arithmetic operations. Finally, at the highest logic level, von
Neumann’s stored program concept was expressed as a clocked cycle
of fetching and performing computational instructions on data. This
is now known as a von Neumann computer architecture—sequential
instruction operated as a calculation cycle, timed to an internal clock.

The modern computer has four hierarchical levels of schematic logics
mapped to physical morphologies (forms and processes) of transistor
circuits:

 1. Binary numbers mapped to bistable electronic circuits
 2. Boolean logic operations mapped to electronic circuits of

bistable circuits
 3. Mathematical basic operations mapped (through Boolean con-

structions) to electronic circuits
 4. Program instructions mapped sequentially into temporary

electronic circuits (of Boolean and/or arithmetic instructions)

1.3.1 Types of Computer Systems

Today’s computer systems come in a variety of sizes, shapes, and comput-
ing capabilities. The Apollo 11 spacecraft that enabled landing men on the
moon and returning them safely to earth was equipped with a computer

13Increasing Functional Specificity over Increasingly Commoditized Hardware

that assisted them in everything from navigation to systems monitoring, and
it had a 2.048 MHz CPU built by MIT. Today’s standards can be measured
in the 4 GHz in many home PCs (megahertz [MHz] is 1 million comput-
ing cycles per second and gigahertz [GHz] is 1 billion computing cycles per
second). Further, the Apollo 11 computer weighed 70 pounds versus today’s
powerful laptops weighing as little as 1 pound—we have come a long way.
Rapid hardware and software developments and changing end user needs
continue to drive the emergence of new models of computers, from the
smallest handheld personal digital assistant/cell phone combinations to the
largest multiple-CPU mainframes for enterprises. Categories such as micro-
computer, midrange, mainframe, and supercomputer systems are still used to
help us express the relative processing power and number of end users that
can be supported by different types of computers. These are not precise clas-
sifications, and they do overlap each other.

Microcomputers

Microcomputers are the most important category of computer systems for
both business and household consumers. Although usually called a personal
computer, or PC, a microcomputer is much more than a small computer for
use by an individual as a communication device. The computing power of
microcomputers now exceeds that of the mainframes of previous computer
generations, at a fraction of their cost. Thus, they have become powerful net-
worked professional workstations for business professionals.

Midrange Computers

Midrange computers are primarily high-end network servers and other
types of servers that can handle the large-scale processing of many busi-
ness applications. Although not as powerful as mainframe computers, they
are less costly to buy, operate, and maintain than mainframe systems and
thus meet the computing needs of many organizations. Midrange systems
first became popular as minicomputers in scientific research, instrumenta-
tion systems, engineering analysis, and industrial process monitoring and
control. Minicomputers were able to easily handle such functions because
these applications are narrow in scope and do not demand the processing
versatility of mainframe systems. Today, midrange systems include servers
used in industrial process-control and manufacturing plants and play major
roles in computer-aided manufacturing (CAM). They can also take the form
of powerful technical workstations for computer-aided design (CAD) and
other computation and graphics-intensive applications. Midrange systems
are also used as front-end servers to assist mainframe computers in telecom-
munications processing and network management.

Midrange systems have become popular as powerful network servers (com-
puters used to coordinate communications and manage resource sharing in
network settings) to help manage large Internet websites, corporate intranets

14 Guide to Cloud Computing for Business and Technology Managers

and extranets, and other networks. Internet functions and other applications
are popular high-end server applications, as are integrated enterprise-wide
manufacturing, distribution, and financial applications. Other applications,
like data warehouse management, data mining, and online analytical pro-
cessing are contributing to the demand for high-end server systems.

Mainframe Computers

Mainframe computers are large, fast, and powerful computer systems; they
can process thousands of million instructions per second (MIPS). They can also
have large primary storage capacities with main memory capacity ranging
from hundreds of gigabytes to many terabytes. Mainframes have downsized
drastically in the last few years, dramatically reducing their air-conditioning
needs, electrical power consumption, and floor space requirements—and
thus their acquisition, operating, and ownership costs. Most of these improve-
ments are the result of a move from the cumbersome water-cooled main-
frames to a newer air-cooled technology for mainframe systems.

Mainframe computers continue to handle the information processing
needs of major corporations and government agencies with high transac-
tion processing volumes or complex computational problems. For example,
major international banks, airlines, oil companies, and other large corpora-
tions process millions of sales transactions and customer inquiries every
day with the help of large mainframe systems. Mainframes are still used for
computation-intensive applications, such as analyzing seismic data from oil
field explorations or simulating flight conditions in designing aircraft.

Mainframes are also widely used as superservers for the large client/server
networks and high-volume Internet websites of large companies. Mainframes
are becoming a popular business computing platform for data mining and
warehousing, as well as electronic commerce applications.

Supercomputers

Supercomputers are a category of extremely powerful computer systems spe-
cifically designed for scientific, engineering, and business applications requir-
ing extremely high speeds for massive numeric computations. Supercomputers
use parallel processing architectures of interconnected microprocessors (which
can execute many parallel instructions). They can easily perform arithme-
tic calculations at speeds of billions of floating-point operations per second
(gigaflops)—a floating point operation is a basic computer arithmetic operation,
such as addition, on numbers that include a decimal point. Supercomputers
that can calculate in trillions of floating-point operations per second (tera-
flops), which use massive parallel processing (MPP) designs of thousands of
microprocessors, are now in use (see Section 1.4.4 below).

The market for supercomputers includes government research agencies,
large universities, and major corporations. They use supercomputers for
applications such as global weather forecasting, military defence systems,

15Increasing Functional Specificity over Increasingly Commoditized Hardware

computational cosmology and astronomy, microprocessor research and
design, and large-scale data mining.

Experts continue to predict the merging or disappearance of
several computer categories. They think, for example, that many
midrange and mainframe systems have been made obsolete by
the power and versatility of networks composed of microcom-

puters and servers. Other industry experts have predicted that the
emergence of network computers and information appliances for applica-
tions on the Internet and corporate intranets will replace many per-
sonal computers, especially in large organizations and in the home
computer market.

Interconnecting microprocessors to create minisupercomputers is a reality.
The next wave was looking at harnessing the virtually infinite amount of
unused computing power that exists in the myriad of desktops and laptops
within the boundaries or outside of a modern organization. Distributed or
grid or cloud computing in general is a special type of parallel computing that
relies on complete or virtual computers (with onboard CPU, storage, power
supply, network interface, and so forth) connected to a network (private, pub-
lic, or the Internet) by a conventional or virtual network interface. This is
in contrast to the traditional notion of a supercomputer, which has many
processors connected together in a single machine. While the grid could be
formed by harnessing the unused CPU power in all of the desktops and lap-
tops in a single division of a company (or in the entire company, for that
matter), the cloud could be formed by harnessing CPU, storage, and other
resources in a company or external service providers. Chapter 12 discusses
Grid Computing, while Section III, Chapters 13 to 20, discusses the nature
and characteristics of Cloud Computing.

The primary advantage of distributed computing is that each node can be
purchased as commodity hardware; when combined, it can produce com-
puting resources similar to a multiprocessor supercomputer, but at a signifi-
cantly lower cost. This is due to the economies of scale of producing desktops
and laptops, compared with the lower efficiency of designing and construct-
ing a small number of custom supercomputers.

1.4 Parallel Processing

Parallel processing is performed by the simultaneous execution of pro-
gram instructions that have been allocated across multiple processors with

16 Guide to Cloud Computing for Business and Technology Managers

the objective of running a program in less time. On the earliest comput-
ers, a user could run only one program at a time. This being the case, a
computation-intensive program that took X minutes to run, using a tape
system for data I/O that took X minutes to run, would take a total of X + X
minutes to execute. To improve performance, early forms of parallel pro-
cessing were developed to allow interleaved execution of both programs
simultaneously. The computer would start an I/O operation (which is
typically measured in milliseconds), and while it was waiting for the I/O
operation to complete, it would execute the processor-intensive program
(measured in nanoseconds). The total execution time for the two jobs com-
bined became only slightly longer than the X minutes required for the I/O
operations to complete.

1.4.1 Multiprogramming

The next advancement in parallel processing was multiprogramming. In a
multiprogramming system, multiple programs submitted by users are each
allowed to use the processor for a short time, each taking turns and hav-
ing exclusive time with the processor in order to execute instructions. This
approach is known as round-robin scheduling (RR scheduling). It is one of
the oldest, simplest, fairest, and most widely used scheduling algorithms,
designed especially for time-sharing systems. In RR scheduling, a small unit
of time called a time slice is defined. All executable processes are held in a
circular queue. The time slice is defined based on the number of executable
processes that are in the queue. For example, if there are five user processes
held in the queue and the time slice allocated for the queue to execute in total
is 1 s, each user process is allocated 200 ms of process execution time on the
CPU before the scheduler begins moving to the next process in the queue.
The CPU scheduler manages this queue, allocating the CPU to each process
for a time interval of one time slice. New processes are always added to the
end of the queue. The CPU scheduler picks the first process from the queue,
sets its timer to interrupt the process after the expiration of the timer, and
then dispatches the next process in the queue. The process whose time has
expired is placed at the end of the queue. If a process is still running at the
end of a time slice, the CPU is interrupted and the process goes to the end of
the queue. If the process finishes before the end of the time slice, it releases
the CPU voluntarily. In either case, the CPU scheduler assigns the CPU to the
next process in the queue. Every time a process is granted the CPU, a context
switch occurs, which adds overhead to the process execution time. To users,
it appears that all of the programs are executing at the same time.

Resource contention problems often arose in these early systems. Explicit
requests for resources led to a condition known as deadlock. Competition for
resources on machines with no tie-breaking instructions led to the critical
section routine. Contention occurs when several processes request access to
the same resource. In order to detect deadlock situations, a counter for each

17Increasing Functional Specificity over Increasingly Commoditized Hardware

processor keeps track of the number of consecutive requests from a process
that have been rejected. Once that number reaches a predetermined thresh-
old, a state machine that inhibits other processes from making requests to
the main store is initiated until the deadlocked process is successful in gain-
ing access to the resource.

1.4.2 Vector Processing

The next step in the evolution of parallel processing was the introduction
of multiprocessing. Here, two or more processors share a common work-
load. The earliest versions of multiprocessing were designed as a master/
slave model, where one processor (the master) was responsible for all the
tasks to be performed and it only off-loaded tasks to the other processor
(the slave) when the master processor determined, based on a predeter-
mined threshold, that work could be shifted to increase performance. This
arrangement was necessary because it was not then understood how to
program the machines, so they could cooperate in managing the resources
of the system. Vector processing was developed to increase processing per-
formance by operating in a multitasking manner. Matrix operations were
added to computers to allow a single instruction to manipulate two arrays
of numbers performing arithmetic operations. This was valuable in cer-
tain types of applications in which data occurred in the form of vectors or
matrices. In applications with less well-formed data, vector processing was
less valuable.

1.4.3 Symmetric Multiprocessing Systems

The next advancement was the development of symmetric multiprocessing
(SMP) systems to address the problem of resource management in master/
slave models. In SMP systems, each processor is equally capable and respon-
sible for managing the workflow as it passes through the system. The pri-
mary goal is to achieve sequential consistency, in other words, to make SMP
systems appear to be exactly the same as a single-processor, multiprogram-
ming platform. Engineers discovered that system performance could be
increased nearly 10%–20% by executing some instructions out of order.

However, programmers had to deal with the increased complex-
ity and cope with a situation where two or more programs might
read and write the same operands simultaneously. This diffi-
culty, however, is limited to a very few programs, because it only

occurs in rare circumstances. To this day, the question of how SMP
machines should behave when accessing shared data remains
unresolved.

18 Guide to Cloud Computing for Business and Technology Managers

Data propagation time increases in proportion to the number of processors
added to SMP systems. After a certain number (usually somewhere around
40–50 processors), performance benefits gained by using even more proces-
sors do not justify the additional expense of adding such processors. To solve
the problem of long data propagation times, message passing systems were
created. In these systems, programs that share data send messages to each
other to announce that particular operands have been assigned a new value.
Instead of a global message announcing an operand’s new value, the mes-
sage is communicated only to those areas that need to know the change.
There is a network designed to support the transfer of messages between
applications. This allows a great number of processors (as many as several
thousand) to work in tandem in a system. These systems are highly scalable
and are called massively parallel processing (MPP) systems.

1.4.4 Massively Parallel Processing

MPP is used in computer architecture circles to refer to a computer system
with many independent arithmetic units or entire microprocessors, which
run in parallel. Massive connotes hundreds if not thousands of such units.
In this form of computing, all the processing elements are interconnected
to act as one very large computer. This approach is in contrast to a distrib-
uted computing model, where massive numbers of separate computers are
used to solve a single problem such as in the SETI (see Chapter 12, “Grid
Computing”). Early examples of MPP systems were the Distributed Array
Processor, the Connection Machine, and the Ultracomputer. In data mining,
there is a need to perform multiple searches of a static database. The earli-
est massively parallel processing systems all used serial computers as indi-
vidual processing units in order to maximize the number of units available
for a given size and cost. Single-chip implementations of massively parallel
processing arrays are becoming ever more cost-effective due to the advance-
ments in integrated circuit technology.

MPP machines are not easy to program, but for certain applications, such
as data mining, they are the best solution.

1.5 Enterprise Systems

The Enterprise System (ES) is an information system that integrates busi-
ness processes with the aim of creating value and reducing costs by making
the right information available to the right people at the right time to help
them make good decisions in managing resources proactively and produc-
tively. An ERP is comprised of multimodule application software packages
that serve and support multiple business functions. These large automated

19Increasing Functional Specificity over Increasingly Commoditized Hardware

cross-functional systems were designed to bring about improved operational
efficiency and effectiveness through integrating, streamlining, and improv-
ing fundamental back-office business processes.

Traditional ESs (like ERP systems) were called back-office systems because
they involved activities and processes in which the customer and general
public were not typically involved, at least not directly. Functions supported
by ES typically included accounting, manufacturing, human resource
management, purchasing, inventory management, inbound and outbound
logistics, marketing, finance, and to some extent engineering. The objective
of traditional ESs in general was greater efficiency and to a lesser extent
effectiveness. Contemporary ESs have been designed to streamline and
integrate operation processes and information flows within a company to
promote synergy and greater organizational effectiveness and innovation.
These newer ESs have moved beyond the back-office to support front-office
processes and activities like those fundamental to customer relationship
management.

1.5.1 Evolution of ES

ESs have evolved from simple Materials Requirement Planning (MRP) to
ERP, Extended Enterprise Systems (EES), and beyond. Table 1.1 gives a snap-
shot of the various stages of Enterprise Systems (ES).

1.5.1.1 Materials Requirement Planning (MRP)

The first practical efforts in the ES field occurred at the beginning of the
1970s, when computerized applications based on MRP methods were devel-
oped to support purchasing and production scheduling activities. MRP is a
heuristic based on three main inputs: the master production schedule, which
specifies how many products are going to be produced during a period of
time; the bill of materials, which describes how those products are going
to be built and what materials are going to be required; and the inventory
record file, which reports how many products, components, and materials
are held in-house. The method can easily be programmed in any basic com-
puterized application, as it follows deterministic assumptions and a well-
defined algorithm.

MRP employed a type of backward scheduling wherein lead times were
used to work backward from a due date to an order release date. While
the primary objective of MRP was to compute material requirements, the
MRP system proved also to be a useful scheduling tool. Order placement
and order delivery were planned by the MRP system. Not only were orders
for materials and components generated by an MRP system but also pro-
duction orders for manufacturing operations that used those materials and
components to make higher-level items like subassemblies and finished
products.

20 Guide to Cloud Computing for Business and Technology Managers

As MRP systems became popular and more and more compa-
nies started using them, practitioners, vendors, and researchers
started to realize that the data and information produced by
the MRP system in the course of material requirements plan-

ning and production scheduling could be augmented with additional
data and used for other purposes. One of the earliest add-ons was the

TABLE 1.1

Evolution of Enterprise Systems

System
Primary Business

Need(s) Scope Enabling Technology

MRP Efficiency Inventory
management and
production planning
and control

Mainframe computers,
batch processing,
traditional file systems

MRP II Efficiency,
effectiveness, and
integration of
manufacturing
systems

Extending to the
entire
manufacturing firm
(becoming
cross-functional)

Mainframes and
minicomputers, real-time
(time-sharing) processing,
database management
systems (relational)

ERP Efficiency
(primarily
back-office),
effectiveness, and
integration of all
organizational
systems

Entire organization
(increasingly
cross-functional),
both manufacturing
and
nonmanufacturing
operations

Mainframes, mini- and
microcomputers, client/
server networks with
distributed processing
and distributed
databases, data
warehousing, mining,
knowledge management

ERP II Efficiency,
effectiveness, and
integration within
and among
enterprises

Entire organization
extending to other
organizations
(cross-functional
and cross-enterprise
partners, suppliers,
customers, etc.)

Mainframes, client/server
systems, distributed
computing, knowledge
management, Internet
technology (includes
intranets, extranets,
portals)

Inter-
Enterprise
Resource
Planning,
Enterprise
Systems,
Supply Chain
Management,
or whatever
label gains
common
acceptance

Efficiency,
effectiveness,
coordination, and
integration within
and among all
relevant supply
chain members as
well as other
partners or
stakeholders on a
global scale

Entire organization
and its constituents
(increasingly global
and cross-cultural)
comprising global
supply chain from
beginning to end as
well as other
industry and
government
constituents

Internet, Service Oriented
Architecture, Application
Service Providers,
wireless networking,
mobile wireless,
knowledge management,
grid computing, artificial
intelligence

21Increasing Functional Specificity over Increasingly Commoditized Hardware

Capacity Requirement Planning module, which could be used in
developing capacity plans to produce the master production schedule.
Manpower planning and support for human resources management
were incorporated into MRP. Distribution management capabilities
were added. The enhanced MRP and its many modules provided data
useful in the financial planning of manufacturing operations; thus,
financial planning capabilities were added. Business needs, primarily
for operational efficiency and to a lesser extent for greater effective-
ness, and advancements in computer processing and storage technol-
ogy brought about MRP and influenced its evolution. What started as
an efficiency-oriented tool for production and inventory management
was becoming increasingly a cross-functional system.

1.5.1.2 Closed-Loop Materials Requirement Planning

A very important capability to evolve in MRP systems was the ability to
close the loop (control loop). This was largely because of the development
of real-time (closed-loop) MRP systems to replace regenerative MRP sys-
tems in response to changing business needs and improved computer
technology—time sharing was replacing batch processing as the dominant
computer processing mode. With time-sharing mainframe systems, the
MRP system could run 24/7 and update continuously. Use of the corporate
mainframe that performed other important computing task for the orga-
nization was not practical for some companies, because MRP consumed
too many system resources; subsequently, some companies opted to use
mainframes (now growing smaller and cheaper but increasing in process-
ing speed and storage capability) or minicomputers (could do more, faster
than old mainframes) that could be dedicated to MRP. MRP could now
respond (update relevant records) to timely data fed into the system and
produced by the system. This closed the control loop with timely feed-
back for decision making by incorporating current data from the factory
floor, warehouse, vendors, transportation companies, and other internal
and external sources, thus giving the MRP system the capability to pro-
vide current (almost real-time) information for better planning and control.
These closed-loop systems better reflected the realities of the production
floor, logistics, inventory, and more. It was this transformation of MRP
into a planning and control tool for manufacturing by closing the loop,
along with all the additional modules, that did more than plan materials—
they planned and controlled various manufacturer resources—that led to
MRP II. Here too, improved computer technology and evolving business
needs for more accurate and timely information to support decision mak-
ing and greater organizational effectiveness contributed to the evolution
from MRP to MRP II.

22 Guide to Cloud Computing for Business and Technology Managers

1.5.1.3 Manufacturing Resource Planning II (MRP II)

The MRP in MRP II stands for Manufacturing Resource Planning rather
than materials requirements planning. The MRP system had evolved from
a material requirements planning system into a planning and control sys-
tem for resources in manufacturing operations—an enterprise information
system for manufacturing. As time passed, MRP II systems became more
widespread, and more sophisticated, particularly when used in manufactur-
ing to support and complement computer-integrated manufacturing (CIM).
Databases started replacing traditional file systems, allowing for better sys-
tems integration and greater query capabilities to support decision makers,
and the telecommunications network became an integral part of these sys-
tems in order to support communications between and coordination among
system components that were sometimes geographically distributed but still
within the company.

1.5.1.4 Enterprise Resource Planning (ERP)

During the late 1970s and early 1980s, new advances in IT, such as local area
networks, personal computers, object-orientated programming, and more
accurate operations management heuristics, allowed some of MRP’s deter-
ministic assumptions to be relaxed, particularly the assumption of infinite
capacity. MRP II was developed based on MRP principles but incorporated
some important operational restrictions, such as available capacity, mainte-
nance turnaround time, and financial considerations. MRP II also introduced
simulation options to enable the exploration and evaluation of different sce-
narios. MRP II is defined as business planning, sales and operations plan-
ning, production scheduling, MRP, capacity requirement planning, and the
execution support systems for capacity and material. Output from these sys-
tems is integrated with financial reports such as the business plan, purchase
commitment report, shipping budget, and inventory projections in dollars.
An important contribution of the MRP II approach was the integration of
financial considerations, improving management control and performance
of operations and making different manufacturing approaches comparable.
However, while MRP II allowed the integration of sales, engineering, manu-
facturing, storage, and finance, these areas continued to be managed as iso-
lated systems. In other words, there was no real online integration, and the
system did not provide integration with other critical support areas, such as
accounting, human resource management, quality control, and distribution.

The need for greater efficiency and effectiveness in back-office operations
was not unique to manufacturing but was also common to nonmanufac-
turing operations. Companies in nonmanufacturing sectors such as health
care, financial services, air transportation, and consumer goods started to
use MRP II–like systems to manage critical resources. Early ERP systems
typically ran on mainframes like their predecessors, MRP, and MRP II, but

23Increasing Functional Specificity over Increasingly Commoditized Hardware

many migrated to client/server systems where networks were central and
distributed databases more common. The growth of ERP and the migration
to client/server systems really got a boost from the Y2K scare. Many compa-
nies were convinced of the need to replace older mainframe-based systems,
some ERP and some not, with the newer client/server architecture.

An analysis of the performance of ES shows that a key indicator
is the level of enterprise integration. First-generation MRP
systems only provided limited integration for sales, engineer-
ing, operations, and storage. Second-generation MRP II solu-

tions enhanced that integration and included financial capabilities.
ERP systems enabled the jump to full enterprise integration. Finally,
CRM and SCM systems are expanding that integration to include
customers and suppliers. In this history, there is a clear positive trend
of performance improvement, coinciding with the diffusion of ES
functional innovations. If we assume that ERP, CRM, and SCM systems
achieve real integration, the next stage is likely to be an ES that allows
for the integration of a group of businesses.

1.5.2 Extended Enterprise Systems (EES)

The most salient trend in the continuing evolution of ES is the focus on front-
office applications and interorganizational business processes, particularly
in support of supply chain management (SCM). At present, greater organi-
zational effectiveness in managing the entire supply chain all the way to the
end customer is a priority in business. The greater emphasis on front-office
functions and cross-enterprise communications and collaboration via the
Internet simply reflects changing business needs and priorities. The demand
for specific modules/capabilities in particular shows that businesses are
looking beyond the enterprise. This external focus is encouraging vendors to
seize the moment by responding with the modules/systems that meet evolv-
ing business needs. In this renewed context, ESs enable organizations to inte-
grate and coordinate their business processes. They provide a single system
that is central to the organization and ensure that information can be shared
across all functional levels and management hierarchies.

ES is creeping out of the back-office into the front and beyond the enter-
prise to customers, suppliers, and more, in order to meet changing business
needs. Key players like Baal, Oracle, PeopleSoft, and SAP have incorporated
Advanced Planning and Scheduling (APS), Sales Force Automation (SFA),
Customer Relationship Management (CRM), SCM, Business Intelligence,
and E-commerce modules/capabilities into their systems or repositioned
their ESs as part of broader Enterprise Systems suites incorporating these
and other modules/capabilities. ES products reflect the evolving business

24 Guide to Cloud Computing for Business and Technology Managers

needs of clients and the capabilities of IT, perhaps most notably those related
to the Web. Traditional ES (i.e., ERP) has not lost its significance because
back-office efficiency, effectiveness, and flexibility will continue to be impor-
tant. However, current focus seems more external as organizations look for
ways to support and improve relationships and interactions with customers,
suppliers, partners, and other stakeholders. While the integration of internal
functions is still important and in many enterprises still has not been achieved
to a great extent, external integration is now receiving much attention.

1.5.2.1 Extended Enterprise Systems (EES) Framework

The conceptual framework of EES consists of four distinct layers:

 1. Foundation layer
 2. Process layer
 3. Analytical layer
 4. E-business layer

Each layer consists of collaborative components described in Table 1.2.

1.5.2.1.1 Foundation Layer

The foundation layer consists of the core components of EES, which shape
the underlying architecture and also provide a platform for EES systems. EES
does not need to be centralized or monolithic. One of the core components is
the integrated database, which may be a distributed database. Another core

TABLE 1.2

Four Layers of EES

Layer Components

Foundation Core Integrated Database (DB)
Application Framework (AF)

Process Central Enterprise Resource Planning (ERP)
Business Process Management (BPM)

Analytical Corporate Supply Chain Management (SCM)
Customer Relationship Management (CRM)
Supplier Relationship Management (SRM)
Product Lifecycle Management (PLM)
Employee Lifecycle Management (ELM)
Corporate Performance Management (CPM)

Portal Collaborative Business-to-consumer (B2C)
Business-to-business (B2B)
Business-to-employee (B2E)
Enterprise Application Integration (EAI)

25Increasing Functional Specificity over Increasingly Commoditized Hardware

component is the application framework (AF), which can also be distributed.
The integrated database and the application framework provide an open and
distributed platform for EES.

1.5.2.1.2 Process Layer

The process layer of the concept is the central component of EES, which
is Web based, open, and componentized (this is different from being Web
enabled) and may be implemented as a set of distributed Web Services. This
layer corresponds to the traditional transaction-based systems. ERP still
makes up the backbone of EES along with the additional integrated modules
aimed at new business sectors outside the manufacturing industries. The
backbone of ERP is the traditional ERP modules like financials, sales and
distribution, logistics, manufacturing, or HR.

The EES concept is based on Business Process Management (BPM). ERP has
been based on best practice process reference models, but EES systems primar-
ily build on the notion of the process as the central entity. EES includes tools
to manage processes: design (or orchestrate) processes, to execute and to eval-
uate processes (Business Activity Monitoring), and redesigning processes get
effect in real time. The BPM component allows for EES to be accommodated
to suit different business practices for specific business segments that other-
wise would require effort-intensive customization. EES further includes ver-
tical solutions for specific segments like apparel and footwear or the public
sector. Vertical solutions are sets of standardized preconfigured systems and
processes with add-on to match the specific requirements of a specific sector.

1.5.2.1.3 Analytical Layer

The analytical layer consists of the corporate components that extend and
enhance the central ERP functions by providing decision support to man-
age relations and corporate issues. Corporate components are not necessarily
synchronized with the integrated database, and the components may eas-
ily be add-ons instituted by acquiring third-party products/vendors. In the
future, the list of components for this layer can get augmented by newer
additions like Product Lifecycle Management (ERP for R&D function) and
Employee Lifecycle Management (ERP for human resources).

1.5.2.1.4 E-Business Layer

The e-business layer is the portal of EESs, and this layer consists of a set of col-
laborative components. The collaborative components deal with the commu-
nication and the integration between the corporate ERP II system and actors
like customers, business partners, employees, and even external systems.

1.5.2.2 Extended Functionality

E-Commerce is arguably one of the most important developments in
business in the last 50 years, and M-Commerce is poised to take its place

26 Guide to Cloud Computing for Business and Technology Managers

alongside or within the rapidly growing area of E-Commerce. Internet
technology has made E-Commerce in its many forms (B2B, B2C, C2C, etc.)
possible. Mobile and wireless technologies are expected to make always
on Internet and anytime/anywhere location-based services (also requiring
global positioning systems) a reality, as well as a host of other capability
characteristics of M-Business. One can expect to see ES geared more to
the support of both E-Commerce and M-Commerce. Internet, mobile, and
wireless technologies should figure prominently in new and improved sys-
tem modules and capabilities.

The current business emphasis on intra- and interorganizational process
integration and external collaboration should remain a driving force in the
evolution of ES in the foreseeable future. Some businesses are attempting
to transform themselves from traditional, vertically integrated organiza-
tions into multienterprise, recombinant entities reliant on core-competency-
based strategies. Integrated SCM and business networks will receive great
emphasis, reinforcing the importance of IT support for cross-enterprise
collaboration and interenterprise processes. ESs will have to support the
required interactions and processes among and within business entities
and work with other systems/modules that do the same. There will be a
great need for business processes to span organizational boundaries (some
do at present), possibly requiring a single shared inter-enterprise system
that will do it, or at least communicate with and coprocess (share/divide
processing tasks) with other ES systems.

Middleware, ASPs, and enterprise portal technologies may play an impor-
tant role in the integration of such modules and systems. The widespread
adoption of a single ASP solution among supply chain partners may facili-
tate interoperability as all supply chain partners essentially use the same sys-
tem. Alternatively, a supply chain portal (vertical portal), jointly owned by
supply chain partners or a value-added service provider that coordinates the
entire supply chain and powered by a single system serving all participants,
could be the model for the future. ASP solutions are moving the ES within
the reach of SMEs, as it costs much less to rent than to buy.

The capability of Web Services to allow businesses to share data, appli-
cations, and processes across the Internet may result in ES systems of the
future relying heavily on the Service-Oriented Architecture (SOA), within
which Web Services are created and stored, providing the building blocks
for programs and systems. The use of best-in-breed Web Service–based solu-
tions might be more palatable to businesses, since it might be easier and less
risky to plug in a new Web Service–based solution than replace or add on a
new product module. While the one source alternative seems most popular at
present, the best-in-breed approach will be good if greater interoperability/
integration among vendor products is achieved. There is a need for greater
out-of-the-box interoperability, thus a need for standards.

Data warehouses and Knowledge Management System (KMS) should
enable future ERP systems to support more automated business decision

27Increasing Functional Specificity over Increasingly Commoditized Hardware

making, and they should be helpful in the complex decision making needed
in the context of fully integrated supply chain management. More auto-
mated decision making in both front-office and back-office systems should
eliminate/minimize human variability and error, greatly increase deci-
sion speed, and hopefully improve decision quality. Business Intelligence
(BI) tools, which are experiencing a significant growth in popularity, take
internal and external data and transform them into information used in
building knowledge that helps decision makers to make more informed
decisions.

Greater interoperability of diverse systems and more thorough
integration within and between enterprise systems is likely to
remain the most priority for all enterprises. An environment
for business applications much like the plug-and-play environ-

ment for hardware environment would make it easier for organiza-
tions to integrate their own systems and have their systems integrated
with other organizations’ systems. Such an environment necessitates
greater standardization. This ideal plug-and-play environment would
make it easier for firms to opt for a best-in-breed strategy for applica-
tion/module acquisition as opposed to reliance on a single vendor for
a complete package of front-office, back-office, and strategic systems.

1.6 Autonomic Computing

The software systems of today are constantly faced with new and demand-
ing requirements in terms of their availability, robustness, dynamism, and
pervasiveness. Pressures on the maintenance of systems, services, and soft-
ware are increasing by the day—maintenance tasks are becoming increas-
ingly difficult and correspondingly more time consuming to carry out. It is
believed that we may be reaching a barrier in terms of complexity and that
innovative practices are needed to ensure the continual delivery of software-
based services.

IBM introduced the term autonomic computing to characterize the notion
of a computer system that is able to adapt to internal and external changes
with or without minimal human intervention. As the development, mainte-
nance and operation of computing systems are becoming more complex, we
are witnessing development of more and more automated deployment and
maintenance strategies. Based on dedicated tools, such approaches aim to
automate a number of administrative tasks such as installing packages and
modules, defining authorizations and updating configurations.

28 Guide to Cloud Computing for Business and Technology Managers

IBM’s mission was to enhance and impart systems with self-management
capabilities. Thus, systems are able to evolve in an autonomous manner, fix-
ing undesirable behaviors and adapting to their changing requirements and
environment. The level of autonomy given to a system is a product of the
ability to map the administration function to a machine-executable process,
and the ease of implementing such a process into the system. Accordingly,
the system administrators can delegate a part of their workload to the sys-
tem itself; consequently, they can focus on the system’s fundamentals and
off-load more mundane tasks to the automatic administration software.
Moreover, administration tasks performed by the systems are of higher
quality, minimizing the possibility of introducing bugs during such mainte-
nance activities.

The benefits of autonomic computing are

• Decrease in maintenance risk and expenditure: The goal is to
obtain systems that are able to configure themselves automatically,
and with a potential to achieve zero configuration for the admin-
istrator, hence reducing costs. Thus, it enables a revaluation of
the human system administrator’s tasks, allowing them to focus
on more strategic or value-adding aspects of the system support
function.

• Increase in service availability: Anticipation of potential problems
and automatic system diagnosis can provide increased applica-
tion dependability and other nonfunctional benefits. For instance,
increased security can enable the system to be better prepared to
counter malicious acts.

However, implementing autonomic computing systems is challenging
because it implies the following dimensions:

 a. A computer system must be aware, that is, be able to keep some
knowledge about its envisaged goals, its past and current situation.
Accordingly, it has to assimilate some type of reasoning capabilities
to decide on corrective actions en route whenever needed.

 b. A computer system should provide a high-level interface, allowing
human administrators to specify or modify system goals, tune rea-
soning processes, and oversee the system’s ability to manage and
attain its objectives.

 c. A computer system must be able to monitor itself at runtime in order
to know its internal situation. It must also be able to monitor part of
its execution environment to enable relevant evolutions.

 d. A computer system must be able to adapt itself at runtime in order
to implement the requisite corrective administrative actions without
disrupting or engendering ongoing operations.

29Increasing Functional Specificity over Increasingly Commoditized Hardware

1.7 Summary

This chapter provides a bird’s eye view of the dominating trend of the last
50 years in the computer industry, namely, increasing functional specificity
over increasingly commoditized hardware. The first half of the chapter pres-
ents an overview of the evolution from Grid Computing through Parallel
Processing to Symmetric Multiprocessing Systems toward Massive Parallel
Processing using commoditized hardware. The latter part of the chapter
traces the evolution from batch Materials Requirement Planning to the cur-
rent Extended Enterprise Systems incorporating Web Services and SOA. In
the following parts, the book presents the genesis, roadmap, and character-
istics of Cloudware, that is, the cloud computing area. The last part of the
book describes Cloudware Applications in the areas of big data, mobile, and
context-aware systems.

Section I

Genesis of Cloudware

This section introduces the various milestones on the path to developing EAI
solutions for enterprises. Maintaining competitiveness in the face of chang-
ing business environments necessitated ways to reuse existing systems and
integrate them into the global, enterprise-wide information system must
be defined. The resulting integrated information systems will improve the
competitive advantage of the enterprises with a unified and efficient access
to information. Chapter 2 traces the genesis of the cloud to the network-
ing and Internetworking technologies of the 1980s. Chapter 3 describes the
concepts of distributed systems. Chapter 4 describes EAI methods and mod-
els. Chapter 5 deals with middleware and related integration technologies.
Finally, Chapter 6 introduces the reference architecture for enterprise J2EE
applications.

33

2
Networking and Internetworking

The origin of what has developed to become the Internet and World Wide
Web (WWW) goes back to work done in the early 1940s by Vannevar Bush.
He was the originator of the concept of an associative system for the orga-
nization of data within networks (the other being the concept of breaking
messages into discrete smaller packages to maximize efficiency by utilizing
the networks effectively). Bush was an American scientist who had done
work on submarine detection for the US Navy. Bush, who was C. Shannon’s
professor at MIT, had built the differential analyzer that sat in the base-
ment of the Moore School and had facilitated further computing develop-
ments during the Second World War from his position in the US Office of
Scientific Research and Planning.

Bush’s influence on the development of the Internet is due to his visionary
description of an information management system that he called the memex.
The memex (memory extender) is described in his famous essay “As We May
Think,” which was published in the Atlantic Monthly in 1945. This article rep-
resents the first published articulation of the idea of a web. Bush conceived
of what he called the memex, essentially a microfilm/audio recording device
electronically linked to a library and able to display books and films that
would allow selection by association rather than by indexing. The memex was
to be a sort of multiscreened microfilm reader operated by a keyboard into
which a user could scan an entire personal library as well as all notes, letters,
and communications. When data of any sort are placed in storage, they are
filed alphabetically or numerically, and information is found (when it is) by
tracing it down from subclass to subclass. It can only be in one place. The
human mind does not work that way. It operates by association. With one
item in its grasp, it snaps instantly to the next that is suggested by the asso-
ciation of thoughts, in accordance with some intricate web of trails carried
by the cells of the brain.

This description motivated Ted Nelson and Douglas Engelbart to inde-
pendently formulate the various ideas that would become hypertext. Doug
Engelbart, had demonstrated a prototype information retrieval system at
the 1968 Fall Joint Computer Conference, and Ted Nelson was developer
of a similar system called Xanadu. In his self-published manifesto, Nelson
defined hypertext as “forms of writing which branch or perform on request;
they are best presented on computer display screens.” Nelson praised
Engelbart’s On-Line System (NLS) but noted that Engelbart believed in

34 Guide to Cloud Computing for Business and Technology Managers

tightly structuring information in outline formats. Nelson wanted some-
thing closer to Vannevar Bush’s earlier concept, which Bush hoped would
replicate the mind’s ability to make associations across subject boundaries.
Nelson worked tirelessly through the 1970s and 1980s to bring Xanadu to
life. He remained close to but always outside of the academic and research
community, and his ideas inspired the work at Brown University, led by
Andries van Dam. Independently of these researchers, Apple introduced
a program called HyperCard for the Macintosh in 1987. HyperCard imple-
mented only a fraction of the concepts of hypertext as understood by van
Dam or Nelson, but it was simple, easy to use, and even easy for a novice to
program. For all its limits, HyperCard brought the notion of nonlinear text
and graphics out of the laboratory setting.

Tim Berners-Lee would later use hypertext as part of the development of
the WWW.

2.1 ARPANET

In the 1960s, there were approximately 10,000 computers in the world. These
computers were very expensive ($100K–$200K) and had very primitive pro-
cessing power. They contained only a few thousand words of magnetic
memory, and programming and debugging of these computers was diffi-
cult. Further, communication between computers was virtually nonexistent.
However, several computer scientists had dreams of worldwide networks of
computers, where every computer around the globe is interconnected to all
of the other computers in the world. For example, Licklider wrote memos
in the early 1960s on his concept of an intergalactic network. This concept
envisaged that everyone around the globe would be interconnected and able
to access programs and data at any site from anywhere.

The US Department of Defense founded the Advance Research Projects
Agency (ARPA) in the late 1950s. ARPA embraced high-risk, high-return
research and laid the foundation for what became ARPANET and later the
Internet. J.C.R. Licklider was an early pioneer of AI, and he also formu-
lated the idea of a global computer network. He wrote his influential paper,
“Man–Computer Symbiosis” in 1960, and this paper outlined the need for
simple interaction between users and computers. Licklider became the first
head of the computer research program at ARPA, which was called the
Information Processing Techniques Office (IPTO). He developed close links
with MIT, UCLA, and BBN Technologies and started work on his vision.
BBN Technologies (originally Bolt, Beranek, and Newman) was a high-
technology research and development company. It was especially famous
for its work in the development of packet switching for the ARPANET
and the Internet. It also did defense work for Defense Advanced Research

35Networking and Internetworking

Projects Agency DARPA. BBN played an important part in the implementa-
tion and operation of ARPANET.

The “@” sign used in an e-mail address was a BBN innovation.
Ray Tomlinson of BBN Technologies developed a program that
allowed electronic mail to be sent over the ARPANET. Tomlinson
developed the “user@host” convention, and this was eventually

to become the standard for electronic mail in the late 1980s.

Various groups, including National Physical Laboratory (NPL), the RAND
Corporation, and MIT, commenced work on packet-switching networks. The
concept of packet switching was invented by Donald Davies at the NPL in
1965. Packet switching is a fast message communication system between
computers. Long messages are split into packets that are then sent separately
so as to minimize the risk of congestion.

At that time, a basic problem for Licklider was the lack of language and
machine standardization. The early computers had different standards for
representing data, and this meant that the data standard of each computer
would need to be known for effective communication to take place. There
was a need to establish a standard for data representation, and a US gov-
ernment committee developed the ANSII (American Standard Code for
Information Interchange) in 1963. This became the first universal standard
for data for computers, and it allowed machines from different manufactur-
ers to exchange data. The standard allowed 7-bit binary strings to stand for a
letter in the English alphabet, an Arabic numeral, or a punctuation symbols;
the use of 7 bits allowed 128 distinct characters to be represented. The devel-
opment of the IBM-360 mainframe standardized the use of 8 bits for a word,
and 12-bit or 36-bit words became obsolete.

Davies also worked on the ACE computer (one of the earliest stored pro-
gram computers) that was developed at the NPL in the United Kingdom in
the late 1940s. The first wide area network connection was created in 1965. It
involved the connection of a computer at MIT to a computer in Santa Monica
via a dedicated telephone line. This result showed that telephone lines could
be used for the transfer of data although they were expensive in their use of
bandwidth. The need to build a network of computers became apparent to
ARPA in the mid-1960s, and this led to work commencing on the ARPANET
project in 1966. The plan was to implement a packet-switched network based
on the theoretical work done on packet switching at NPL and MIT. The goal
was to have a network speed of 56 Kbps. ARPANET was to become the
world’s first packet-switched network.

BBN Technologies was awarded the contract to implement the network.
Two nodes were planned for the network initially, and the goal was to

36 Guide to Cloud Computing for Business and Technology Managers

eventually have 19 nodes. The first two nodes were based at UCLA and
SRI. The network management was performed by interconnected Interface
Message Processors (IMPs) in front of the major computers. Each site had a
team to produce the software to allow its computers and the IMP to com-
municate. The IMPs eventually evolved to become the network routers
that are used today. The team at UCLA called itself the Network Working
Group and saw its role as developing the Network Control Protocol (NCP).
This was essentially a rule book that specified how computers on the net-
work should communicate.

The first host-to-host connection was made between a computer at UCLA
and a computer at SRI in late 1969. Several other nodes were added to the
network until it reached its target of 19 nodes in 1971. The Network Working
Group developed the Telnet Protocol and file transfer protocol (FTP) in 1971.
The Telnet program allowed the user of one computer to remotely log in to
another computer. The file transfer protocol allows the user of one computer
to send or receive files from another computer. A public demonstration of
ARPANET was made in 1972 and it was a huge success. One of the earliest
demos was that of Weizenbaum’s ELIZA program. This is a famous AI pro-
gram that allows a user to conduct a typed conversation with an artificially
intelligent machine (psychiatrist) at MIT. The viability of packet switching
as a standard for network communication had been clearly demonstrated.

By the early 1970s, over 30 institutions were connected to the ARPANET.
These included consulting organizations such as BBN, Xerox, and the MITRE
Corporation and government organizations such as NASA. Bob Metacalfe
developed a wire-based local area network (LAN) at Xerox that would even-
tually become Ethernet in the mid-1970s.

2.1.1 Ethernet

If the Internet of the 1990s became the Information Superhighway, then Ethernet
became the equally important network of local roads to feed it. As a descen-
dent of ARPA research, the global networks we now call the Internet came
into existence before the local Ethernet was invented at Xerox. But Ethernet
transformed the nature of office and personal computing even before the
Internet had a significant effect.

Ethernet was invented at Xerox PARC in 1973 by Robert Metcalfe and
David Boggs. He moved to Xerox PARC in 1972; one of his first tasks there
was to hook up PARC’s PDP-10 clone, the MAXC, to ARPANET. Metcalfe
connected Xerox’s MAXC to ARPANET, but the focus at Xerox was on local
networking: to connect a single-user computer (later to become the Alto) to
others like it and to a shared high-quality printer, all within the same build-
ing. The ARPANET model, with its expensive, dedicated Interface Message
Processors (IMPs), was not appropriate.

When Metcalfe arrived at PARC, there was already a local network estab-
lished, using Data General minicomputers linked in a star-shaped topology.

37Networking and Internetworking

Metcalfe and his colleagues felt that even the Data General network was
too expensive and not flexible enough to work in an office setting, where
one may want to connect or disconnect machines frequently. He also felt it
was not robust enough—the network’s operation depended on a few critical
pieces not failing. He recalled a network he saw in Hawaii that used radio
signals to link computers among the Hawaiian islands, called ALOHAnet.
With this system, files were broken up into packets, no longer than 1000 bits
long, with an address of the intended recipient attached to the head of each.
Other computers on the net were tuned to the UHF frequency and listened
for the packets, accepting the ones that were addressed to it and ignoring all
the others.

What made this system attractive for Metcalfe was that the medium—in
this case radio—was passive. It simply carried the signals, with the com-
puters at each node doing the processing, queuing, and routing work. The
offices at Xerox PARC were not separated by water, but the concept was per-
fectly suited for a suite of offices in a single building. Metcalfe proposed sub-
stituting a cheap coaxial cable for the ether that carried ALOHAnet’s signals.
A new computer could be added to the Ethernet simply by tapping into the
cable. To send data, a computer first listened to make sure there were no
packets already on the line; if not, it sent out its own. If two computers hap-
pened to transmit at the same time, each would back off for a random inter-
val and try again. If such collisions started to occur frequently, the computers
themselves would back off and not transmit so often. By careful mathemati-
cal analysis, Metcalfe showed that such a system could handle a lot of traf-
fic without becoming overloaded. He wrote a description of it in May 1973
and recruited David Boggs to help build it. They had a fairly large network
running by the following year. Metcalfe recalled that its speed, around three
million bits per second, was unheard of at the time, when “the 50-kilobit-
per-second (Kbps) telephone circuits of the ARPANET were considered fast.”

Those speeds fundamentally altered the relationship between small and
large computers. Clusters of small computers now, finally, provided an alter-
native to the classic model of a large central system that was timeshared and
accessed through dumb terminals. Ethernet would have its biggest impact
on the workstation, and later PC, market, but its first success came in 1979,
when Digital Equipment Corporation, Intel, and Xerox joined to establish
it as a standard, with DEC using it for the VAX. UNIX-based workstations
nearly all adopted Ethernet, although token ring and a few alternate schemes
are also used.

DOS-based personal computers were late in getting networked. Neither
the Intel processors they used nor DOS was well suited for it.

Purchasers of PCs and PC software were driven by personal, not corpo-
rate, needs. The PC and DOS standards led to commercial software that
was not only inexpensive but also better than what came with centralized
systems. By the mid-1980s, it was clear that no amount of corporate pol-
icy directives could keep the PC out of the office, especially among those

38 Guide to Cloud Computing for Business and Technology Managers

employees who already had a PC at home. The solution was a technical
fix: network the PCs to one another, in a local-area network (LAN). The
company that emerged with over half the business by 1989 was Novell,
located in the Salt Lake City area. Novell’s Netware was a complex—and
expensive—operating system that overlaid DOS, seizing the machine and
directing control to a file server, typically a PC with generous mass storage
and I/O capability (the term server originated in Metcalfe and Boggs’s 1976
paper on the Ethernet). By locating data and office automation software on
this server rather than on individual machines, some measure of central
control could be reestablished. Networking of PCs lagged behind the net-
working that UNIX workstations enjoyed from the start, but the personal
computer’s lower cost and better office software drove this market.

Local networking took the personal out of personal computing,
at least in the office environment. Still, the networked office
computers of the 1990s gave their users a lot more autonomy
and independence than the timeshared mainframes accessed

through dumb terminals or glass Teletypes in the 1970s.

2.1.2 TCP/IP Protocol

ARPA became DARPA (Defence Advanced Research Projects Agency) in
1973, and it commenced work on a project connecting seven computers on
four islands using a radio-based network, as well as a project to establish a
satellite connection between sites in Norway and in the United Kingdom.
This led to a need for the interconnection of the ARPANET with other net-
works. The key challenge was to investigate ways of achieving convergence
between ARPANET, radio-based networks, and satellite networks, as these
all had different interfaces, packet sizes, and transmission rates. Therefore,
there was a need for a network-to-network connection protocol, and its devel-
opment would prove to be an important step toward developing the Internet.

An international network working group (INWG) was formed in 1973.
The concept of the Transmission Control Protocol (TCP) was developed at
DARPA by Bob Kahn and Vint Cerf, and they presented their ideas at an
INWG meeting at the University of Sussex in England in 1974. TCP allowed
cross network connections, and it began to replace the original NCP proto-
col used in ARPANET. However, it would take some time for the existing
and new networks to adopt the TCP protocol. TCP is a set of network stan-
dards that specify the details of how computers communicate, as well as
the standards for interconnecting networks and computers. It was designed
to be flexible and provides a transmission standard that deals with physi-
cal differences in host computers, routers, and networks. TCP is designed
to transfer data over networks that support different packet sizes and that

39Networking and Internetworking

may sometimes lose packets. It allows the Internetworking of very different
networks that then act as one network.

The new protocol standards were known as the Transmission Control
Protocol (TCP) and the Internet protocol (IP). TCP details how information
is broken into packets and reassembled on delivery, whereas IP is focused
on sending the packet across the network. The protocol that resides at the
network layer in the TCP/IP protocol suite is called Internet Protocol (IP).
IP’s primary function is to perform the routing necessary to move data pack-
ets across the Internet. IP is a connectionless protocol that does not concern
itself with keeping track of lost, duplicated, or delayed packets or packets
delivered out of order. Furthermore, the sender and receiver of these pack-
ets may not be informed that these problems have occurred. Thus, IP is also
referred to as an unreliable service. If an application requires a reliable ser-
vice, then the application needs to include a reliable transport service above
the connectionless, unreliable packet delivery service. The reliable trans-
port service is provided by software called Transmission Control Protocol,
which turns an unreliable network into a reliable one, free from lost and
duplicate packets. This combined service is known as TCP/IP. These stan-
dards allow users to send electronic mail or to transfer files electronically,
without needing to concern themselves with the physical differences in the
networks.

TCP/IP is a family or suite of protocols consisting of four layers.

 a. Network interface layer: This layer is responsible for formatting
packets and placing them on to the underlying network. It is equiva-
lent to the physical and data link layers on OSI Model.

 b. Internet layer: This layer is responsible for network addressing. It
includes the Internet protocol and the address resolution protocol. It
is equivalent to the network layer on the OSI Model.

 c. Transport layer: This layer is concerned with data transport and is
implemented by TCP and the user datagram protocol (UDP). It is
equivalent to the transport and session layers in the OSI Model.

 d. Application layer: This layer is responsible for liaising between user
applications and the transport layer. The applications include the
file transfer protocol (FTP), Telnet, domain name system (DNS), and
simple mail transfer protocol (SMTP). It is equivalent to the applica-
tion and presentation layers on the OSI Model.

The Internet protocol (IP) is a connectionless protocol that is responsible for
addressing and routing packets. It is responsible for breaking up and assem-
bling packets, with large packets broken down into smaller packets when
they are traveling through a network that supports smaller packets. A con-
nectionless protocol means that a session is not established before data are
exchanged. Packet delivery with IP is not guaranteed as packets may be lost

40 Guide to Cloud Computing for Business and Technology Managers

or delivered out of sequence. An acknowledgment is not sent when data are
received, and the sender or receiver is not informed when a packet is lost or
delivered out of sequence. A packet is forwarded by the router only if the
router knows a route to the destination. Otherwise, it is dropped. Packets
are dropped if their checksum is invalid or if their time to live is zero. The
acknowledgment of packets is the responsibility of the TCP protocol.

The ARPANET employed the TCP/IP protocols as a standard from 1983.
The TCP/IP application layer includes several frequently used applications:

 1. Hypertext Transfer Protocol (HTTP) to allow Web browsers and
servers to send and receive WWW pages

 2. Simple Mail Transfer Protocol (SMTP) to allow users to send and
receive electronic mail

 3. File Transfer Protocol (FTP) to transfer files from one computer sys-
tem to another

 4. Telnet to allow a remote user to log in to another computer system
 5. Simple Network Management Protocol (SNMP) to allow the numer-

ous elements within a computer network to be managed from a
single point

The late 1970s saw the development of newsgroups that aimed
to provide information about a particular subject. A newsgroup
started with a name that is appropriate with respect to the con-
tent that it is providing. Newsgroups were implemented via

USENET and were an early example of client–server architecture. A
user dials in to a server with a request to forward a certain newsgroup
posting; the server then serves the request.

2.2 Computer Networks

The merging of computers and communications has had a profound influ-
ence on the way computer systems are organized. Although data centers
holding thousands of Internet servers are becoming common, the once-
dominant concept of the computer center as a room with a large computer to
which users bring their work for processing is now totally obsolete. The old
model of a single computer serving all of the organization’s computational
needs has been replaced by the one in which a large number of separate
but interconnected computers do the job. These systems are called computer
networks.

41Networking and Internetworking

Two computers are said to be networked if they are able to exchange infor-
mation. The connection need not be via a copper wire; fiber optics, micro-
waves, infrared, and communication satellites can also be used. Networks
come in many sizes, shapes, and forms, as we will see later. They are usu-
ally connected together to make larger networks, with the Internet being the
most well-known example of a network of networks.

Computer Network and a Distributed System: The key distinction between
them is that in a distributed system, a collection of independent computers
appears to its users as a single coherent system. Usually, it has a single model
or paradigm that it presents to the users. Often, a layer of software on top of
the operating system, called middleware, is responsible for implementing this
model. A well-known example of a distributed system is the WWW. It runs
on top of the Internet and presents a model in which everything looks like a
document (Web page). On the other hand, in a computer network, coherence,
model, and software are absent. Users are exposed to the actual machines,
without any attempt by the system to make the machines look and act in a
coherent way. If the machines have different hardware and different operat-
ing systems, that is fully visible to the users. If a user wants to run a program
on a remote machine, it entails logging onto that machine and run it there.

In effect, a distributed system is a software system built on top of a net-
work. The software gives it a high degree of cohesiveness and transparency.
Thus, the distinction between a network and a distributed system lies with
the software (especially the operating system), rather than with the hard-
ware. Nevertheless, there is considerable overlap between the two subjects.
For example, both distributed systems and computer networks need to move
files around. The difference lies in who invokes the movement, the system,
or the user.

2.2.1 Network Principles

2.2.1.1 Protocol

The term protocol is used to refer to a well-known set of rules and formats to
be used for communication between processes in order to perform a given
task. The definition of a protocol has two important parts to it:

 1. A specification of the sequence of messages that must be exchanged
 2. A specification of the format of the data in the messages

The existence of well-known protocols enables the separate software
components of distributed systems to be developed independently and
implemented in different programming languages on computers that may
have different order codes and data representations. A protocol is imple-
mented by a pair of software modules located in the sending and receiving

42 Guide to Cloud Computing for Business and Technology Managers

computers. For example, a transport protocol transmits messages of any
length from a sending process to a receiving process. A process wishing to
transmit a message to another process, issues a call to a transport protocol
module, passing it a message in the specified format. The transport software
then concerns itself with the transmission of the message to its destination,
subdividing it into packets of some specified size and format that can be
transmitted to the destination via the network Protocol—another, lower-
level protocol. The corresponding transport protocol module in the receiv-
ing computer receives the packet via the network-level protocol module and
performs inverse transformations to regenerate the message before passing
it to a receiving process.

2.2.1.2 Protocol Layers

Network software is arranged in a hierarchy of layers. Each layer presents
an interface to the layers above it that extends the properties of the under-
lying communication system. A layer is represented by a module in every
computer connected to the network. Each module appears to communicate
directly with a module at the same level in another computer in the network,
but in reality, data are not transmitted directly between the protocol mod-
ules at each level. Instead, each layer of network software communicates by
local procedure calls with the layers above and below it. On the sending side,
each layer (except the topmost, or application layer) accepts items of data
in a specified format from the layer above it and applies transformations
to encapsulate the data in the format specified for that layer before pass-
ing it to the layer below for further processing. On the receiving side, the
converse transformations are applied to data items received from the layer
below before they are passed to the layer above. The protocol type of the
layer above is included in the header of each layer, to enable the protocol
stack at the receiver to select the correct software components to unpack the
packets. The data items are received and passed upward through the hierar-
chy of software modules, being transformed at each stage until they are in a
form that can be passed to the intended recipient process.

2.2.1.3 Protocol Suite

A complete set of protocol layers is referred to as a protocol suite or a
protocol stack, reflecting the layered structure. Figure 2.1 shows a pro-
tocol stack that conforms to the seven-layer Reference Model for Open
Systems Interconnection (OSI) adopted by the International Organization
for Standardization (ISO). The OSI Reference Model was adopted in order
to encourage the development of protocol standards that would meet the
requirements of open systems. The purpose of each level in the OSI Reference
Model is summarized in Table 2.1. As its name implies, it is a framework for
the definition of protocols and not a definition for a specific suite of protocols.

43Networking and Internetworking

Protocol suites that conform to the OSI model must include at least one spe-
cific protocol at each of the seven levels that the model defines (Table 2.1).

2.2.1.4 Datagram

Datagram is essentially another name for data packet. The term datagram
refers to the similarity of this delivery mode to the way in which letters and
telegrams are delivered. The essential feature of datagram networks is that
the delivery of each packet is a one-shot process; no setup is required, and
once the packet is delivered, the network retains no information about it.

2.2.2 Types of Network

There is no generally accepted taxonomy into which all computer networks
fit, but two dimensions stand out as important: transmission technology and
scale. We will now examine each of these in turn. Broadly speaking, there
are two types of transmission technology that are in widespread use: broad-
cast links and point-to-point links.

Point-to-point links connect individual pairs of machines. To go from the
source to the destination on a network made up of point-to-point links, short
messages, called packets in certain contexts, may have to first visit one or
more intermediate machines. Often, multiple routes, of different lengths,
are possible, so finding good ones is important in point-to-point networks.
Point-to-point transmission with exactly one sender and exactly one receiver
is sometimes called unicasting. In contrast, on a broadcast network, the com-
munication channel is shared by all the machines on the network; packets
sent by any machine are received by all the others. An address field within
each packet specifies the intended recipient. Upon receiving a packet, a
machine checks the address field. If the packet is intended for the receiving

Application Application

OSI

7

6

5

4

3

2

1

Not present
in the model

TCP/IP

Transport

Internet

Link

Presentation

Session

Transport

Network

Data link

Physical

FIGURE 2.1
OSI versus TCP/IP network reference model.

44 Guide to Cloud Computing for Business and Technology Managers

machine, that machine processes the packet; if the packet is intended for
some other machine, the packet is just ignored.

Broadcast systems usually also allow the possibility of addressing
a packet to all destinations by using a special code in the address field.
When a packet with this code is transmitted, it is received and processed
by every machine on the network. This mode of operation is called broad-
casting. Some broadcast systems also support transmission to a subset of
the machines, which is known as multicasting. An alternative criterion for
classifying networks is by scale. Distance is important as a classification
metric because different technologies are used at different scales. At the

TABLE 2.1

OSI Layers or Stack

Layer Description Examples

Application Protocols at this level are designed to meet the
communication requirements of specific
applications, often defining the interface to a
service.

HTTP, FTP, SMTP,
CORBA HOP

Presentation Protocols at this level transmit data in a network
representation that is independent of the
representations used in individual computers,
which may differ. Encryption is also performed
in this layer, if required.

TLS security, CORBA
data representation

Session At this level, reliability and adaptation measures
are performed, such as detection of failures and
automatic recovery.

SIP

Transport This is the lowest level at which messages
(rather than packets) are handled. Messages are
addressed to communication ports attached to
processes. Protocols in this layer may be
connection oriented or connectionless.

TCP, LDP

Network Transfers data packets between computers in a
specific network. In a WAN or an Internetwork,
this involves the generation of a route passing
through routers. In a single LAN, no routing is
required.

IP, ATM virtual circuits

Data link Responsible for transmission of packets between
nodes that are directly connected by a physical
link. In a WAN, transmission is between pairs
of routers or between routers and hosts. In a
LAN, it is between any pair of hosts.

Ethernet MAC, ATM cell
transfer, PPP

Physical The circuits and hardware that drive the
network. It transmits sequences of binary data
by analogue signaling, using amplitude or
frequency modulation of electrical signals
(on cable circuits), light signals (on fiber optic
circuits), or other electromagnetic signals
(on radio and microwave circuits).

Ethernet baseband
signaling, ISDN

45Networking and Internetworking

top are personal area networks, networks that are meant for one person.
Beyond these come longer-range networks. These can be divided into local,
metropolitan, and wide area networks, each with increasing scale. Finally,
the connection of two or more networks is called an Internetwork. The
worldwide Internet is certainly the best-known (but not the only) example
of an Internetwork.

2.2.2.1 Personal Area Networks

PANs (Personal Area Networks) let devices communicate over the range of
a person. A common example is a wireless network that connects a com-
puter with its peripherals. Almost every computer has an attached monitor,
keyboard, mouse, and printer. Without using wireless, this connection must
be done with cables. So many new users have a hard time finding the right
cables and plugging them into the right little holes (even though they are
usually color coded) that most computer vendors offer the option of sending
a technician to the user’s home to do it. To help these users, some companies
got together to design a short-range wireless network called Bluetooth to
connect these components without wires. The idea is that if your devices
have Bluetooth, then you need no cables. You just put them down, turn them
on, and they work together. For many people, this ease of operation is a big
plus. PANs can also be built with other technologies that communicate over
short ranges, such as RFID on smartcards and library books.

2.2.2.2 Local Area Networks

Wireless LANs are very popular these days, especially in homes, older office
buildings, cafeterias, and other places where it is too much trouble to install
cables. A LAN is a privately owned network that operates within and nearby
a single building like a home, office, or factory. LANs are widely used to
connect personal computers and consumer electronics to let them share
resources (e.g., printers) and exchange information. When LANs are used by
companies, they are called enterprise networks.

In these systems, every computer has a radio modem and an antenna that
it uses to communicate with other computers. In most cases, each computer
talks to a device in the ceiling called AP (access point), wireless router, or
base station, relays packets between wireless computers and also between
them and the Internet. However, if other computers are close enough, they
can communicate directly with one another in a peer-to-peer configuration.

There is a standard for wireless LANs called IEEE 802.11, popularly known
as Wi-Fi, which has become very widespread. It runs at speeds anywhere
from eleven to hundreds of megabytes per second. Wired LANs use a range
of different transmission technologies. Most of them use copper wires, but
some use optical fiber. LANs are restricted in size, which means that the
worst-case transmission time is bounded and known in advance. Knowing

46 Guide to Cloud Computing for Business and Technology Managers

these bounds helps with the task of designing network protocols. Typically,
wired LANs run at speeds of 100 Mbps to 1 Gbps, have low delay (microsec-
onds or nanoseconds), and make very few errors. Newer LANs can operate
at up to 10 Gbps. Compared to wireless networks, wired LANs exceed them
in all dimensions of performance. It is just easier to send signals over a wire
or a fiber than through the air.

The topology of many wired LANs is built from point-to-point links. IEEE
802.3, popularly called Ethernet, is, by far, the most common type of wired
LAN. In switched Ethernet, each computer speaks the Ethernet protocol and
connects to a box called a switch with a point-to-point link, hence the name.
A switch has multiple ports, each of which can connect to one computer. The
job of the switch is to relay packets between computers that are attached to
it, using the address in each packet to determine which computer to send
it to. Switched Ethernet is a modern version of the original classic Ethernet
design that broadcasts all the packets over a single linear cable. At most one
machine could successfully transmit at a time, and a distributed arbitration
mechanism was used to resolve conflicts. It used a simple algorithm: com-
puters could transmit whenever the cable was idle. If two or more packets
collided, each computer just waited a random time and tried later. To build
larger LANs, switches can be plugged into each other using their ports.

Both wireless and wired broadcast networks can be divided into static and
dynamic designs, depending on how the channel is allocated. A typical static
allocation would be to divide time into discrete intervals and use a round-
robin algorithm, allowing each machine to broadcast only when its time
slot comes up. Static allocation wastes channel capacity when a machine has
nothing to say during its allocated slot, so most systems attempt to allocate
the channel dynamically (i.e., on demand). Dynamic allocation methods for
a common channel are either centralized or decentralized. In the centralized
channel allocation method, there is a single entity, for example, the base sta-
tion in cellular networks, which determines who goes next. It might do this by
accepting multiple packets and prioritizing them according to some internal
algorithm. In the decentralized channel allocation method, there is no central
entity; each machine must decide for itself whether to transmit. You might
think that this approach would lead to chaos, but it does not. Later, we will
study many algorithms designed to bring order out of the potential chaos.

2.2.2.3 Metropolitan Area Networks

A MAN (Metropolitan Area Network) covers a city. The best-known
examples of MANs are the cable television networks available in many cit-
ies. These systems grew from earlier community antenna systems used in
areas with poor over-the-air television reception. In those early systems,
a large antenna was placed on top of a nearby hill and a signal was then
piped to the subscribers’ houses. Cable television is not the only MAN,
though. Recent developments in high-speed wireless Internet access have

47Networking and Internetworking

resulted in another MAN, which has been standardized as IEEE 802.16
and is popularly known as WiMAX.

2.2.2.4 Wide Area Networks

A WAN (Wide Area Network) spans a large geographical area, often a
country or continent. Each of these offices contains computers intended for
running user (i.e., application) programs. The rest of the network that con-
nects these hosts is then called the communication subnet, or just subnet for
short. The job of the subnet is to carry messages from host to host. In most
WANs, the subnet consists of two distinct components: transmission lines
and switching elements. Transmission lines move bits between machines.
They can be made of copper wire, optical fiber, or even radio links. Most
companies do not have transmission lines lying about, so instead, they lease
the lines from a telecommunications company. Switching elements, or just
switches or routers, are specialized computers that connect two or more
transmission lines. When data arrive on an incoming line, the switching ele-
ment must choose an outgoing line on which to forward them.

The WAN, as we have described it, looks similar to a large wired
LAN, but there are some important differences that go beyond
long wires. Usually in a WAN, the hosts and subnet are owned
and operated by different people. Second, the routers will usu-

ally connect different kinds of networking technology. Lastly, subnet(s)
can be entire LANs themselves. This means that many WANs will in
fact be Internetworks or composite networks that are made up of more
than one network.

Rather than lease dedicated transmission lines, a company might connect
its offices to the Internet. Virtual Private Network (VPN) allows connections
to be made between the offices as virtual links that use the underlying capac-
ity of the Internet. Compared to the dedicated arrangement, a VPN has the
usual advantage of virtualization, which is that it provides flexible reuse of
a resource (Internet connectivity), and the usual disadvantage of virtualiza-
tion, which is a lack of control over the underlying resources.

2.2.3 Network Models

Now that we have discussed layered networks in the abstract, it is time to
look at some examples. We will discuss two important network architectures:
the OSI reference model and the TCP/IP reference model. Although the pro-
tocols associated with the OSI model are not used any more, the model itself

48 Guide to Cloud Computing for Business and Technology Managers

is actually quite general and still valid, and the features discussed at each
layer are still very important. The TCP/IP model has the opposite properties:
the model itself is not of much use but the protocols are widely used.

2.2.3.1 OSI Reference Model

The OSI model (minus the physical medium) is shown in Figure 2.1. This
model is based on a proposal developed by the International Standards
Organization (ISO) as a first step toward international standardization of the
protocols used in the various layers. The model is called the ISO OSI (Open
Systems Interconnection) Reference Model because it deals with connecting
open systems—that is, systems that are open for communication with other
systems. We will just call it the OSI model for short.

The OSI model has seven layers. The principles that were applied to arrive
at the seven layers can be briefly summarized as follows:

 1. A layer should be created where a different abstraction is needed.
 2. Each layer should perform a well-defined function.
 3. The function of each layer should be chosen with an eye toward

defining internationally standardized protocols.
 4. The layer boundaries should be chosen to minimize the information

flow across the interfaces.
 5. The number of layers should be large enough that distinct functions

need not be thrown together in the same layer out of necessity and
small enough that the architecture does not become unwieldy.

We describe each layer of the model in turn, starting at the bottom layer. Note
that the OSI model itself is not a network architecture because it does not
specify the exact services and protocols to be used in each layer. It just tells
what each layer should do. However, ISO has also produced standards for all
the layers, although these are not part of the reference model itself. Each one
has been published as a separate international standard. The model (in part)
is widely used although the associated protocols have been long forgotten.

2.2.3.1.1 Physical Layer

The physical layer is concerned with transmitting raw bits over a commu-
nication channel. The design issues have to do with making sure that when
one side sends a 1 bit, it is received by the other side as a 1 bit, not as a 0 bit.
Typical questions here are what electrical signals should be used to repre-
sent a 1 and a 0, how many nanoseconds a bit lasts, whether transmission
may proceed simultaneously in both directions, how the initial connection
is established, how it is torn down when both sides are finished, how many
pins the network connector has, and what each pin is used for. These design

49Networking and Internetworking

issues largely deal with mechanical, electrical, and timing interfaces, as well
as the physical transmission medium, which lies below the physical layer.

2.2.3.1.2 Data Link Layer

The main task of the data link layer is to transform a raw transmission facil-
ity into a line that appears free of undetected transmission errors. It does
so by masking the real errors so the network layer does not see them. It
accomplishes this task by having the sender break up the input data into
data frames (typically a few hundred or a few thousand bytes) and transmit
the frames sequentially. If the service is reliable, the receiver confirms correct
receipt of each frame by sending back an acknowledgement frame.

Another issue that arises in the data link layer (and most of the higher lay-
ers as well) is how to keep a fast transmitter from drowning a slow receiver
in data. Some traffic regulation mechanism may be needed to let the trans-
mitter know when the receiver can accept more data.

Broadcast networks have an additional issue in the data link layer: how to
control access to the shared channel. A special sublayer of the data link layer,
the medium access control sublayer, deals with this problem.

2.2.3.1.3 Network Layer

The network layer controls the operation of the subnet. A key design issue is
determining how packets are routed from source to destination. Routes can
be based on static tables that are wired into the network and rarely changed, or
more often, they can be updated automatically to avoid failed components.
They can also be determined at the start of each conversation, for example,
a terminal session, such as a log-in to a remote machine. Finally, they can be
highly dynamic, being determined anew for each packet to reflect the current
network load. If too many packets are present in the subnet at the same time,
they will get in one another’s way, forming bottlenecks. Handling congestion
is also a responsibility of the network layer, in conjunction with higher layers
that adapt the load they place on the network. More generally, the quality of
service provided (delay, transit time, jitter, etc.) is also a network layer issue.

When a packet has to travel from one network to another to get to its des-
tination, many problems can arise. The addressing used by the second net-
work may be different from that used by the first one. The second one may
not accept the packet at all because it is too large. The protocols may differ,
and so on. It is up to the network layer to overcome all these problems to
allow heterogeneous networks to be interconnected. In broadcast networks,
the routing problem is simple, so the network layer is often thin or even
nonexistent.

2.2.3.1.4 Transport Layer

The basic function of the transport layer is to accept data from above it, split
them up into smaller units if need be, pass these to the network layer, and

50 Guide to Cloud Computing for Business and Technology Managers

ensure that the pieces all arrive correctly at the other end. Furthermore, all
this must be done efficiently and in a way that isolates the upper layers from
the inevitable changes in the hardware technology over the course of time.
The transport layer also determines what type of service to provide to the
session layer and, ultimately, to the users of the network. The most popu-
lar type of transport connection is an error-free point-to-point channel that
delivers messages or bytes in the order in which they were sent. However,
other possible kinds of transport service exist, such as the transporting of
isolated messages with no guarantee about the order of delivery and the
broadcasting of messages to multiple destinations. The type of service is
determined when the connection is established.

As an aside, an error-free channel is completely impossible to
achieve; what people really mean by this term is that the error
rate is low enough to ignore in practice.

The transport layer is a true end-to-end layer; it carries data all the way
from the source to the destination. In other words, a program on the source
machine carries on a conversation with a similar program on the destination
machine, using the message headers and control messages. In the lower lay-
ers, each protocols is between a machine and its immediate neighbors, and
not between the ultimate source and destination machines, which may be
separated by many routers. The difference between layers 1–3, which are
chained, and layers 4–7, which are end-to-end, is illustrated in Figure 2.1.

2.2.3.1.5 Session Layer

The session layer allows users on different machines to establish sessions
between them. Sessions offer various services, including dialog control
(keeping track of whose turn it is to transmit), token management (prevent-
ing two parties from attempting the same critical operation simultaneously),
and synchronization (checkpointing long transmissions to allow them to pick
up from where they left off in the event of a crash and subsequent recovery).

2.2.3.1.6 Presentation Layer

Unlike the lower layers, which are mostly concerned with moving bits
around, the presentation layer is concerned with the syntax and semantics
of the information transmitted. In order to make it possible for computers
with different internal data representations to communicate, the data struc-
tures to be exchanged can be defined in an abstract way, along with a stan-
dard encoding to be used on the wire. The presentation layer manages these
abstract data structures and allows higher-level data structures (e.g., bank-
ing records) to be defined and exchanged.

51Networking and Internetworking

2.2.3.1.7 Application Layer

The application layer contains a variety of protocols that are commonly
needed by users. One widely used application protocol is (HyperText
Transfer Protocol), which is the basis for the WWW. When a browser wants
a Web page, it sends the name of the page it wants to the server hosting the
page using HTTP. The server then sends the page back. Other application
protocols are used for file transfer, electronic mail, and network news.

2.2.3.2 TCP/IP Reference Model

Let us now turn from the OSI reference model to the reference model used in
the grandparent of all wide area computer networks, the ARPANET, and its
successor, the worldwide Internet. Although we will give a brief history of
the ARPANET later, it is useful to mention a few key aspects of it now. The
ARPANET was a research network sponsored by the DoD (U.S. Department
of Defense). It eventually connected hundreds of universities and government
installations, using leased telephone lines. When satellite and radio networks
were added later, the existing protocols had trouble interworking with them,
so a new reference architecture was needed. Thus, from nearly the beginning,
the ability to connect multiple networks in a seamless way was one of the major
design goals. This architecture later became known as the TCP/IP Reference
Model, after its two primary protocols. Given the DoD’s worry that some of
its precious hosts, routers, and Internetwork gateways might get blown to
pieces at a moment’s notice by an attack from the Soviet Union, another major
goal was that the network be able to survive loss of subnet hardware, without
existing conversations being broken off. In other words, the DoD wanted con-
nections to remain intact as long as the source and destination machines were
functioning, even if some of the machines or transmission lines in between
were suddenly put out of operation. Furthermore, since applications with
divergent requirements were envisioned, ranging from transferring files to
real-time speech transmission, a flexible architecture was needed.

2.2.3.2.1 Link Layer

All these requirements led to the choice of a packet-switching network
based on a connectionless layer that runs across different networks. The
lowest layer in the model, the link layer, describes what links such as serial
lines and classic Ethernet must do to meet the needs of this connectionless
Internet layer. It is not really a layer at all, in the normal sense of the term,
but rather an interface between hosts and transmission links. Early material
on the TCP/IP model has little to say about it.

2.2.3.2.2 Internet Layer

The Internet layer is the linchpin that holds the whole architecture together.
Its job is to permit hosts to inject packets into any network and have them

52 Guide to Cloud Computing for Business and Technology Managers

travel independently to the destination (potentially on a different network).
They may even arrive in a completely different order than they were sent, in
which case, it is the job of higher layers to rearrange them, if in-order deliv-
ery is desired. Note that Internet is used here in a generic sense, even though
this layer is present in the Internet.

The analogy here is with the (snail) mail system. A person can drop
a sequence of international letters into a mailbox in one country, and
with a little luck, most of them will be delivered to the correct address in
the destination country. The letters will probably travel through one or
more international mail gateways along the way, but this is transparent
to the users. Furthermore, that each country (i.e., each network) has its
own stamps, preferred envelope sizes, and delivery rules is hidden from
the users. The Internet layer defines an official packet format and pro-
tocol called IP, plus a companion protocol called ICMP (Internet Control
Message Protocol), that helps it function. The job of the Internet layer is to
deliver IP packets where they are supposed to go. Packet routing is clearly
a major issue here, as is congestion (though IP has not proven effective at
avoiding congestion).

2.2.3.2.3 Transport Layer

The layer above the Internet layer in the TCP/IP model is now usually called
the transport layer. It is designed to allow peer entities on the source and
destination hosts to carry on a conversation, just as in the OSI transport layer.
Two end-to-end transport protocols have been defined here. The first one,
TCP (Transmission Control Protocol), is a reliable connection-oriented proto-
col that allows a byte stream originating on one machine to be delivered with-
out error on any other machine in the Internet. It segments the incoming byte
stream into discrete messages and passes each one on to the Internet layer. At
the destination, the receiving TCP process reassembles the received messages
into the output stream. TCP also handles flow control to make sure a fast
sender cannot swamp a slow receiver with more messages than it can handle.

The second protocol in this layer, UDP (User Datagram Protocol), is an
unreliable, connectionless protocol for applications that do not want TCP’s
sequencing or flow control and wish to provide their own. It is also widely
used for one-shot, client–server-type request–reply queries and applica-
tions in which prompt delivery is more important than accurate delivery,
such as transmitting speech or video. Since the model was developed, IP
has been implemented on many other networks.

2.2.3.2.4 Application Layer

The TCP/IP model does not have session or presentation layers. No need for
them was perceived. Instead, applications simply include any session and
presentation functions that they require. Experience with the OSI model has
proven this view correct: these layers are of little use to most applications.

53Networking and Internetworking

On top of the transport layer is the application layer. It contains all the
higher-level protocols. The early ones included virtual terminal (TELNET),
file transfer (FTP), and electronic mail (SMTP). Many other protocols have
been added to these over the years. Some important ones include the
Domain Name System (DNS), for mapping host names onto their network
addresses; HTTP, the protocol for fetching pages on the WWW; and RTP,
the protocol for delivering real-time media such as voice or movies.

OSI VERSUS TCP/IP REFERENCE MODEL

The OSI reference model was devised before the corresponding
protocols were invented. This ordering meant that the model
was not biased toward one particular set of protocols, a fact

that made it quite general. The downside of this ordering was that
the designers did not have much experience with the subject and did
not have a good idea of which functionality to put in which layer. For
example, the data link layer originally dealt only with point-to-point
networks. When broadcast networks came around, a new sublayer had
to be hacked into the model. Furthermore, no thought was given to
Internetworking. With TCP/IP, the reverse was true: the protocols came
first, and the model was really just a description of the existing proto-
cols. There was no problem with the protocols fitting the model. They
fit perfectly. The only trouble was that the model did not fit any other
protocol stacks. Consequently, it was not especially useful for describ-
ing other non-TCP/IP networks.

2.3 Internet

The origins of the Internet can be traced to the U.S. government support of
the ARPANET project. Computers in several U.S. universities were linked
via packet switching, and this allowed messages to be sent between the uni-
versities that were part of the network. The use of ARPANET was limited
initially to academia and to the U.S. military, and in the early years, there
was little interest from industrial companies.

However, by the mid-1980s, there were over 2000 hosts on the TCP/
IP-enabled network, and the ARPANET was becoming more heavily used
and congested. It was decided to shut down the network by the late 1980s,
and the National Science Foundation in the United States commenced work
on the NSFNET. This work commenced in the mid-1980s, and the network

54 Guide to Cloud Computing for Business and Technology Managers

consisted of multiple regional networks connected to a major backbone. The
original links in NSFNET were 56 Kbps, but these were later updated to the
faster T1 (1.544 Mbps) links. The NSFNET T1 backbone initially connected
13 sites, but this increased due to a growing interest from academic and
industrial sites in the United States and from around the world. The NSF
began to realize from the mid-1980s onward that the Internet had significant
commercial potential.

The NSFNET backbone was upgraded with T1 links in 1988, and the
Internet began to become more international. Sites in Canada and several
European countries were connected to the Internet. DARPA formed the
Computer Emergency Response Team (CERT) to deal with any emergency
incidents arising during the operation of the network. Advanced Network
Services (ANS) was founded in 1991. This was an independent not-for-profit
company, and it installed a new network that replaced the NSFNET T1 net-
work. The ANSNET backbone operated over T3 (45 Mbps) links, and it was
different from previous networks such as ARPANET and NSFNET in that
it was owned and operated by a private company rather than the U.S. gov-
ernment. The NSF decided to focus on research aspects of networks rather
than the operational side. The ANSNET network was a move away from a
core network such as NSFET to a distributive network architecture oper-
ated by commercial providers such as Sprint, MCI, and BBN. The network
was connected by major network exchange points, termed Network Access
Points (NAPs). There were over 160,000 hosts connected to the Internet by
the late 1980s.

2.3.1 Internet Services

2.3.1.1 Electronic Mail (E-Mail)

Electronic mail, or e-mail, is the computerized version of writing a letter and
mailing it at the local post office. Many people are so committed to using
e-mail that if it were taken away tomorrow, some serious social and eco-
nomic repercussions would be felt throughout the United States and the rest
of the world. Many commercial e-mail programs are in existence, as well as
a number of free ones that can be downloaded from the Internet. Although
each e-mail program has its own unique feel and options, most offer the fol-
lowing services:

• Creating an e-mail message
• Sending an e-mail message to one recipient, multiple recipients, or

a mailing list
• Receiving, storing, replying to, and forwarding e-mail messages
• Attaching a file, such as a word-processing document, a spreadsheet,

an image, or a program, to an outgoing e-mail message

55Networking and Internetworking

2.3.1.2 File Transfer Protocol (FTP)

The File Transfer Protocol, or FTP, was one of the first services offered on
the Internet. Its primary functions are to allow a user to download a file
from a remote site to the user’s computer and to upload a file from the user’s
computer to a remote site. These files could contain data, such as numbers,
text, or images, or executable computer programs. Although the WWW has
become the major vehicle for retrieving text- and image-based documents,
many organizations still find it useful to create an FTP repository of data
and program files.

2.3.1.3 Remote Log-In (Telnet)

Remote log-in, or Telnet, is a terminal emulation program for TCP/IP net-
works, such as the Internet, that allows users to log in to a remote computer.
The Telnet program runs on your computer and connects your workstation
to a remote server on the Internet. Once you are connected to the remote
server or host, you can enter commands through the Telnet program, and
those commands will be executed as if you were entering them directly at
the terminal of the remote computer.

2.3.1.4 Voice-Over-IP

One of the newer services that is attracting the interest of companies and
home users alike is the sending of voice signals over an IP-based network
such as the Internet. The practice of making telephone calls over the Internet
has had a number of different names, including packet voice, voice-over
packet, voice over the Internet, Internet telephony, and Voice-over-IP (VoIP).
But it appears the industry has settled on the term Voice over IP, in refer-
ence to the Internet Protocol (IP), which controls the transfer of data over the
Internet. Whatever its title, Voice over IP has emerged as one of the hottest
Internet services and has certainly drawn the attention of many companies.

2.3.1.5 Listservs

A listserv is a popular software program used to create and manage Internet
mailing lists. Listserv software maintains a table of e-mail addresses that
reflects the current members of the listserv. When an individual sends an
e-mail to the listserv address, the listserv sends a copy of this e-mail message
to every e-mail address stored in the listserv table. Thus, every member of
the listserv receives the e-mail message.

2.3.1.6 Streaming Audio and Video

Streaming audio and video involves the continuous download of a com-
pressed audio or video file, which can then be heard or viewed on the user’s

56 Guide to Cloud Computing for Business and Technology Managers

workstation. Typical examples of streaming audio are popular and classical
music, live radio broadcasts, and historical or archived lectures, music, and
radio broadcasts. Typical examples of streaming video include prerecorded
television shows and other video productions, lectures, and live video pro-
ductions. Businesses can use streaming audio and video to provide training
videos, product samples, and live feeds from corporate offices, to name a few
examples.

2.3.1.7 Instant Messages, Tweets, and Blogs

Instant messaging (IM) allows a user to see if people are currently logged
in on the network and, if they are, to send them short messages in real time.
Many users, especially those in the corporate environment, are turning away
from e-mail and using instant messaging as a means of communicating. The
advantages of instant messaging include real-time conversations, server stor-
age savings (because you are not storing and forwarding instant messages,
as you would e-mails), and the capability to carry on a silent conversation
between multiple parties. Service providers such as AOL, Microsoft’s MSN,
and Yahoo!, as well as a number of other software companies, incorporate
instant messaging into their products.

2.4 World Wide Web

The WWW was invented by Tim Berners-Lee in 1990 at CERN in Geneva,
Switzerland. CERN is a key European and international center for research in
the nuclear field, and several thousand physicists and scientists work there.
Berners-Lee first came to CERN in 1980 for a short contract programming
assignment. He came from a strong scientific background as both his parents
had been involved in the programming of the Mark I computer at Manchester
University in the 1950s. He graduated in physics in the mid-1970s at Oxford
University in England. Berners-Lee’s invention of the WWW was a revolution-
ary milestone in computing. It has transformed the way that businesses oper-
ate as well as transforming the use of the Internet from mainly academic (with
some commercial use) to an integral part of peoples’ lives.

One of the problems that scientists at CERN faced was that of keeping
track of people, computers, documents, databases, etc. This problem was
more acute due to the international nature of CERN, as the center had many
visiting scientists from overseas who spent several months there. It also
had a large pool of permanent staff. Visiting scientists used to come and
go, and in the late 1980s, there was no efficient and effective way to share
information among scientists. It was often desirable for a visiting scientist
to obtain information or data from the CERN computers. In other cases,

57Networking and Internetworking

the scientist wished to make results of their research available to CERN in
an easy manner. Berners-Lee developed a program called Enquire to assist
with information sharing, and the program also assisted in keeping track
of the work of visiting scientists. He returned to CERN in the mid-1980s to
work on other projects, and he devoted part of his free time to consider solu-
tions to the information sharing problem. This was eventually to lead to his
breakthrough and his invention of the WWW in 1990.

His vision and its subsequent realization was beneficial to both CERN and
the wider world. He envisioned that all information stored on computers
everywhere was linked and computers were programmed to create a space
where everything could be linked to everything. Berners-Lee essentially cre-
ated a system to give every page on a computer a standard address. This
standard address is called the universal resource locator and is better known
by its acronym URL. Each page is accessible via the hypertext transfer proto-
col (HTTP), and the page is formatted with the hypertext markup language
(HTML). Each page is visible using a Web browser.

The characteristic features of the WWW are as follows:

 1. Universal Resource Identifier (later renamed to Universal Resource Locator
[URL]). This provides a unique address code for each Web page.
Browsers decode the URL location to access the Web page. For exam-
ple, www.amazon.com uniquely identifies the Amazon.com host
website in the United States.

 2. Hyper Text Markup Language (HTML) is used for designing the layout
of Web pages. It allows the formatting of pages containing hypertext
links. HTML is standardized and controlled by the World Wide Web
Consortium (http://www.w3.org).

 3. The Hypertext Transport Protocol (HTTP) allows a new Web page to be
accessed from the current page.

 4. A browser is a client program that allows a user to interact with the
pages and information on the WWW. It uses the HTTP protocol to
make requests of Web servers throughout the Internet on behalf of
the browser user.

Inventors tend to be influenced by existing inventions and especially inven-
tions that are relevant to their areas of expertise. The Internet was a key exist-
ing invention, and it allowed worldwide communication via electronic e-mail,
the transfer of files electronically via FTP, and newsgroups that allowed users
to make postings on various topics. Another key invention that was relevant
to Berners-Lee was that of hypertext. This was invented by Ted Nelson in the
1960s, and it allows links to be present in text. For example, a document such
as a book contains a table of contents, an index, and a bibliography. These
are all links to material that is either within the book itself or external to the
book. The reader of a book is able to follow the link to obtain the internal or

58 Guide to Cloud Computing for Business and Technology Managers

external information. The other key invention that was relevant to Berners-
Lee was that of the mouse. This was invented by Doug Engelbart in the 1960s,
and it allowed the cursor to be steered around the screen.

The major leap that Berners-Lee made was essentially a marriage of the
Internet, hypertext, and the mouse into what has become the World Wide
Web. He was especially concerned with allowing communication across
computers and software of different types. He also wanted to avoid the
structure of most databases, which forced people to put information into
categories before they knew if such classifications were appropriate or not.
To these ends, he devised a Universal Resource Identifier (later called the
Uniform Resource Locator or URL) that could point to any document (or
any other type of resource) in the universe of information. In place of the
File Transfer Protocol then in use, he created a more sophisticated Hypertext
Transfer Protocol (HTTP), which was faster and had more features. Finally,
he defined an Hypertext Markup Language (HTML) for the movement of
hypertext across the network. Within a few years, these abbreviations, along
with WWW for the World Wide Web itself, would be as common as RAM, K,
or any other jargon in the computer field.

In order to create and display Web pages, some type of markup language
is necessary. While there are many types of markup languages, we will
briefly introduce three common types here: Hypertext Markup Language
(HTML), dynamic Hypertext Markup Language (dynamic HTML), and
eXtensible Markup Language (XML). HTML, D-HTML, and XML are mem-
bers of a family of markup languages called Standard Generalized Markup
Language (SGML). Despite the name, SGML itself is not a markup language,
but a description of how to create a markup language. To put it another
way, SGML is a metalanguage. Hypertext Markup Language (HTML) is a
set of codes inserted into a document that is intended for display on a Web
browser. The codes, or markup symbols, instruct the browser how to dis-
play a Web page’s text, images, and other elements. The individual markup
codes are often referred to as tags and are surrounded by brackets (< >). Most
HTML tags consist of an opening tag, followed by one or more attributes,
and a closing tag. Closing tags are preceded by a forward slash (/). Attributes
are parameters that specify various qualities that an HTML tag can take on.
For example, a common attribute is HREF, which specifies the URL of a file
in an anchor tag (<A>).

2.4.1 Origin of the World Wide Web Browser

The invention of the WWW by Berners-Lee was a revolution in the use of the
Internet. Users could now surf the Web: that is, hyperlink among the millions
of computers in the world and obtain information easily. The WWW creates
a space in which users can access information easily in any part of the world.
This is done using only a Web browser and simple Web addresses. Browsers
are used to connect to remote computers over the Internet and to request,

59Networking and Internetworking

retrieve, and display the Web pages on the local machine. The user can then
click on hyperlinks on Web pages to access further relevant information that
may be on an entirely different continent. Berners-Lee developed the first Web
browser called the World-Wide Web browser. He also wrote the first browser
program, and this allowed users to access Web pages throughout the world.

The early browsers included Gopher developed at the University
of Minnesota and Mosaic developed at the University of Illinois.
These were replaced in later years by Netscape, and the objec-
tive of its design was to create a graphical-user interface browser

that would be easy to use and would gain widespread acceptance in
the Internet community. Initially, the Netscape browser dominated the
browser market, and this remained so until Microsoft developed its
own browser called Internet Explorer. Microsoft’s browser would even-
tually come to dominate the browser market, after what became known
as the browser wars. The eventual dominance of Microsoft Internet
explorer was controversial, and it was subject to legal investigations in
the United States. The development of the graphical browsers led to the
commercialization of the WWW.

The WWW got off to a slow start. Its distinctive feature, the ability to jump
to different resources through hyperlinks, was of little use until there were
at least a few other places besides CERN that supported it. Until editing soft-
ware was written, users had to construct the links in a document by hand,
a very tedious process. To view Web materials, one used a program called a
browser (the term may have originated with Apple’s HyperCard). Early Web
browsers (including two called Lynx and Viola) presented screens that were
similar to Gopher’s, with a list of menu selections.

Around the fall of 1992, Marc Andreessen and Eric Bina began discuss-
ing ways of making it easier to navigate the Web. While still a student at the
University of Illinois, Andreessen took a job programming for the National
Center for Supercomputing Applications, a center set up with NSF that was
also the impetus for the original ARPANET. By January 1993, Andreessen and
Bina had written an early version of a browser they would later call Mosaic,
and they released a version of it over the Internet. Mosaic married the ease of
use of Hypercard with the full hypertext capabilities of the WWW. To select
items, one used a mouse (thus circling back to Doug Engelbart, who invented
it for that purpose). One knew an item had a hyperlink by its different color.
A second feature of Mosaic, the one that most impressed the people who first
used it, was its seamless integration of text and images. With the help of oth-
ers at NCSA, Mosaic was rewritten to run on Windows-based machines and
Macintoshes as well as workstations. As a product of a government-funded
laboratory, Mosaic was made available free or for a nominal charge.

60 Guide to Cloud Computing for Business and Technology Managers

Andreessen managed to commercialize his invention quickly. In early
1994, he was approached by Jim Clark, the founder of Silicon Graphics,
who suggested that they commercialize the invention. Andreessen agreed,
but apparently the University of Illinois objected to this idea. Like the
University of Pennsylvania a half-century before it, Illinois saw the value
of the work done on its campus, but it failed to see the much greater value
of the people who did that work. Clark left Silicon Graphics and with
Andreessen founded Mosaic Communications that spring. The University
of Illinois asserted its claim to the name Mosaic, so the company changed
its name to Netscape Communications Corporation. Clark and Andreessen
visited Champaign-Urbana and quickly hired many of the programmers
who had worked on the software. Netscape introduced its version of the
browser in September 1994. The University of Illinois continued to offer
Mosaic, in a licensing agreement with another company, but Netscape’s
software quickly supplanted Mosaic as the most popular version of the
program.

2.4.2 Applications of the World Wide Web

Berners-Lee used the analogy of the market economy to describe the com-
mercial potential of the WWW. He realized that the WWW offered the poten-
tial to conduct business in cyberspace without human interaction, rather than
the traditional way of buyers and sellers coming together to do business in
the market place. Anyone can trade with anyone else except that they do not
have to go to the market square to do so. The invention of the WWW was
announced in August 1991, and the growth of the Web has been phenomenal
since then. The growth has often been exponential, and exponential growth
rate curves became a feature of newly formed Internet companies and their
business plans.

The WWW is revolutionary in that

• No single organization is controlling the Web
• No single computer is controlling the Web
• Millions of computers are interconnected
• It is an enormous market place of millions (billions) of users
• The Web is not located in one physical location
• The Web is a space and not a physical thing

The WWW has been applied to many areas including

• Travel industry (booking flights, train tickets, and hotels)
• e-marketing
• Portal sites (such as Yahoo! and Hotmail)

61Networking and Internetworking

• Ordering books and CDs over the Web (such as www.amazon.com)
• Recruitment services (such as www.jobserve.com)
• Internet banking
• Online casinos (for gambling)
• Newspapers and news channels
• Online shopping and shopping malls

Berners-Lee invented the well-known terms such as URL, HTML, and
WWW, and these terms are ubiquitous today. Berners-Lee is now the direc-
tor of the World Wide Web Consortium, and this MIT-based organization
sets the software standards for the Web.

2.5 Semantic Web

While the Web keeps growing at an astounding pace, most Web pages
are still designed for human consumption and cannot be processed by
machines. Similarly, while Web search engines help retrieve Web pages,
they do not offer support to interpret the results—for that, human inter-
vention is still required. As the size of search results is often just too big
for humans to interpret, finding relevant information on the Web is not
as easy as we would desire. The existing Web has evolved as a medium
for information exchange among people, rather than machines. As a
consequence, the semantic content, that is, the meaning of the informa-
tion on a Web page, is coded in a way that is accessible to human beings
only. Today’s Web may be defined as the Syntactic Web, where informa-
tion presentation is carried out by computers, and the interpretation and
identification of relevant information is delegated to human beings. With
the volume of available digital data growing at an exponential rate, it is
becoming virtually impossible for human beings to manage the complex-
ity and volume of the available information. This phenomenon, often
referred to as information overload, poses a serious threat to the continued
usefulness of today’s Web.

As the volume of Web resources grows exponentially, researchers from
industry, government, and academia are now exploring the possibility
of creating a Semantic Web in which meaning is made explicit, allowing
machines to process and integrate Web resources intelligently. Biologists
use a well-defined taxonomy, the Linnaean taxonomy, adopted and shared
by most of the scientific community worldwide. Likewise, computer sci-
entists are looking for a similar model to help structure Web content. In
2001, T. Berners-Lee, J. Hendler, and O. Lassila published a revolutionary

62 Guide to Cloud Computing for Business and Technology Managers

article in Scientific American titled “The Semantic Web: A New Form of Web
Content That Is Meaningful to Computers Will Unleash a Revolution of
New Possibilities”*.

The semantic web is an extension of the current Web in which infor-
mation is given well-defined meaning, enabling computers and people to
work in cooperation. In the lower part of the architecture, we find three
building blocks that can be used to encode text (Unicode), to identify
resources on the Web (URIs) and to structure and exchange information
(XML). Resource Description Framework (RDF) is a simple, yet power-
ful data model and language for describing Web resources. The SPARQL
Protocol and RDF Query Language (SPARQL) is the de facto standard used
to query RDF data. While RDF and the RDF Schema provide a model for
representing Semantic Web data and for structuring semantic data using
simple hierarchies of classes and properties, respectively, the SPARQL
language and protocol provide the means to express queries and retrieve
information from across diverse Semantic Web data sources. The need for
a new language is motivated by the different data models and semantics
at the level of XML and RDF, respectively.

Ontology is a formal, explicit specification of a shared conceptualization of
a particular domain—concepts are the core elements of the conceptualization
corresponding to entities of the domain being described, and properties and
relations are used to describe interconnections between such concepts. Web
Ontology Language (OWL) is the standard language for representing knowl-
edge on the Web. This language was designed to be used by applications
that need to process the content of information on the Web instead of just
presenting information to human users. Using OWL, one can explicitly rep-
resent the meaning of terms in vocabularies and the relationships between
those terms. The Rule Interchange Format (RIF) is the W3C Recommendation
that defines a framework to exchange rule-based languages on the Web. Like
OWL, RIF defines a set of languages covering various aspects of the rule
layer of the Semantic Web.

2.6 Internet of Things

Just like the Internet and Web connecting humans, the Internet of Things
(IoT) is a revolutionary way of architecting and implementing systems and
services based on evolutionary changes. The Internet as we know it is trans-
forming radically, from an academic network in the 1980s and early 1990s to

* Berners-Lee, T.; Lassila, O.; Hendler, J. (2001) The semantic web: A new form of Web content
that is meaningful to computers will unleash a revolution of new possibilities. Scientific
American, 284(5), pp. 34–43.

63Networking and Internetworking

a mass-market, consumer-oriented network. Now, it is set to become fully
pervasive, connected, interactive, and intelligent. Real-time communication is
possible not only by humans but also by things at any time and from anywhere.

It is quite likely that sooner or later the majority of items connected to the
Internet will not be humans, but things. IoT will primarily expand commu-
nication from the 7 billion people around the world to the estimated 50 to
70 billion machines. This would result in a world where everything is con-
nected and can be accessed from anywhere—this has a potential of connect-
ing 100 trillion things that are deemed to exist on Earth. With the advent of
IoT, the physical world itself will become a connected information system.
In the world of the IoT, sensors and actuators embedded in physical objects
are linked through wired and wireless networks that connect the Internet.
These information systems churn out huge volumes of data that flow to com-
puters for analysis. When objects can both sense the environment and com-
municate, they become tools for understanding the complexity of the real
world and responding to it swiftly.

This would also mean significant opportunities for the telecom
industry to develop new IoT subscribers that would easily over-
take the number of current subscribers based on population.

Internet of Things (IoT) can be defined as the network formed by things or objects
having identities and virtual personalities that interact using intelligent interfaces
to connect and communicate with the users, social and environmental contexts.
IoT is also referred as pervasive or ubiquitous computing systems. The
goal of IoT is to achieve pervasive IoT connectivity and grand integration
and to provide secure, fast, and personalized functionalities and services
such as monitoring, sensing, tracking, locating, alerting, scheduling, con-
trolling, protecting, logging, auditing, planning, maintenance, upgrading,
data mining, trending, reporting, decision support, dashboard, back-office
applications, and so on.

IoT would be closely associated with environmental, societal, and eco-
nomic issues such as climate change, environment protection, energy sav-
ing, and globalization. For these reasons the IoT would be increasingly used
in a large number of sectors like health care, energy and environment, safety
and security, transportation, logistics, and manufacturing.

Major IoT applications in various sectors are as follows:

• Energy and Power: Supply/Alternatives/Demand. Turbines, genera-
tors, meters, substations, switches

• Healthcare: Care/Personal/Research. Medical devices, imaging,
diagnostics, monitor, surgical equipment

64 Guide to Cloud Computing for Business and Technology Managers

• Buildings: Institutional/Commercial/Industrial/Home. HVAC, fire
and safety, security, elevators, access control systems, lighting

• Industrial: Process Industries/Forming/Converting/Discrete
Assembly/Distribution/Supply Chain. Pumps, valves, vessels, tanks,
automation and control equipment, capital equipment, pipelines

• Retail: Stores/Hospitality/Services. Point-of-sale terminals, vending
machines, RFID tags, scanners and registers, lighting and refrigera-
tion systems

• Security and Infrastructure: Homeland Security/Emergency
Services/National and Regional Defense. GPS systems, radar sys-
tems, environmental sensors, vehicles, weaponry, fencing

• Transportation: On-Road Vehicles/Off-Road Vehicles/
Nonvehicular/Transport Infrastructure. Commercial vehicles, air-
planes, trains, ships, signage, tolls, RF tags, parking meters, surveil-
lance cameras, tracking systems

• Information Technology and Network Infrastructure: Enterprise/
Data Centers. Switches, servers, storage

• Resources: Agriculture/Mining/Oil/Gas/Water. Mining equip-
ment, drilling equipment, pipelines, agricultural equipment

• Consumer/Professional: Appliances/White Goods/Office Equip-
ment/Home Electronics. M2M devices, gadgets, smartphones, tablet
PCs, home gateways

In terms of the type of technological artifacts involved, the IoT applications
can be subdivided into four categories:

 a. The Internet of Devices: Machine-to-Machine (M2M)
 M2M refers to technologies that allow both wireless and wired

devices to communicate with each other or, in most cases, a central-
ized server. An M2M system uses devices (such as sensors or meters)
to capture events (such as temperature or inventory level), which are
relayed through a network (wireless, wired, or hybrid) to an appli-
cation (software program) that translates the captured events into
meaningful information. M2M communication is a relatively new
business concept, born from the original telemetry technology, uti-
lizing similar technologies but modern versions.

 b. The Internet of Objects: Radio-frequency Identification (RFID)
 RFID uses radio waves to transfer data from an electronic tag

attached to an object to a central system through a reader for the
purpose of identifying and tracking the object.

65Networking and Internetworking

 c. The Internet of Transducers: Wireless Sensor Networks (SNS)
 SNS consists of spatially distributed autonomous sensors to monitor

physical or environmental conditions, such as temperature, sound,
vibration, pressure, motion, or pollutants, and to cooperatively pass
their data through the network to a main location. The more modern
networks are bidirectional, becoming wireless sensor and actuator
networks (WSANs) enabling the control of sensor activities.

 d. The Internet of Controllers: Supervisory Control and Data
Acquisition (SCADA)

 SCADA is an autonomous system based on closed-loop control the-
ory or a smart system or a cyber physical system (CPS) that connects,
monitors, and controls equipment via the network (mostly wired
short-range networks, sometimes wireless or hybrid) in a facility
such as a plant or a building.

2.7 Summary

This chapter describes the genesis of computer networks at ARPANET, the
nature and type of networks, and the standard network models. It recounts
briefly the history of invention of the Internet and the WWW, ending with
some practical applications of the WWW.

67

3
Distributed Systems

3.1 Distributed Applications

Distributed applications consist of a collection of heterogeneous but fully
autonomous components that can execute on different computers. While
each of these components has full control over its constituent subparts, there
is no master component that possesses control over all the components of a
distributed system. Thus, for the system to appear as a single and integrated
whole, the various components need to be able to interact with each other via
predefined interfaces through a computer network.

The characteristic global features of a successful distributed application
are as follows:

• Distributed systems are heterogeneous, arising from the need to, say,
integrate components on a legacy IBM mainframe with the compo-
nents newly created to operate on a UNIX workstation or Windows
NT machine.

• Distributed systems are scalable in that when a component becomes
overloaded with too many requests or users, another replica of the
same component can be instantiated and added to the distributed
system to share the load among them. Moreover, these instantiated
components can be located closer to the local users and other inter-
acting components to improve the performance of the overall dis-
tributed system.

• Distributed systems execute components concurrently in a multi-
threaded mode via multiply invoked components corresponding to
the number of simultaneously invoked processes.

• Distributed systems are fault tolerant in that they duplicate compo-
nents on different computers so that if one computer fails, another
can take over without affecting the availability of the overall system.

• Distributed systems are more resilient in that whereas distributed
systems have multiple points of failure, the unaffected components
are fully operational even though some of the components are not

68 Guide to Cloud Computing for Business and Technology Managers

functional or are malfunctioning. Moreover, the distributed system
could invoke another instance of the failed components along with
the corresponding state of the process (characterized by the program
counter, the register variable contents, and the state of the virtual
memory used by the process) to continue with the process.

• Distributed systems demonstrate invariance or transparency with
reference to characteristics like
• Accessibility, either locally or across networks to the components
• Physical location of the components
• Migration of components from one host to another
• Replication of components, including their states
• Concurrency of components requesting services from shared

components
• Scalability in terms of the actual number of requests or users at

any instance
• Performance in terms of the number and type of available

resources
• Points of failure, be it failure of the component, network, or

response

Performance transparency is achievable through the technique
of load balancing that is based on the replication transparency.
The middleware layer transparently decides on the balancing
decision to select the replica with the least load to provide the

requested service. Furthermore, the performance can also be prevented
from degrading by continuously monitoring the patterns of access to
components and migrating the components appropriately to minimize
remote access.

3.1.1 N-Tier Application Architecture

In the 1980s, the prior monolithic architecture began to be replaced by the
client/server architecture, which split applications into two pieces in an
attempt to leverage new inexpensive desktop machines. Distributing the pro-
cessing loads across many inexpensive clients allowed client/server applica-
tions to scale more linearly than single host/single process applications could,
and the use of off-the-shelf software like relational database management sys-
tems (RDBMS) greatly reduced application development time. While the cli-
ent could handle the user interface and data display tasks of the application,
and the server could handle all the data management tasks, there was no clear
solution for storing the logic corresponding to the business processes being

69Distributed Systems

automated. Consequently, the business logic tended to split between the cli-
ent and the server; typically, the rules for displaying data became embedded
inside the user interface, and the rules for integrating several different data
sources became stored procedures inside the database. Whereas this division
of logic made it difficult to reuse the user interface code with a different data
source, it also made it equally difficult to use the logic stored in the database
with a different front-end user interface (like ATM and mobile) without being
required to redevelop the logic implemented in the earlier interface. Thus, a
customer service system developed for a particular client system (like a 3270
terminal, a PC, or a workstation) would have great difficulty in providing
telephony and Internet interfaces with the same business functionality.

The client/server architecture failed to recognize the importance of man-
aging the business rules applicable to an enterprise independent of both the
user interface and the storage and management of enterprise data. The three-
tiered application architecture of the 1990s resolved this problem by subdi-
viding the application into three distinct layers:

 1. Data management, which stores and manages data independent of
how they are processed and displayed by the other layers

 2. Business logic, which implements the business logic to process data
independent of how they are stored or displayed by the other two
layers

 3. Presentation, which formats and displays the data independent of the
way they are interpreted/processed and stored by the other two layers

With the advent of the Internet in the past few years, the three tiers were split
even further to accommodate the heterogeneity in terms of the user interfaces,
processing systems, or databases existing in various parts of an enterprise.

The power of the n-tier architecture derives from the fact that
instead of treating components as integral parts of applications,
components are treated as stand-alone entities, which can pro-
vide services for applications. Applications exist only as cooper-

ating constellation of components, and each component in turn can
simultaneously be part of many different applications.

3.1.1.1 N-Tier Architecture Advantage

The n-tier architecture has many advantages over the more traditional client/
server architecture:

• Agile software: The n-tier architecture is useful in creating more flex-
ible and easily modifiable software. By treating software compo-
nents as stand-alone data providers, middleware service providers,

70 Guide to Cloud Computing for Business and Technology Managers

business service providers, and service consumers, the n-tier archi-
tecture creates software infrastructure of reusable parts.

• Maintainable software: The n-tier architecture is useful in creating
more maintainable and easily upgradeable software. Because soft-
ware components are stand-alone reusable parts of business logic,
they are used from the same place without the need for multiplica-
tion or replication and are therefore easier to change and upgrade,
rendering the application as a whole more easily maintainable.

• Reliable software: The n-tier architecture is useful in creating more
testable, more easily debuggable, and thus more reliable software.
Flexible and maintainable software does not automatically imply
reliable software, but because software components are stand-alone
packets of business logic, bugs can be localized more easily and their
functionality can be calibrated more accurately, rendering the appli-
cation as a whole more reliable.

• Reduced complexity: The n-tier architecture is useful in creating more
streamlined, simplified, and standardized software because the
software component paradigm eliminates the need for custom inter-
connections between disparate constituents of a composite applica-
tion (which includes existing and legacy systems) that increase in
complexity rapidly with the increase in the number of disparate
constituents. For instance, for a composite application constituted
of n applications and m data sources, the problem of correspond-
ing n × m interconnections is barely manageable even for small val-
ues of n and m. However, in the n-tier architecture, this problem
is resolved to a great extent by interfacing all components to (say)
a single standardized data bus—this reduces the problem of m × n
interconnections to that of only n + m interconnections! All compo-
nents can connect with each other via connections to this singular
data bus without the need for multiple customized single-purpose
interconnections between each pair of components.

The interfacing approach of point-to-point interfaces between
two applications would be prohibitively expensive for EAIs that
may involve tens and hundreds of such interfaces. EAIs also
adopt the alternate approach of instituting an information bro-

ker whereby all systems communicate with the information broker by
uploading data into the same while simultaneously translating them
into a single format and protocols native to this central broker. Because
information is routed through the information broker, rather than
going directly among different systems, this simplifies the problem
considerably and it becomes easy to connect disparate systems via their

71Distributed Systems

respective adapters for this broker that uses the singular format and
protocol of this central broker. Any future systems have to devise only
one adapter to integrate with the central broker to start communicating
transparently with all other systems. The exchange of data between the
various systems interconnected by EAI is governed by the business
rules determined by the user; and the message broker routes the mes-
sages according to these rules. However, the data in the messages are
translated en route into whatever format is required by the concerned
application.

• Simplified systems management: The n-tier architecture is useful in
reducing the effort of systems management especially of the soft-
ware on client machines, particularly for large enterprises that may
have tens of thousands of client machines or even for enterprises that
have multilocated and decentralized IT/IS operations. For instance,
for conventional client/server systems, the plan for deploying a new
version of any application would immediately run into a difficulty of
choosing between
• Changing the entire installed base of clients in a single massive

effort during which the normal operations come to a complete
standstill

• Undergoing a long and expensive but more regulated phase-in
of the new software, during which IT/IS is required to support
multiple and mutually incompatible versions of the server and
client codes, and above all, the new application is available to
only a part of the target user base

N-tier architecture by reason of its software-on-demand paradigm reduces
the need for physical updates of the client machines considerably; in many of
these cases, the updates can be distributed through HTTP and a Web browser
or through separately available automatic application distribution systems.
But in the case of applications with zero footprint clients like SAP CRM, this
need is completely eliminated. Moreover, as the majority of the code resides
in the business logic, middleware, and data layers that are typically deployed
on centralized, back-end servers supported by professional staff, the updates
and enhancements to these layers are relatively painless.

3.1.1.2 Limits of the N-Tier Architecture

While n-tier architectures deliver all the advantages associated with distrib-
uted systems, they also have a downside. N-tier systems are workable only
because of a network-based data bus for communications between the vari-
ous tiers.

72 Guide to Cloud Computing for Business and Technology Managers

Such a communications layer will have the following adverse effects:

• Add to the latency of the system and degrade overall performance.
• Libraries of software components (and classes) required for inter-

facing with the data bus will typically increase the size of the
application.

However, the system architects usually take these problems into account
at the time of planning and designing the overall enterprise infrastructure
and architecture. And, in the event that these problems become noticeable
(because of dramatic increase in business and transaction volumes) or fore-
seeable (because of envisaged M&A activities, divestures, etc.), the enterprise
architecture is revisited in its entirety.

3.1.2 Enterprise Component Architecture

Large corporations that have already invested vast sums of money in exist-
ing enterprise applications, infrastructure, hardware, and employees cannot
change overnight. Moreover, the software skills and techniques that are
essential for Web-based application development are different from those
prevalent in most of the companies. Consequently, enterprises need to learn
new development techniques, new methodologies, and new ways of fitting
all these solutions together if their transition to e-commerce is to be suc-
cessful. In this section, we will briefly examine why a successful enterprise
should be based on enterprise component architecture as embodied in SAP
CRM applications.

Flexible applications need to be constructed by assembling a variety of com-
ponents (functional modules) to create newer products and services. Although
the initial components will have to be developed from scratch, over time
and with accumulation of basic components, applications will be assembled
more and more from increasing reuse of the existing components. However,
to accomplish this, the software needs to be designed as component-based
applications, and there must be an infrastructure to support the component-
oriented development of applications. An organizational structure that
enables change is based on reusable elements that are reconfigurable in a scal-
able framework. In the componentized architecture, a system is considered as
a group of components sharing a common interaction framework and serving
a common purpose. A framework is a set of standards constraining and
enabling the interactions of compatible system components, where each com-
ponent is itself an autonomous system subunit with a self-contained identity,
purpose, and capability and is capable of interacting with other components.

Component architecture then is a high-level description of the major com-
ponents of a system and the relationship between them. Enterprise compo-
nent architecture defines the enterprise’s infrastructure for components as
well as defines

73Distributed Systems

• How compliant components are built
• How components are stored and cataloged
• How components are located and reused

3.1.3 Enterprise Component Model

A component model can be described as a set of application programming
interfaces (APIs) and an architecture, which enables developers to define
and create software components, which also have an ability to be connected
dynamically together and interoperate with other components. Most com-
ponents operate within a possible nested hierarchy of containers, that is,
components.

Typically, an architecture is a more abstract description, while a
model is a more concrete description—similar to the distinction
between classes and instances in object-oriented development
environments (see Section 3.2.1.1, “Difference between Objects

and Components”).

Component models provide an array of mechanisms and services for inter-
operation of components:

• Self-discovery of components enables rendering of information on
supported interfaces and methods to other components. This enables
components to publish its capabilities as well as interact with other
components dynamically.

• Properties of components determine the state, behavior, or appear-
ance of the component.

• Customization of components enables the properties of a compo-
nent to be set or modified from within a component or externally by
another component/container.

• Persistence of components involves the process of saving and restor-
ing a component’s current state.

• Event control of components enables a component to create (or gen-
erate) an event for another component or to respond to an event.
Predefining various kinds of events can also differentiate the occur-
rence of different kinds of events.

3.1.4 Distributed Application Requirements

As described earlier, an application is made up of three main constituents,
namely, data, servers, and clients. A large-scale system is one that is capable

74 Guide to Cloud Computing for Business and Technology Managers

of supporting simultaneously hundreds of thousands of components that
run in a server, dozens or hundreds of servers, and tens of thousands of
clients. The key to building large-scale applications is optimum resource uti-
lization involving two aspects:

 1. Determining the critical resources in a system
 2. Devising a mechanism not only to use the resources efficiently but

also to enable selective addition of more resources as required

3.1.4.1 Resource Management

Enterprise Server manages a pool of application servers, mediates the coor-
dination between them, and balances the workload among them. The mod-
ularity of the enterprise component architecture enhances scalability by
adding, as required, more resources to the system configuration.

The application server itself uses several different resource pools to man-
age critical resources:

• Data connection links the server to the database; each server has one
or more connections to the database. For applications to scale well,
a server employs a database connection pool to reuse connections
among the component/client rather than using one connection for
each component/client.

• Components’ process threads are effectively the flow of control
corresponding to the one that the component is using while pro-
cessing resources on the server. A component has two aspects—
behavior as demonstrated via executing threads and the state of
the business entity being processed. Each component uses several
additional resources such as memory, database connections, and
locks. The server apparently supports many components concur-
rently by maintaining a pool of threads that are shared among
the many components that need to be executed. When needed, the
server creates the instance of (or restores the state of) the com-
ponent for use in any application; subsequently, the server saves
the component’s state, flushes the component from the server,
and redeploys those resources for other components. This pro-
cess of saving and restoring a component’s state is termed state
management.

• Client connection links the client to the application via a server. For
each client, there is an associated connection on the server and the
corresponding information regarding the client and connection is
also stored on the server. For the application to support tens of thou-
sands of clients, the number of such client connections in the pool
should be minimized.

75Distributed Systems

3.1.4.2 Application Management

Application management refers to the tasks necessary to set up the appli-
cation and to keep the application running successfully and includes the
following:

• Configuration: The ability to set up the system and assign resources,
including specifications of the number of servers, the number of
clients supported concurrently, assignment of servers to particular
machines, and assignment of components to servers. For high avail-
ability, the configuration is changeable dynamically while the sys-
tem is in operation.

• Monitoring: The ability to get statistics about the system’s con-
figuration and operation, including the number of connected
users, the status of servers, resources utilization of servers, and
throughput and response times. For high availability, tracing, and
troubleshooting, systems automatically monitor information such
as server status and also respond to detected errors or predefined
events.

• Controlling: The ability to effect system configuration and operations,
including the ability to start and stop servers or components and
modify parameters.

3.1.4.3 Application Deployment

Application deployment relates to the issues of initial deployment, securing
the application and upgrading it. The ideal deployment scenario involves no
special software on the client at all, as is the case with browser-based thin
clients.

The application architecture must support application versions and the
ability for multiple versions of the same application to operate simultane-
ously. Security is also a critical requirement for the deployment of an appli-
cation (see Sections 19.1.2 through 19.1.4).

3.2 Component-Based Technologies

In traditional procedural programming, the attributes (data) and the behav-
ior (operations on data) are usually separated. Since there is no higher-level
grouping (e.g., object) that binds the attributes and the behavior, a devel-
oper can never really know the entire result of a procedure call and therefore
never knows exactly all the data that are affected by that procedure call. The
detachment of the procedure from the data means that several unrelated

76 Guide to Cloud Computing for Business and Technology Managers

procedures could change the same piece of data. This complicates the tasks
of managing changes to data by procedures and testing to ensure that a new
procedure does not adversely impact existing procedures. In the procedural
programming world, developers have to understand the procedural code to
know whether it is affecting the target data. If the developer does not per-
form detailed due diligence, it is likely the developer might develop a proce-
dure that is very similar to one that already exists.

The advent of object-oriented programming represented the generational
change in the IT arena. In the object-oriented world, data and the code that
supports that data are encapsulated in an object. The use of an object as a
higher-level grouping of data and behavior implies that there is less risk of
similar methods or procedures that perform the same operations. It is easier
to manage the data and access to the data because all operations on the same
data are encapsulated in an object. The enhanced management of data and
operations on data promotes higher code reuse. In the object-oriented world,
the methods are contained in the object and they are easy for the developer
to find and use. Furthermore, if an object does not satisfy the needs of the
developer, he or she can create a new object from an existing object. The
new object would inherit all of the attributes and methods of the existing
object. The ability to inherit attributes and methods tremendously enhances
code reuse. It makes maintenance easier because changes in the parent object
propagate to the children.

In terms of design and modeling, object orientation is a more
realistic representation of the real world than procedural pro-
gramming. In real life, physical (e.g., car) and nonphysical (e.g.,
sales order) objects have attributes and behaviors. Attributes

are changed by behavior based on some trigger (i.e., event). Objects
can interact with each other such that one object’s attribute might
be changed by its behavior to another object’s behavior. An example
would be the customer placing a sales order. In this example, the
customer object performs an action that results in a sales order object.
The sales order object has attributes (i.e., customer name, address,
credit worthiness) that come from the customer object through the
interaction. Object-oriented analysis and design allow dynamic and
interactive modeling of objects that is hard to achieve with struc-
tured design methodology commonly associated with procedural
programming.

3.2.1 Advent of Component-Based Technologies

Components take code reuse to a higher level than objects. The con-
cept behind components is to create pluggable objects to ease software

77Distributed Systems

development efforts. In component-based programming, there is a library
of components the developer can use. In general terms, a component is usu-
ally a set of objects (though it could be procedural programs) that are self-
contained and perform functions that are not specific to any context. The
nonspecificity property of a component means it can be used by any applica-
tion, even a future application, which needs the functions it contains. It is
meant to be used in a plug and play fashion, where the developer could use a
component to perform desired functions without having to worry about how
the component works. To the developer, the component is a black box. The
developer only needs to know what a component does and not the imple-
mentation details.

3.2.1.1 Difference between Objects and Components

Object and component are two distinct concepts. Objects are typically
finer grained; an object usually involves one data entity, for instance, the
purchase order item entity, and it makes visible all the implementation
details for the behavior of that entity. In contrast to objects, a compo-
nent is typically more coarse grained; a component is at a higher level of
abstraction than an object. It is accessible to the outside only through well-
defined interfaces. It is well encapsulated and cannot be used partially,
that is, when an application uses a component, it consumes the entire
component. The granularity of a component depends on the number of
tasks it performs. A coarse-grained component performs multiple tasks,
while a fine-grained component typically performs one task. An example
of a coarse-grained component would be the purchasing component. The
purchasing component could contain a purchase order, a purchase order
item, and vendor objects. In this case, a call to a component that creates a
purchase order would perform all the steps and updates to complete the
purchase order without implementing and knowing the updates to the
individual objects.

Objects and components are two distinct concepts unrelated to
each other; while objects do not have to be grouped into compo-
nents to be useful, components can also be developed using a
procedural programming language.

Objects use transparent or white box reuse. The source code of the objects
is available to the developer. The developer can modify the source code of
an object to achieve the desired effects. This implies there is weak control
over the services an object might perform. Depending on the way an object
is used, the internals of an object might affect its services. Thus, the services
an object offers might change when the object has been modified. In contrast,

78 Guide to Cloud Computing for Business and Technology Managers

components are black boxes to the developer because the software developer
cannot see the implementation of the component, and the component can-
not be modified to perform services outside of those described in the IDL.
The behavior and properties of a component are specified by the IDL. If the
developer invokes an interface as described by the IDL, the specified behav-
ior from the component will be obtained. Interfaces of a component are like a
contract. They ensure that the component will perform according to the IDL,
regardless of how often it has been modified.

The biggest distinction between a component and an object is that an
object is not compatible with another object developed using different pro-
gramming languages. A programmer developing in Visual Basic could
not use an object created using C++. For a company like Microsoft, which
supports multiple programming languages, the incompatibility of objects
built using different programming language presents a problem in main-
taining object libraries. These libraries contain objects for commonly used
services and functions that help programmers in their application develop-
ment. Furthermore, the incompatibility of objects developed using different
programming languages presents a barrier to reuse for enterprises that use
multiple programming languages. Development efforts have to be spent rec-
reating an object developed in one programming language if that object is
needed for an application developed using another programming language.
In contrast, component standards were developed specifically to address
the issue that pieces of code developed using different languages cannot be
made to interoperate with one another. Software programs that adhere to
a component model will be able to interact with other components devel-
oped for the same model. The major component models are Common Object
Model (COM) and its derivatives, such as COM+ and Microsoft XML Web
Services platform (.NET), Enterprise JavaBeans (EJB), and Common Object
Request Broker Architecture (CORBA).

The basic idea behind this bird’s-eye view of distributed com-
puting is that the concept of an object has moved from being a
technique for determining and building the components of an
application to a method for describing, encapsulating, assem-

bling, and managing entire applications in a distributed computing
environment. The original concept of an object could have been used to
define a Binary Tree Abstract Data Type (ADT) and its associated meth-
ods and how it would perform in a given application. The distributed
computing paradigm view of this object incorporates all of the original
definitions as well as requiring the interfaces and techniques by which
the Binary Tree ADT can have its methods and interfaces managed
remotely, whether it be via a JavaBean, an Object Request Broker (ORB),
or a COM component.

79Distributed Systems

3.2.1.2 Case for Distributed Objects and Components

Distributed object computing is an architecture, a paradigm, and a set of
technologies whereby objects can be distributed across a heterogeneous net-
work in such a manner that arbitrary assemblies of these objects can operate
as a single entity. Effectively, distributed objects extend the object-oriented
analysis and design methodology to the network as a whole. The concept
of an object refers to the nonincorporated software entity that is capable of
being merged with other objects to form an assembly. Once integrated into
the assembly, the object becomes a component.

The movement to distributed computing is because of five reasons:

 1. Protection of expended investment
 2. Gains in productivity
 3. Protection of future investment
 4. Enhanced utilization of assets
 5. Effective interdepartmental data integration

The gains from realizing an effective means of creating, assembling, and
managing a distributed set of objects are many. Extant software (i.e., legacy
systems) can nonintrusively be incorporated into greater entities, thereby pro-
tecting existing investment. Order-of-magnitude gains in productivity can be
realized as the developer moves away from the line-at-a-time paradigm and
into the assembly, or industrial era of software development. For those objects
that were created using the techniques of the earlier era, the possibilities of
reuse are manifold, thus enabling investments future proof and optimizing
future investment. Efficiencies in deployment and execution are also realized
because the individual objects comprising an assembly (i.e., component) can
be hosted on those machines that can best be utilized by that particular com-
ponent. Finally, the various islands of technology can be bridged effectively
and selectively for optimal efficiency and effectiveness. Thus, the accounts
receivable, inventory, order, and accounts payable systems can be merged at
the data flow level without replacement or costly rework of the individual
applications.

3.2.2 Distributed Computing in the Enterprise

There are three primary approaches for realizing the distributed computing
paradigm: CORBA, COM, and RMI. Before we discuss each of them in detail,
here is an historical overview of their development.

Once networking became prevalent across academia and industry, it
became necessary to share data and resources. In the early years of dis-
tributed computing, message passing (e.g., using sockets developed in the
early 1980s) was the prevailing method of communication. This involved

80 Guide to Cloud Computing for Business and Technology Managers

encoding the data into a message format and sending the encoded data
over the wire. The socket interface allowed message passing using send and
receive primitives on transmission control protocol (TCP) or user datagram
protocol (UDP) transport protocols for low-level messaging over Internet
protocol (IP) networks. Applications communicated by sending and receiv-
ing text messages. In most cases, the messages exchanged conformed to an
application-level protocol defined by programmers. This worked well but
was cumbersome due to the fact that the data had to be encoded and then
decoded; also programmers developing a distributed application must have
knowledge of what the others were doing to the data.

Programmers had to spend a significant amount of time specifying a mes-
saging protocol and mapping the various data structures to and from the
common transmission format. As the development of distributed comput-
ing applications increased, new mechanisms and approaches became nec-
essary to facilitate the construction of distributed applications. The first
distributed computing technology to gain widespread use was remote pro-
cedure call (RPC) developed in the 1980s by Sun Microsystems. RPC uses
the client/server model and extends the capabilities of traditional procedure
calls across a network. Remote procedure calls are designed to be similar
to making local procedure calls. While in a traditional local procedure call
paradigm the code segments of an application and the procedure it calls are
in the same address space, in a remote procedure call the called procedure
runs in another process and address space across the network on another
processor.

RPC proved to be an adequate solution for the development of two-tier
client/server architectures. As distributed computing became more wide-
spread, the need to develop, for example, n-tier applications emerged and
RPC could not provide the flexibility and functionality required. With such
applications, multiple machines may need to operate simultaneously on the
same set of data, and, hence, the state of that data became of great concern.
Research in the area of distributed objects allowed overcoming this prob-
lem with the specification of two competing technologies: common object
request broker architecture (CORBA) and distributed common object model
(DCOM). Later, Java remote method invocation (RMI) was developed and
also became a competitor.

The CORBA standard was developed by the Object Management Group
(OMG) starting in the 1990s and defines an architecture that specifies
interoperability between distributed objects on a network. With CORBA, dis-
tributed objects can communicate regardless of the operating system they
are running on (e.g., Linux, Solaris, Microsoft Windows, or Mac OS). Another
primary feature of CORBA is its interoperability between various program-
ming languages. Distributed objects can be written in various languages
(such as Java, C++, C, Ada, etc.). The main component of CORBA is the ORB
(object request broker). Objects residing in a client make remote requests
using an interface to the ORB running on the local machine. The local ORB

81Distributed Systems

sends the request to the remote ORB, which locates the appropriate object
residing in a server and passes back an object reference to the requester. An
object residing in a client can then make the remote method invocation of
a remote object. When this happens the ORB marshals the arguments and
sends the invocation over the network to the remote objects ORB that invokes
the method locally and sends the results back to the client.

DCOM, developed by Microsoft, is a protocol that enables communication
between two applications running on distributed computers in a reliable,
secure, and efficient manner. DCOM is an extension of the Component Object
Model (COM). COM is an object-based programming model and defines
how components and their clients interact. COM allows the development of
software components using a variety of languages and platforms to be eas-
ily deployed and integrated. The distributed COM protocol extends the pro-
gramming model introduced by COM to work across the network by using
proxies and stubs. Proxies and stubs allow remote objects to appear to be in
the same address space as the requesting object. When a client instantiates a
component that resides outside its address space, DCOM creates a proxy to
marshal method calls and route them across the network. On the server side,
DCOM creates a stub, which unmarshals method calls and routes them to an
instance of the component.

Java RMI is a package for writing and executing distributed Java programs
by facilitating object method calls between different Java Virtual Machines
(JVM) across a network. Java RMI hides most of the aspects of the distri-
bution and provides a conceptually uniform way by which local and dis-
tributed objects can be accessed. An RMI application consists of a server
interface, a server implementation, a server skeleton, a client stub, and a cli-
ent implementation. The server implementation creates remote objects that
conform to the server interface. These objects are available for method invo-
cation to clients. When a client wishes to make a remote method invocation
it invokes a method on the local stub, which is responsible for carrying out
the method call on the remote object. The stub acts as a local proxy. A server
skeleton exists for each remote object and is responsible for handling incom-
ing invocations from clients.

CORBA, DCOM, and Java RMI enjoyed considerable success, but they were
beset by shortcomings and limitations when used in Web environments. For
example,

• They tend to create tightly coupled distributed systems
• Some are vendor and platform specific (e.g., COM/DCOM only runs

on Windows)
• The distributed systems developed run on closely administered

environments
• Some use complex and proprietary protocols, and specific message

formats and data representation

82 Guide to Cloud Computing for Business and Technology Managers

With the growth of the Web, the search soon started for a Web compliant
replacement for this technology. In Chapter 8, we will see that Web Services
are currently the most natural solution to develop distributed systems on
the Web.

3.2.2.1 Component Object Request Broker Architecture (CORBA)

In 1989, a group of eight companies formed the Object Management Group
(OMG) to promote the use of object technology and create standards for
object interoperability. OMG introduced CORBA 1.0 in 1991 as the first
vendor-independent object standard. What CORBA 1.0 brought was the IDL
and a set of application programming interfaces (API) that allow objects to
request and receive services from other objects. CORBA is programming
language independent and platform neutral. As long as vendors develop
programs following CORBA standards, their programs can interoperate
with other CORBA-compliant programs. The platform neutral feature of
CORBA means that CORBA-compliant programs can be executed by any
platform with CORBA middleware. The CORBA standards have under-
gone several revisions to include a component model, support for transac-
tions, a bridge to the component models (EJB and COM), and support for
messaging service (such as Message Queuing [JMS]). Using CORBA stan-
dards, vendors have introduced middleware products to support CORBA
components.

The central building blocks of CORBA are the object request broker or
(ORB), IDL, dynamic invocation interface (DII), interface repository, and
object adopter (OA). The ORB is the heart of the CORBA architecture. It
serves as the middleware for object-based integration, similar to what RPC
does for procedural programs. A client application can invoke a method
through the ORB without worrying about the system platform, network con-
nectivity, or object implementation details. A method in the object-oriented
world is equivalent to a procedure in the procedural world. Methods are
functions that an object has exposed to the outside world. In the compo-
nent world, an object method could become a component interface. The cli-
ent application sends a request to the ORB. The ORB delivers the request
to the requested object, whether residing in a remote server or on the same
server. Once the request has been processed, the ORB returns the results to
the calling application. The ORB hides all of these concerns from the client
application. To the client application, the method it is invoking appears to
be implemented in the same platform and using the same programming lan-
guage, even if the method might belong to a program executed on a different
platform and constructed in a procedural language. The ORB abstracts all
of these details to put the client and the invoked object on the same playing
field. Every implementation of a CORBA ORB supports an interface reposi-
tory. The client simply has to invoke an object using the interface definition
stored in the interface repository.

83Distributed Systems

CORBA, with its vendor-neutral position and set of open standards, has
always provided the most hope for a truly unified way to incorporate any
software object into a distributed assembly. However, the very openness of
CORBA and its associated loose specifications has contrived to be the cause
of its undoing. The CORBA products from most vendors—while compliant
with the standards—in fact differ somewhat from one another and hence
rely on vendor-specific protocols. This means that the key issue of standard-
ization is illusory. The lack of a tight specification, while appealing to poten-
tial vendors in that it allows them to build their own CORBA implementation,
means that the third-party market for CORBA-based applications does not
exist because there is no standard.

3.2.2.1.1 How CORBA Works

CORBA uses an ORB for implementing its interobject invocations. The latest
specification for the ORB specifies the Internet Inter-ORB Protocol (IIOP) as
the protocol by which objects are remoted. The ORB acts much like a bus or
backplane in a hardware device through which each CORBA object interacts
with other CORBA objects.

For a CORBA client object to request service from a CORBA server object, the
client must acquire a reference to the server component. The ORB will parse
the available services (methods) of the server object and connect them with
the request from the client object. The available methods are accessed by the
ORB from Interface Definition Language (IDL) skeletons programmatically
created for each server object. These IDL stubs are effectively the distributed
object’s interface made available for reading, distribution, and connection by
the ORB. The IDL compiler provides type and method exposition information
for each skeleton that is then stored in an Interface Repository. Effectively, the
ORB is a message router and object invocation device that relies on IDL stubs
and skeletons to resolve the various service requests.

The server-side skeleton will receive the invocation from the ORB and
execute the requested method. Results from the method, as well as input
arguments from the client proxy, will be routed via IIOP to the ORB that is
responsible for providing them to the server stub. Hence, CORBA requires
multiple ORBs if a multiplatform solution is being deployed. The essence of
CORBA is the ORBs used to connect the various distributed objects. With
the advent of IIOP, some of the vendor specificity problems have been eased,
allowing ORBs from a variety of sources to interact successfully.

3.2.2.2 Microsoft Component Technologies

Microsoft developed the COM in the mid-1990s. COM provides a set of spec-
ifications for creating a COM component. A COM component can be created
in several languages, including non-object-oriented languages, which are
supported by Microsoft. Once the COM component is created, it is stored in
binary code so programs developed using different programming languages

84 Guide to Cloud Computing for Business and Technology Managers

can use it. COM is a component standard that provides black box reuse. A
developer can access a COM component through interfaces provided by the
component. Similar to CORBA, these interfaces are described using COM
Interface Description Language (COM IDL). An interface is immutable in the
sense that it is a contract for the service it provides. When a client application
invokes an interface, it is guaranteed that the interface will always work the
way it is defined in the COM IDL. A new interface has to be created if there
are to be changes to an existing interface. As in CORBA interface, the immu-
tability property is one of the core principles of component standards.

In COM, there is a Microsoft Interface Definition Language (MIDL) com-
piler that generates a stub and proxy objects from COM IDL for interaction
with other components. A proxy object is a program of a target component
that is local to the client application. If the client wants to invoke a method of
a target component, the client sends the call to the proxy of the target compo-
nent. The proxy relays the request to the stub object of the target component.
The job of the stub is to receive the remote call on behalf of the target compo-
nent and send the request to the target component for processing. When the
request has been completed, the response is returned by the target compo-
nent to the stub object, which relays the response to the client application via
the proxy object. In comparison to CORBA, integration using COM does not
require a broker. Similar to RPC, the client application communicates directly
with the target component through proxy and stub.

To enable transparent communication of components across the network,
Microsoft created Distributed COM (DCOM). DCOM does not alter how
COM operates. It simply provides a mechanism for the client application
to communicate with a remote target component using the network. When
the client application and the target component reside on the same machine,
there is no need to use DCOM. The request can be sent by COM through
interprocess communication. The main benefit DCOM provides to the devel-
oper is location independence. When making the call, the developer does not
have to worry about whether the request from the client application is local
or remote. DCOM automatically handles the communication. To accomplish
remote communication, DCOM uses Object Remote Procedure Call (ORPC).
This protocol is similar to IIOP that CORBA uses to communicate between
ORBs. The combination of COM and DCOM is a competing component
model to CORBA. Microsoft has implemented COM on its Windows plat-
form and Apple’s Macintosh platform. COM has also been implemented on
specific versions of UNIX platforms.

The COM technology has been developed further to COM+, .NET, and
.NET Web Service.

3.2.2.2.1 How DCOM Works

DCOM is sometimes referred to as COM on the wire. DCOM works similarly
to CORBA in that a client-side DCOM object creates a message and invokes
a wire protocol similar to IIOP called ORPC (Object Remote Procedure Call)

85Distributed Systems

to communicate with the server DCOM object. Instead of an ORB, DCOM
relies on a service control manager (SCM) to perform the various services of
locating and activating an object implementation. As in CORBA, the server is
responsible for invoking the method requested via interaction with the SCM.
Once the client-side device has received a reference to the server-side object,
it can access the exposed methods of the server.

In DCOM, the client side is called the proxy, while the server side is ref-
erenced as the stub. These stubs and proxies use an Interface Definition
Language similar in purpose to that of the CORBA IDL. Instead of maintain-
ing and using an interface repository as CORBA does, DCOM avails itself of
the Microsoft registry services, thereby enhancing flexibility at the cost of
increased complexity. Interestingly, DCOM server components can be built
in a number of languages, including C++, Java, and COBOL.

3.2.2.3 Java Component Technologies

In 1995, Sun Microsystems introduced the Java development technology. The
impetus behind Java was to create a development technology that could be
run on any platform. Platform neutrality has always been the challenge soft-
ware vendors faced. Prior to Java, software vendors had to develop several
versions of their products for the different platforms their customers were
using. The duplicated development efforts were a huge cost to the vendors.
Java’s motto is “Write Once, Run Anywhere.” Instead of writing several ver-
sions of their programs, applications written in Java can be run on any plat-
form that supports a JVM.

The main elements of J2EE technology are components, container services,
and Web Services. J2EE offers two different component models, Servlet or
Java Server Page (JSP) for the Web component and EJB for the server com-
ponent. Servlet and JSP are primary J2EE component technology for Web
development, while EJB is the component model for application logic. JSP
is a text-based document that contains static content (i.e., images, text) and
dynamic data. The JSP static data could be expressed in HyperText Markup
Language (HTML) or XML code, while the dynamic data are controlled
by Java code. JSP is an extension of Servlet. When JSP is being run, the JSP
code is translated into a Java Servlet. Both Servlet and EJB operate in a sepa-
rate container; Servlet operates in a Web container and EJB operates in an
EJB container. A container is a runtime environment that hosts and man-
ages a component. The container provides services that allow the component
to operate, including transaction, messaging, remote access, security, and
other services. The container will automatically use a container service dur-
ing runtime depending on policies specified by the developer during design
time. For instance, a policy might be to use messaging for remote communi-
cation rather than RPC.

The main difference between the Servlet and EJB component is that the
Servlet specializes in communicating with Web browser. Thus, it takes

86 Guide to Cloud Computing for Business and Technology Managers

requests using HTTP. An EJB communicates with other Java components
using the Remote Method Invocation over Internet Inter–ORB Protocol
(RMI–IIOP). According to J2EE 1.4 specification, the J2EE applications are
required to access EJB through RMI–IIOP. Servlet can respond to HTTP com-
mands, such as HTTP–POST and HTTP–GET. Following the J2EE specifica-
tion, EJB should not interact directly with the Web browser. The one Web
interaction allowed for EJB under J2EE specification is SOAP/HTTP protocol
for Web Services. Because of the differences in the container, Servlet resides
on the Web server that has the Servlet container, while EJB resides on the
application server that has the EJB container. Other than that, both the Web
and EJB containers provide similar services.

Because of the similarities of these two component models,
some software vendors developed their products purely using
Servlet technology. The advantage of this approach is their
products can be run on any Web server that supports a Servlet

container. This minimizes the system footprint necessary to run their
products. Web servers are originally designed to serve static content
that does not require high-performance and distributed computing
features. However, most Web servers that support Servlet containers
are now offering high-performance features such as failover, cluster-
ing, and load balancing. Increasingly, the main difference between the
Web server (that supports Servlet container) and the application server
(that supports EJB container) is the support for integration with other
systems and platforms.

In traditional Java programming paradigm, the Web components and EJB
play distinct and complementary roles. How should the Web components
interact with EJB components? JSP, Servlet, and EJB are created to work in
conjunction with the Model–View–Controller (MVC) programming model.
The MVC design paradigm separates an interactive application into three
modules: model, view, and controller. The model module is the application
logic and data. It is the heart of the application processing and corresponds
to the application and data layer in the traditional three-layer application
architecture. The view component is the presentation to the user. Typically,
in a Web program, this component would contain the Web pages that are
displayed to the users. The controller component is the link between the
model and the view; it dispatches the requests from the views to the model
and mediates the application flow. The controller functions similar to the
ORB—both the ORB and the controller take requests from the client, dis-
patch the requests to the receiver, and return the results to the client. Because
of the interactive nature of Web applications, following a request, the con-
troller performs the additional task of selecting and synthesizing the view

87Distributed Systems

to display to the user. In this manner, the controller can be perceived as a
specialized view that can display dynamic views.

According to the MVC model, the controller is typically performed by the
controller Servlet. This Servlet takes the request from the user and invokes
the appropriate model component(s). Once the request has been processed,
the controller Servlet selects the appropriate HTML or JSP to display to the
user. As mentioned earlier, JSP is translated into Servlet when it is run; JSP
and Servlet usually work together. Therefore, the controller Servlet does not
render the view per se; it sends the request to one or more objects to render
the view to the user. As per the MVC model, EJB is an ideal candidate to
serve that role.

Thus, in a typical flow, a request could be generated by the user from the
Web browser. The controller Servlet takes the request and invokes the appro-
priate EJB component interface. When the result of the EJB component call
has been received, the controller Servlet assembles the view to display to the
user; the view is then rendered by JSP.

3.2.2.3.1 How RMI Works

Effectively, RMI uses Java language extensions to extend the Java Virtual
Machine (JVM) address space so that it appears to include other virtual
machines independent of where they might actually be hosted. RMI is
effectively a JVM-to-JVM communication protocol allowing objects to be
passed. Unlike IDL-based distributed models, RMI requires no mapping to
common interface definition languages (IDLs). The syntax of RMI is such
that it appears almost identical to that used for local invocations. Because
the interobject communication relies on the JVM executable, objects can
be distributed dynamically, thereby removing the requirement to provide
installation on the client prior to implementation. This, of course, greatly
eases the burden of distribution and maintenance. In addition, RMI ben-
efits from the built-in security features of the JVM, thereby guaranteeing a
secure distributed object environment.

JavaBean is effectively a technique and an instantiation of a soft-
ware component model for Java. The JavaBean technique relies
on the serialization of an object provided by the JVM and lan-
guage constructs. Serialization allows the state of an object (and

any objects it refers to) to be written to an output stream. Later, the
serialized object can be recreated by reading from an input stream.
This technique is used to transfer objects between a client and a server
for RMI. Many Beans are provided not as class files but rather as preini-
tialized, serialized objects. JavaBean was designed for visual manipu-
lation in a builder tool, much like an ActiveX component. JavaBeans are
not an architecture for distributed computing but rather a technique

88 Guide to Cloud Computing for Business and Technology Managers

for building and distributing the components of a distributed comput-
ing environment. Effectively, the Bean technology provides a way
through Java introspection and reflection whereby a builder/developer
can determine the properties, methods, and events of a JavaBean.

3.3 Summary

This chapter looked into the characteristics of distributed systems, the
nature of n-tier architecture, and the enterprise component architecture.
The latter part of the chapter detailed the requirements of distributed sys-
tems that act as a reference for the remaining part of the book. The last part
discussed the three main component standards (CORBA, Microsoft, and
Java). Java and Microsoft are the most widely used component development
technologies.

89

4
Enterprise Application Integration (EAI)

In these times of market change and turbulence, enterprises are confronted
with the increasing need to interconnect disparate systems to satisfy the
need of the business. It is estimated that 35%–60% of an organization’s IT
resources are spent on integration. Enterprise application integration is the
creation, maintenance, and enhancement of leading-edge competitive func-
tionality of the enterprise’s business solutions by combining the function-
ality of the existing legacy applications, commercial off-the-shelf (COTS)
software packages, and newly developed custom applications via a common
middleware.

4.1 Enterprise Applications

Enterprise applications are software applications developed to manage the
business operations, assets, and resources of an enterprise. Their devel-
opment process integrates the work of at least four groups, namely, GUI
developers responsible for the design and development of widgets to ease
human computer interaction; application programmers focusing on coding
the business logic for the solution of a particular business problem; data-
base managers building data models to structure and manage data stor-
age, access, security, and consistency; and finally, application integrators for
integrating existing applications and available technologies with the new
applications.

In principle, there is no difference between enterprise applications and
regular software applications other than the specific business purpose
they are developed for. As the nature of business goals and processes vary,
software solutions delivered for specific business problems vary as well.
As a consequence, the number and the variety of applications delivered for
each solution increase the complexity of managing the overall IT system.
While having an automated solution to business problems increases effec-
tiveness and efficiency and reduces cost, managing the complexity of the
automation solution is a new business problem that companies have to
deal with.

90 Guide to Cloud Computing for Business and Technology Managers

A high-level blueprint of a standard application template for a company
can reduce that complexity. In response to this need, the design characteris-
tics, limitations, interfaces, and rules of developing enterprise applications
have been documented. This high-level description, the blueprint, of how
an application should be developed to satisfy the business goals is known
as Enterprise Application Architecture. This architecture defines an orga-
nizing structure for software application elements and the resources, their
relationships and roles in an organization. Enterprise applications are usu-
ally developed independent of each other, and each of these applications
manages their own data in their specific database system. This leads to data
heterogeneity and inefficiency because the same data elements are stored
multiple times in different databases. This creates the problem of managing
the same logical data object stored in multiple data stores. Differences in
data structures as well as in semantics are also possible. One of the chal-
lenges facing enterprises today is the task of integrating all these applica-
tions within the organization, even though they may use different operating
systems and employ a variety of database solutions. Simplistic approaches
soon become unmanageable as the number of applications to be integrated
increases. Enterprise Application Integration (EAI) has the task of making
independently developed applications that may also be geographically dis-
persed and may run on multiple platforms to work together in unison with
the goal of enabling unrestricted sharing of data and business processes.

In order to accomplish this goal, middleware vendors provide solu-
tions to transform, transport, and route the data among various enter-
prise applications. EAI faces significantly more management challenges
than technical challenges, and its implementation is time consuming
and needs substantial resources, particularly in upfront design. Among
the software applications for managing company assets and resources,
the most commonly used are Enterprise Resource Planning (ERP),
Customer Relationship Management (CRM), Supply Chain Management
(SCM), Business Intelligence Applications, and Human Resource (HR)
Applications. ERP is, probably, the most general class of enterprise soft-
ware that attempts to integrate all departments and functions across a
company. ERP incorporates many different families of more specific enter-
prise applications. CRM solutions focus on strategies, processes, people,
and technologies used by companies to successfully attract and retain cus-
tomers for maximizing profitability, revenue, and customer satisfaction.
Enterprise Content Management solutions provide technologies, tools,
and methods used to capture, manage, store, preserve, and deliver content
(document, voice and video recordings, etc.) related to organizational pro-
cesses across an enterprise. SCM solutions focus on the process of plan-
ning, implementing, and controlling the operations of the supply chain,
which includes the flow of materials, information, and finances as they
move in a process from supplier to manufacturer, to wholesaler, to retailer,

91Enterprise Application Integration (EAI)

and to consumer. HR Management solutions provide a coherent approach
to the recruitment and management of people working in organizations.

4.1.1 Management of Enterprise Applications

4.1.1.1 Manageability

Enterprise application systems are confronted by ever-changing require-
ments and environments and should be able to adapt to these changes
dynamically. Consequently, better solutions have the following features:

• A high degree of adaptability and extendibility of the whole system
built into the design

• Support for mass deployment
• Support for business-driven configuration scenarios
• A configurable security management system based on users, roles,

and access control lists with distinct and configurable privileges
• Tracing capability for user actions

Another aspect of application complexity is the ability to manage software
components that constitute the application. With the shrinking average life-
time of applications due to the increasingly competitive markets, incorporating
updates to provide newer or latest features over time becomes an obstacle for
managing software components. The problem is not new but became increas-
ingly important with the growing number of two-tier applications at the end
of the 1990s. The applications that are often built as rich clients and capable
of directly accessing back-end databases are prime candidates for version
conflicts and data integrity frauds, if the software update is not planned and
enforced perfectly. All clients have to be updated before they attempt to inter-
act with a new version of the back-end system. If this is not possible, a proper
mitigation solution has to be deployed. Such a solution may sound promis-
ing upfront but can become very difficult to manage over time. Releasing a
mitigation solution for every version deployed soon becomes a maintenance
nightmare and may actually hinder future development, because every itera-
tion of the software has to be aware of all previous combinations. The root
cause of this problem is that client software has to keep track of the changes to
remain up-to-date. This problem is avoided in three-tier applications as only
the application deployed on the server needs to be updated, which is also the
major reason for the success of typical three-tier Web applications.

Depending on the usage scenario, the necessary downtimes for updating
software have to be minimized and made as transparent as possible for the
user. This is one of the main reasons behind new concepts like the OSGi
(Open Service Gateway initiative) that supports hot deployment with 24 × 7
availability (24 h/day and 7 days/week).

92 Guide to Cloud Computing for Business and Technology Managers

4.1.1.2 Maintainability

Given the inevitability of change, software components must be designed
to support modification and extension over their lifetime. Maintainability
enables utilization of software components over time. Developers use well-
known software engineering techniques to achieve this goal. In addition to
producing well-written documents for the source code and for the software
itself, the software design and the strict usage of appropriate standards, best
practices, patterns, and naming conventions are crucial. Analysis, design,
and coding patterns help to develop a common language and encourage the
use of best practices and simpler, more intuitive ways of understanding and
maintaining applications.

4.1.1.3 Scalability

Enterprise applications are long-term investments and are meant to adapt
to changing business needs. One of these needs is the capability to scale
according to usage requirement. Scalability, in contrast to maintainability,
does not imply an actual change of the features of certain software but rather
addresses the need to sustain a running and most importantly usable system
in terms of growing or fluctuating number of users and corresponding traf-
fic of queries and reporting.

There are two major different techniques to achieve scalability: vertical
scaling and horizontal scaling. With vertical scaling, an existing system is
basically extended or updated to increase the capacity of existing hardware
or software adding more processing power or, for instance, data storage. In
contrast, horizontal scaling or clustering involves adding multiple entities
of hardware and software together to act as one single logical unit. Vertical
scaling is possible for most applications, whereas horizontal scaling may not
always be possible or efficient enough. Mixtures of these two approaches are
often referred to as diagonal scaling. Which of the aforementioned scaling
techniques eventually is best for an application depends on many different
factors, such as the programming language, architecture, deployed proto-
cols, message size and frequency, requirements on the deployment environ-
ment, throughput, responsiveness, availability, or the total cost of ownership.
As an example, consider a two-tier application with an old mainframe-based
database. Porting the database to another hardware system, changing the
entire database, or enhancing the existing database with clustering capabili-
ties would be very expensive. In this case, vertical scaling is a better choice
because it is less invasive than the horizontal approach and does not neces-
sitate any internal changes on the application. In case of a typical three-tier
application with a Web front-end and an application server and a database in
the back, horizontal scaling is more flexible. New nodes of the Web front-end
can be added dynamically as soon as the load increases, thus providing the
flexibility by allocating resources dynamically where needed.

93Enterprise Application Integration (EAI)

4.1.1.4 Interoperability

The ability of disparate applications working together is considered one of
the most important characteristics of an Enterprise Application Architecture.
Companies typically integrate business solutions from different software
vendors, Starting from e-mail clients to intranet portals, finance manage-
ment systems, supply chain management software, customer relationship
management systems, and so on. Furthermore, companies are experiencing
continuous changes (takeovers, mergers or restructures, and even splits). All
this and the fact that the lifetime of software is limited force CIOs to plan for
a transition phase in order to adapt to these changes. Software has to be built
in a way to accommodate these inevitable changes and ensure interoperabil-
ity with other applications.

Current software designs aim to address interoperability by provid-
ing flexible and extendable solutions. Monolithic software solutions
and legacy applications were connected via proprietary communication
protocols. This approach makes the enterprise depend on the solutions
developed by a single vendor. Hence, enterprises are responding to the
availability of open and flexible solutions. Many IT companies includ-
ing IBM, Microsoft, Sun Microsystems, and BEA are now providing a
whole arsenal of software based on standard interfaces enabling seamless
integration.

4.1.1.5 Security

Security is playing an increasing role in current enterprises (see Section
19.1.2 “Security”). Companies are dedicating special resources to protect
themselves from this growing threat. Mistakes done in this area often
not only cause direct financial losses but can also have dramatic impact
on the reputation and the value and trust of the company, especially for
companies handling sensitive personal data, such as insurance, financial,
and medical companies. Even the partial loss of sensitive data can put
such companies out of business as soon as the customers start losing their
trust. This is one reason why in the current Basel III Accord of the Bank
of International Settlements, the security concept of a company is evalu-
ated to assign a risk level and ultimately affect the credit ranking of the
company.

An enterprise faces three different kinds of threats:

 1. Attacks against personal- and customer-related data like medical
records

 2. Attacks against company goods like confidential contracts, licenses,
or detailed business objectives

 3. Attacks to abuse the company infrastructure in order to run illegal
businesses like file sharing with pirate copies, for instance

94 Guide to Cloud Computing for Business and Technology Managers

In order to protect the business, the IT systems have to be up-to-date. Besides
well-known mechanisms such as virus scanners, firewalls, and demilita-
rized zones, modern software architectures contain their own security lay-
ers. In Java, for instance, a Security Manager enforces policies to limit the
rights to a distinct part of the source code. Even if an attacker manages to
breach or compromise a certain part of the code, he or she only acquires the
minimal subset of rights the code was granted to that part of the code in
order to fulfill its tasks.

This helps to minimize the impact of vulnerabilities. In spite of all the
efforts, data breaches are bound to occur. Depending on the domain a com-
pany is working in, the company may be even obliged to comply with rules
and regulations and may face noncompliance charges for not following the
regulations such as the Payment Card Industry Data Security Standard, Visa
Member rules, or the Health Insurance Portability and Accountability Act.
Hence, companies must adopt solutions to protect their data and provide
forensic evidence of attacks that can be used in courtrooms. To minimize the
risks, a plan has to be developed to detect security breaches by monitoring
IT systems for unusual behavior. The system must respond to such anom-
alies. Once a breach has been detected, a previously established response
plan has to be invoked to respond and handle the incident appropriately.
The response plan has to be comprehensive and should not only cover steps
to be taken in order to fix the breach in security, but also define notification
agency and the nature of the forensic evidence to be gathered and recorded
for admissibility as evidence in a court of law.

4.1.1.6 Reliability

Reliability is defined as the ability to perform and maintain distinct func-
tionalities within predefined parameters for a specified period of time. The
importance of this nonfunctional requirement may vary drastically depend-
ing on the usage scenario. An intranet portal will most likely have different
availability requirements than a stock-trading portal during business hours.

Reliability can be differentiated into a data-centric part and a service-
centric part. Data-centric reliability concerns the data the application is
working with. Service-centric reliability focuses on the guaranteed avail-
ability of services. In online shopping, credit card validation is a vital service
for the business, whereas a service to verify zip codes for the order address
has a noticeably lower priority. A service to provide currency exchange rates
have to be as accurate as possible and its data reliability is essential. Service
reliability is characterized by the number, date, time, and time span of sched-
uled downtimes, what is or what is not considered force majeure, and how
much latency is acceptable. Some of the questions to be asked before the
actual software is developed or chosen concern its latency, tolerance to fail-
ure, and the fallback mechanisms available in case of a failure.

95Enterprise Application Integration (EAI)

4.1.1.7 Usability

Usability is defined as the ease of understanding and use for availing a
service. While well-designed and ergonomic software is better accepted by
users, the usability is also affected by familiarity, continuity, and strength of
acquired habits. How can we decide if the Microsoft Windows GUI or the GUI
from Apple Macintosh is better? Objectively, even though it is not possible
to define an absolute standard for usability, there are well-accepted norms,
patterns, and best practices for enhancing usability. There are standards to
evaluate and measure the accessibility and the usability for different user
groups, for example, as defined in Section 508 of the Rehabilitation Act or the
Web Content Accessibility Guidelines from the World Wide Web Consortium
(W3C). However, rules, regulations, and laws change from region to region,
which makes it almost impossible to find one standard for all situations. In
short, while accessibility and usability are critical for the acceptance of appli-
cations, which standards are applicable depends on the context of usage.

4.1.2 Systems Heterogeneity in Enterprises

This problem refers to the fact that in a large enterprise or an inter-enterprise
system consisting of an enterprise and its partners, more than one technol-
ogy is generally used to integrate applications. Therefore, it is literally impos-
sible to impose enterprise-wide standards in this respect.

Various kinds of technological heterogeneity can exist in a large enter-
prise, including the following:

 a. Middleware heterogeneity: In a large enterprise, more than one type
of middleware is generally used. The two most common types are
application servers and message-oriented middleware (MOM). In
addition, brand (vendor) heterogeneity requires support for differ-
ent brands of application servers and MOMs.

 b. Protocol heterogeneity: This heterogeneity refers to the different trans-
port protocols being used to access the services offered by various
applications. Examples of such protocols include IIOP, JRMP, HTTP,
and HTTPS.

 c. Synchrony heterogeneity: There is almost always a need to support
both synchronous and asynchronous interactions between appli-
cations. In addition, there is sometimes a need for callback meth-
ods and publish and subscribe. Therefore, many times a situation
arises where the styles of interaction supported by two applications
that wish to interact do not match. Hence, these applications cannot
interact with each other.

 d. Protocol mismatch: Related to the heterogeneity of communication
protocols is the problem that arises when different applications

96 Guide to Cloud Computing for Business and Technology Managers

want to communicate with each other using incompatible proto-
cols. For example, Application A might want to communicate with
Application B using HTTP. However, for Application B, the suitable
protocol might be IIOP. In such cases, a protocol transformation is
needed so that Application A can communicate with Application B.

 e. Diversity of data formats: A problem arises when there is diversity
in the data format being exchanged. Most of the time, the data are
dependent on the middleware being used. This diversity of data can
also cause a problem if two applications that wish to interact support
different data formats.

 f. Diversity of interface declarations: A problem arises when there are
large differences in the way the service interfaces are being declared
and used to invoke the services. For example, the way interfaces are
declared in CORBA and Java RMI is different.

 g. No common place for service lookup: A problem arises when there is no
common place to look up services to deal with the diversity of the
services in a large enterprise.

Another common problem is that as soon as a new version of provider soft-
ware becomes available, consumer applications must be modified to account
for the change in the provider application. The solution to this problem
requires that methods be found that allow the services to be extended—for
example, by adding more parameters—without breaking the previous ver-
sions of the consumer application.

This diversity and extendibility have been partly dealt with by develop-
ing standards and by further development in technology. We discuss these
standards in Chapter 7, whereas the further development in technology is
discussed in Chapter 9.

4.2 Integration of Enterprise Applications

EAI provides components for integrating applications with external appli-
cations and technologies within the enterprise and is designed to work
with third-party products. By employing EAI effectively, an enterprise can
leverage its existing enterprise-wide information assets, that is, customer
relationships:

• To provide new products and services easily and quickly
• To streamline its internal process and operations
• To strengthen supply relationships
• To enhance customer relationships

97Enterprise Application Integration (EAI)

As EAI enables enterprise-wide integration of diverse applications across
various products and divisions, it provides the enterprise with a 360° view
of its customer relationships across multiple channels of interaction. Every
customer perceives the enterprise as a whole and also expects to be recog-
nized and valued by the enterprise as a whole; familiarity with customers’
earlier interactions and purchases helps frontline members of the enterprise
to create opportunities for selling other products or additional add-ons and
services to the earlier purchases.

One of the important objectives of application integration is to
achieve the integration between applications with as reduced a
level of coupling or interdependency as possible so that the
impact of changes in one application does not affect the other

application(s).

4.2.1 Basics of Integration

The basic concepts related with EAI are described here. A robust and flex-
ible EAI provides a combination of the methods of integration and modes
of communication that are embodied into the various models of integration
that are deployed within the EAI architecture as discussed next.

4.2.1.1 Methods of Integration

Methods of integration are the approaches used to guide a request from a
sender to a receiver. The two primary methods of integration are as follows:

 a. Messaging—In this approach, the sender constructs a message
that contains information on the actions desired as well as the data
required to perform these actions—the message contains both the
control information and data. Messages provide a lot of flexibility
because the control information can be easily changed and extended;
they are independent of any of the applications. However, to func-
tion correctly, the integration messages must be predefined precisely
so that the messages can be coded and decoded in exactly the same
way by all senders and receivers.

 b. Interface—In this approach, the sender communicates through an
interface, which defines explicitly the actions that can be invoked
by an application; the interface is self-describing in terms of the
actions that can be taken. Interfaces make the application look
like a procedure, or a method, or an object. Interfaces are diffi-
cult to change and extend; they are associated with a particular
application.

98 Guide to Cloud Computing for Business and Technology Managers

 c. Connector—In this approach, the application provides an access
point that allows either a message or invocation on an interface to
be passed into the application; a connector is more than an interface
providing additional capabilities like error handling and validation
checking, conversion and transformation of data into appropriate
format, and managing state information enabling guaranteed deliv-
ery or graceful recovery. Many applications do not have a predefined
or prebuilt entry point into the application. In such cases, one may
need to use data files, databases, user interfaces, or memory as the
entry point for the injection of the request. It is at this point that the
correct integration model must be selected—presentation, data, or
functional—to build the right connector based on the internal struc-
tures of the application.

4.2.1.2 Modes of Communication

The flexibility of systems is critically dependent on the modes of communi-
cations that are utilized by the systems. Assuming that a request refers to a
communication from a sender to a receiver, the two basic options for com-
munications are as follows:

 1. Synchronous communication—This requires the sender of a request
to wait until a reply, which is the result of the request, is received
before continuing the processing. Synchronous communication
between systems implies a high degree of coupling and requires the
sender and the receiver to coordinate the communications with their
internal processing. A reliable network infrastructure is essential for
this kind of communication. It is used when the sender requires a
notification of the receipt or needs the result of the processing from
the receiver. For instance, interactive systems need a synchronous
type of communication.

 There are three popular types of synchronous communications:
 a. Request/response
 b. Transmit
 c. Polling
 2. Asynchronous communication—This allows the sender to continue

processing after sending the request without waiting for a reply
to this request. The sender does not concern itself with whether
or when the request has been received, how it is processed, or the
results returned from the receiver. Asynchronous communica-
tions does not demand a high degree of coupling and also does not
require the sender to coordinate the communications with its inter-
nal processing. It is used when the communication of information is
required without the need to coordinate activities or responses.

99Enterprise Application Integration (EAI)

 There are three popular types of asynchronous communications:
 a. Message passing—This is used in situations where information

needs to be transmitted but a reply is not required. This needs a
reliable network for guaranteed delivery.

 b. Publish/subscribe—This is used in situations where a reply is not
required, but unlike all other cases, the recipient is determined
based on the content of the request and the predeclared interest
of the receiver application. This type of communication is use-
ful for STP type of functional integration (see Section 4.2.2.2.3,
“Straight-Through Processing”).

 c. Broadcast—This is used in situations where again a reply is not
needed but the request is sent to all the applications and each
receiver decides if it is interested in the request/message and
accordingly processes that request/message in accordance with
the business and functional logic programmed into each of the
receiver systems.

4.2.1.3 Middleware Options

Middleware is software that enables disparate applications to interact with
each other—it facilitates the communication of requests between software
components through the use of predefined interfaces or messages. The five
basic types of middleware are as follows:

 1. Remote procedure call (RPC)—This is based on the notion of devel-
oping distributed applications that integrate at the procedure level
but across a network

 2. Database access middleware—This is based on the notion of devel-
oping distributed applications that integrate at the distributed data
level whether in files or databases but across the network

 3. Message Oriented Middleware (MOM)—This is based on the notion
of developing distributed applications that integrate at the message
level but across the network

 4. Distributed object technology (DOT)—This is based on the notion
of developing distributed applications that integrate at the interface
level but those that make the application look like an object

 5. Transaction processing monitor (TPM)—This is based on the notion
of developing distributed applications that integrate at the distrib-
uted transaction level but across the network

4.2.2 Models of Integration

An integration model defines the approach and configurations used to inte-
grate software applications depending on the nature and methods of the

100 Guide to Cloud Computing for Business and Technology Managers

envisaged integration. There are three possible points of integration, namely,
presentation, functional, and data integration.

4.2.2.1 Presentation Integration

In this model, the integration is accomplished by deploying a new and uni-
form application user interface—the new application appears to be a single
application although it may be accessing several legacy and other applica-
tions at the back–end. The integration logic, the instructions on where to
direct the user interactions, communicates the interaction of the user to the
corresponding application using their existing presentations as a point of
integration. It then integrates back any results generated from the various
constituent applications. Thus, a single presentation could replace a set of
terminal-based interfaces and might incorporate additional features, func-
tions, and workflow for the user. For instance, a mainframe application
can be integrated into a new Microsoft Windows application at the front-
end using the screen-scraping technology that effectively copies, maps,
and imports data from specific locations on character-based screens of the
mainframe application onto the new schemas and data structures of the
new system.

Presentation integration is the easiest to achieve and can be automated
almost 100%; however, it is also the most limiting of the three models.

4.2.2.2 Functional Integration

In this model, the integration is accomplished by invoking from other
applications functionality or from the business logic of the existing appli-
cations by using code level interfaces to the existing applications. This
might be achieved at the level of an object or a procedure or via applica-
tion programming interface (API) if it exists for each of the corresponding
applications. The business logic includes the processes and workflow as
well as the data manipulation and rules of interpretation. For instance, to
change the customer’s address in an enterprise application, the functional-
ity of the existing customer order and billing application can be accessed
if it is functionally integrated with these later applications. Rather than
re-create the logic in the new application, it is more efficient and less error
prone to reuse the existing logic.

Traditionally, remote procedure calls (RPCs), which have been employed
for this kind of integration, have provided the definitions for access and basic
communications facilities. However, lately, distributed processing middle-
ware has become the preferred method of integration as it not only provides
a more robust approach to the interface definitions and communications but
also enables runtime support for intercomponent requests. The three catego-
ries of distributed processing are as follows:

101Enterprise Application Integration (EAI)

 1. Message oriented Middleware (MOM)—This achieves integra-
tion by providing for the communication of messages between
applications by means of the messages placed in MOM, which
itself is implemented in a variety of configurations, including
message queuing and message passing. MOM is then responsible
for delivering to the target system. Microsoft’s MSMQ, BizTalk,
IBM’s MQSeries, and Talarian’s SmartSockets are examples of
MOM.

 2. Distributed object technology (DOT)—This achieves integration by
providing object interfaces that make applications look like objects.
The application can then be accessed by other applications across a
network through the object interfaces. OMG’s CORBA, Microsoft’s
COM+, and Sun’s Java 2 Enterprise Edition (J2EE) are examples of
DOT.

 3. Transaction processing monitors (TPMs)—These achieve integration
by providing critical support for integrity of distributed resources
such as databases, files, and message queues across distributed
architectures by allowing various types of transactions to be man-
aged using a variety of concepts including two-phase commit. BEA’s
Tuxedo is an example of TPM.

Functional integration that is more flexible than the other two integration
models can be applied in three different forms as described later.

4.2.2.2.1 Synchronization

This corresponds to the coordination of data updates from multiple sources
across integrated applications that may have been developed and enhanced
over a long period of time. It provides integration that is loosely coupled
and predominantly asynchronous. These applications may represent various
relationships that a customer may have had with the enterprise or manage
employee- or product-related information. When an update is made into any
of the systems, the update needs to be propagated across all of these sys-
tems. Typically, synchronization is implemented by propagating a request
that describes the intended action and the corresponding data to each of the
relevant systems.

4.2.2.2.2 Component Integration

Component integration is the integration of applications where a well-
defined interface exists that allows a component to be accessed via requests
from other components without modifications. The interfaces for each
component must identify the specific functions that the component sup-
ports. It provides integration that is tightly coupled and predominantly
synchronous.

102 Guide to Cloud Computing for Business and Technology Managers

4.2.2.2.3 Straight-Through Processing (STP)

This corresponds to a coordinated set of automated actions executed across
all relevant applications in the correct order of precedence automatically,
that is, without human intervention. It provides integration that is tightly
coupled and can be both synchronous and asynchronous. This kind of pro-
cess is commonly associated with workflow though it does not involve deci-
sion making or complicated scheduling. For instance, an order for a product
is placed on a Website; the Order Processing System (OPS) creates the order
and notifies the logistics and shipping system to ship the product. When the
order is completed, the OPS is notified of the change of status and the billing
system triggers a bill for payment. Once the payment is received, the OPS is
notified to close the order.

4.2.2.3 Data Integration

In this model, integration is accomplished by bypassing the existing applica-
tion business logic and directly accessing the data created, processed, and
stored by each of the corresponding applications. For instance, an Oracle-
based billing system can be integrated with an IBM-based customer order
system using the database gateway technology that integrates the DB2 data-
base with the Oracle database.

This has been one of the earliest models applied for accessing information
from databases, including

• Batch file transfer
• Open database connectivity (ODBC)
• Database access middleware
• Data transformation

The data integration model provides greater flexibility than the presentation
integration model; it simplifies access to data from multiple sources and also
allows the data to be reused across other applications. However, integrat-
ing at the data level necessitates rewriting of any functionality required by
each of the applications, which implies greater effort for avoiding inconsis-
tencies, standardizing, testing, and debugging for each of the applications
on an ongoing basis. Since this model is highly sensitive to changes in the
data models for each of the applications, this integration model is not very
amenable for change and maintenance.

4.2.2.4 Business Process Integration

Achieving business process integration is often connected with business
process reengineering and is not a sole technical problem. It, however,
requires the implementation of several technical layers as the foundation

103Enterprise Application Integration (EAI)

and integrates applications at a higher level of abstraction. SOA, BPEL, and
related technologies today provide new opportunities for making inte-
grated information systems more flexible and adaptable to business process
changes. This way, our information systems can get more agile, provide bet-
ter support for changing requirements, and align closer to business needs
(see Chapter 10, “Service Composition”).

4.2.2.5 Business-to-Business Integration

There is a growing need to enable inter-enterprise integration, often referred
to as business-to-business (B2B) integration, or e-business. The requirements
today for online, up-to-date information, delivered with efficiency, reliabil-
ity, and quality, are very high and gone are the days where a company could
just publish offline catalogs on their Web pages.

Customers today expect immediate response and are not satisfied with
batch processing and several days of delay in confirming orders. However,
these delays are often the case when e-business is not backed by an effi-
ciently integrated enterprise information system. Immediate responsiveness,
achieved by the highly coupled integration of the back-end (enterprise infor-
mation systems) and the front-end (presentation) systems, is a key success
factor. Nonintegrated systems fail to meet business expectations; the primary
reason for this is the lack of enterprise integration. In an e-business scenario,
Applications from one company are invoking operations on front-end appli-
cations belonging to other companies. Only if these front-end systems are
satisfactorily connected with back-end systems can the other company be
able to provide an immediate and accurate response, which is an essential
prerequisite for successful B2B collaboration.

4.2.3 Patterns of Integration

Integration patterns can be grouped into point-to-point integration and hub-
and-spoke integration based on the way applications are connected. In the
first approach, the applications are directly connected, while in the second,
message exchanges go through a third party before being delivered to the
final destination.

4.2.3.1 Point-to-Point Integration

Point-to-point integration is the simplest way to integrate independently
developed application silos and do not require significant upfront invest-
ment. Each application is connected directly and explicitly to others. To link
each application to another directly, an interface needs to be developed.
This style may work well if the number of applications to be integrated is
not large and there is no intention to scale out. Otherwise, it may quickly

104 Guide to Cloud Computing for Business and Technology Managers

become unmanageable as the number of applications silos increases: if there
are N applications to be integrated, then the number of interfaces to be devel-
oped becomes N × N; that is, the number of interfaces to be developed grows
on the order of N2.

Another problem with point-to-point integration is the inability to respond
to changes quickly. This is because the interfaces are hardwired to the appli-
cation pairs, and changes within the enterprise information infrastructure
may require rewiring the interfaces.

4.2.3.2 Message-Oriented Integration

In message-oriented integration solutions, the applications communicate
with each other by sending and receiving messages through a middle-
ware that manages the message queue associated with each application.
Integration of two applications is by sending and receiving messages to the
appropriate queue and the middleware ensures that the messages are deliv-
ered. However, point-to-point aspect of the integration is not eliminated,
since applications are required to specify the recipients of the messages.

4.2.3.3 Hub–Spoke Integration

Spoke–hub integration eliminates the need to encode the address of the
recipient. A centralized enterprise application middleware routes messages
to their destinations based on the content and the format of the message. All
applications are connected to the central integration hub like the spokes on
a bicycle wheel. For this reason, this integration style is called spoke–hub
integration. The concept is effectively used in many industries, such as trans-
portation and telecommunication.

A collection of point-to-point integrations with one common end
results effectively in a hub–spoke integration pattern.

Spoke–hub integration reduces the number of connections from order of N2
to N. This means that only as many interfaces as the number of applications
need to be developed. In practice, a centralized integration hub provides a
place for the adapters and it is the responsibility of the application developer
to provide an adapter for each hub they connect to. Without standardiza-
tion of adapters, this requires some development and testing resources (see
Chapter 5, Section 5.12.1, “Replacing a Point-to-Point Integration Architecture
with a Broker”).

105Enterprise Application Integration (EAI)

The spoke–hub integration is effectively implemented by message broker
software that translates messages from one protocol to another, making sure
that the data structures are compatible. Message brokers allow the rules of
communication between applications to be defined outside the applications
so that application developers do not need to worry about designing adaptors
for every other application. When a message is received, the message broker
runs the rule over the received message, transforms the data if needed, and
inserts it into the appropriate queue. The rules are defined in a declarative
way based on the communication protocols used by the applications. The
message broker uses these rules to identify the message queues where the
messages should be relayed. Publish/Subscribe software architecture style
can be used to implement message brokers. Accordingly, applications pub-
lish their messages that are then relayed to the receiving applications that
subscribe to them.

The major drawback of the message broker approach is the difficulty in
managing and configuring the rules when the dependencies between appli-
cations are complex. Also, because message-based communications are
inherently asynchronous, the solution may not be well suited for synchro-
nous communication requirements, such as real-time computing or near-
real-time computing.

4.3 Summary

This chapter focuses on enterprise applications and aspects related to the
integration of applications. It describes the basics and models of integration
including presentation, functional, data, business process, and bussiness-to-
bussiness integration. The last part of the chapter explains the various pat-
terns of integration, which will be used in Chapter 5.

107

5
Integration Technologies

Comprehensive enterprise-wide integration infrastructure usually requires
more than one technology. Typically, also, because of the existing technol-
ogies, we will have to use a mixture of technologies. When selecting and
mixing different technologies, we have to focus on their interoperability.
Interoperability between technologies will be crucial because we will use
them to implement the integration infrastructure. Achieving interoperabil-
ity between technologies can be difficult even for technologies based on
open standards. Small deviations from standards in products can deny the
on-paper interoperability. For proprietary solutions, interoperability is even
more difficult. It is not only the question of if we can achieve interoperability
but also how much effort we have to put in to achieve it. Technologies used
for integration are often referred to as middleware.

5.1 Middleware

Middleware is system services software that executes between the operating
system layer and the application layer and provides services. It connects two
or more applications, thus providing connectivity and interoperability to the
applications. Middleware is not a silver bullet that will solve all integration
problems. Due to overhyping in the 1980s and early 1990s, the term middle-
ware has lost popularity but is coming back in the last few years. The middle-
ware concept, however, is today even more important for integration, and
all integration projects will have to use one or many different middleware
solutions. Middleware is mainly used to denote products that provide glue
between applications, which is distinct from simple data import and export
functions that might be built into the applications themselves.

All forms of middleware are helpful in easing the communication between
different software applications. The selection of middleware influences the
application architecture, because middleware centralizes the software infra-
structure and its deployment. Middleware introduces an abstraction layer in
the system architecture and thus reduces the complexity considerably. On
the other hand, each middleware product introduces a certain communica-
tion overhead into the system, which can influence performance, scalability,
throughput, and other efficiency factors. This is important to consider when

108 Guide to Cloud Computing for Business and Technology Managers

designing the integration architecture, particularly if our systems are mis-
sion critical and are used by a large number of concurrent clients.

Middleware is connectivity software that is designed to help manage the
complexity and heterogeneity inherent in distributed systems by building
a bridge between different systems, thereby enabling communication and
transfer of data. Middleware could be defined as a layer of enabling soft-
ware services that allow application elements to interoperate across net-
work links, despite differences in underlying communications protocols,
system architectures, operating systems, databases, and other application
services. The role of middleware is to ease the task of designing, program-
ming, and managing distributed applications by providing a simple, con-
sistent, and integrated distributed programming environment. Essentially,
middleware is a distributed software layer, or platform, that lives above
the operating system and abstracts over the complexity and heterogeneity
of the underlying distributed environment with its multitude of network
technologies, machine architectures, operating systems, and programming
languages.

The middleware layers are interposed between applications and Internet
transport protocols. The middleware abstraction comprises two layers. The
bottom layer is concerned with the characteristics of protocols for communi-
cating between processes in a distributed system and how the data objects,
for example, a customer order, and data structures used in application pro-
grams can be translated into a suitable form for sending messages over a
communications network, taking into account that different computers may
rely on heterogeneous representations for simple data items. The layer above
is concerned with interprocess communication mechanisms, while the layer
above that is concerned with non-message- and message-based forms of
middleware. Message-based forms of middleware provide asynchronous
messaging and event notification mechanisms to exchange messages or react
to events over electronic networks. Non-message-based forms of middle-
ware provide synchronous communication mechanisms designed to sup-
port client–server communication.

Middleware uses two basic modes of message communication:

 1. Synchronous or time dependent: The defining characteristic of a syn-
chronous form of execution is that message communication is syn-
chronized between two communicating application systems, which
must both be up and running, and that execution flow at the client’s
side is interrupted to execute the call. Both sending and receiving
applications must be ready to communicate with each other at all
times. A sending application initiates a request (sends a message) to
a receiving application. The sending application then blocks its pro-
cessing until it receives a response from the receiving application.
The receiving application continues its processing after it receives
the response.

109Integration Technologies

 2. Asynchronous or time independent: With asynchronous communica-
tion, an application sends (requestor or sender) a request to another
while it continues its own processing activities. The sending applica-
tion does not have to wait for the receiving application to complete
and for its reply to come back. Instead, it can continue processing
other requests. Unlike the synchronous mode, both application sys-
tems (sender and receiver) do not have to be active at the same time
for processing to occur.

The basic messaging processes inherently utilize asynchronous communica-
tion. There are several benefits to asynchronous messaging:

 1. Asynchronous messaging clients can proceed with application
processing independently of other applications. Loose coupling of
senders and receivers optimizes system processing by not having to
block sending client processing while waiting for the receiving cli-
ent to complete the request.

 2. Asynchronous messaging allows batch and parallel processing
of messages. The sending client can send as many messages to
receiving clients without having to wait for the receiving clients to
process previously sent messages. On the receiving end, different
receiving clients can process the messages at their own speed and
timing.

 3. There is less demand on the communication network because the
messaging clients do not have to be connected to each other or the
MOM while messages are processed. Connections are active only to
put messages to the MOM and get messages from the MOM.

 4. The network does not have to be available at all times because of
timing independence of client processing. Messages can wait in the
queue of the receiving client if the network is not available. MOM
implements asynchronous message queues at its core. It can concur-
rently service many sending and receiving applications.

Despite the performance drawbacks, synchronous messaging has several ben-
efits over asynchronous messaging. The tightly coupled nature of synchro-
nous messaging means the sending client can better handle application errors
in the receiving client. If an error occurs in the receiving client, the sending
client can try to compensate for the error. This is especially important when
the sending client requests a transaction to be performed in the receiving
client. The better error handling ability of synchronous messaging means it is
easier for programmers to develop synchronous messaging solutions. Since
both the sending and receiving clients are online and connected, it is easier
for programmers to debug errors that might occur during the development
stage. Since most developers are also more familiar with programming using

110 Guide to Cloud Computing for Business and Technology Managers

synchronous processing, this also facilities the development of synchronous
messaging solutions over asynchronous messaging solutions.

When speaking of middleware products, we encompass a large variety of
technologies. The most common forms of middleware are as follows:

 1. Database access technologies
 2. Asynchronous Middleware
 3. Synchronous Middleware
 4. Message-oriented Middleware
 5. Request/Reply Messaging Middleware
 6. Transaction Processing Monitors
 7. Object Request Brokers
 8. Application Servers
 9. Web Services
 10. Enterprise Service Buses
 11. Enterprise Systems

We discuss these in detail in the following sections.

5.2 Database Access Technologies

Database access technologies provide access to the database through
an abstraction layer, which enables us to change the actual Database
Management System (DBMS) without modifying the application source code.
In other words, it enables us to use the same or similar code to access differ-
ent database sources. Therefore, database access technologies are useful for
extracting data from different DBMSs. The technologies differ in the form
of interfaces to the database they provide. They can offer function-oriented
or object-oriented access to databases. The best known representatives are
Java Database Connectivity (JDBC) and Java Data Objects (JDO) on the Java
platform and Open Database Connectivity (ODBC) and Active Data Objects
(ADO.NET) on the Microsoft platform.

To expose data to the outside world, data source applications (i.e., data-
bases) could incorporate a standard-based data access component for a
remote application to perform functions on the database. The generic name
for this type of standard is call level interface (CLI). The concept of CLI was
originally created by the Structured Query Language (SQL) Access Group,
an industry group created to define industry SQL standards. CLI shields
the developer from the individual database. As long as the database is CLI

111Integration Technologies

compliant, the developer can use the same code to access different SQL data-
bases. There are two main varieties of data integration technologies using
CLI concept. The first variety is the one championed by Microsoft called
the Open Database Connectivity (ODBC) standard and other standards like
Object Link and Embedding database (OLE DB). The other variety is the
JDBC standard from Javasoft.

5.2.1 Microsoft Open Database Connectivity (ODBC)

ODBC is a CLI and has a set of standard function calls to a database. Using
ODBC, an application can remotely access a database—developers do not care
what database or platform is used to store application data. The same code for
data access can work for any database that has an ODBC driver, as long as
the right ODBC Driver Manager exists for that platform. This eases the task
of data access. Initially, ODBC has encountered database performance issues.
However, it has evolved into a high-performance database access mechanism.

In order for ODBC to work, an operating system-specific driver manager
needs to be utilized. A driver manager dynamically determines which ODBC
driver to use for a program to access a database that is ODBC compliant. The
ODBC driver takes the request from the calling program and translates it to
a native format that the database can understand, and the database performs
the request. Microsoft provides the ODBC Driver Manager for its operating
systems; there are other ODBC Driver Managers for other operating sys-
tems from other vendors. As long as an ODBC driver exists for a database,
an application can ask the database to perform a request that is supported
natively in the database. Therefore, if a function supported by ODBC does
not exist in the database, the ODBC driver for that database cannot support
that function. Conversely, if a database has a function that is not supported
in the ODBC standard, then the ODBC driver cannot support that function.

5.2.2 Java Database Connectivity (JDBC)

Like ODBC, JDBC is a CLI and it has its own set of functions. It enables a Java
program to access a database with a JDBC driver. The architecture of JDBC is
similar to ODBC. There is the JDBC Driver Manager, which is supplied in the
Java Development Toolkit. When using the JDBC Driver Manager, the devel-
oper has to register the driver with the Driver Manager in the Java program.

There are four types of JDBC drivers:

• Type 1 is the JDBC–ODBC bridge driver.
• Type 2 is native application programming interfaces (APIs) partly

Java-technology-enabled driver.
• Type 3 is the net-protocol fully Java-technology-enabled driver.
• Type 4 is the native-protocol fully Java-technology-enabled driver.

112 Guide to Cloud Computing for Business and Technology Managers

5.3 Asynchronous Middleware

In an environment where multiple applications and Web Services need to
interact with each other, it is not practical to expect that each application
knows the signature characteristics of every other application’s methods.
Instead, the intricacies of the service interface should not necessarily be
known to all interacting applications. Asynchronous communication pro-
motes a loosely coupled environment in which an application does not need
to know the intimate details of how to reach and interface with other appli-
cations. Each participant in a multistep business process flow need only be
concerned with ensuring that it can send a message to the messaging system.
In general, asynchronous communication is often the preferred solution for
EAI and cross-enterprise computing, especially when applications want to
transfer data between internal enterprise information systems, for example,
databases and ERP packages, or between their systems and those of their
partners.

5.3.1 Store and Forward Messaging

With the store and forward queuing mechanism, messages are exchanged
through a queue, which is the destination to which senders send messages
and a source from which receivers receive messages. Messages are placed on
a virtual channel called a message queue by a sending application and are
retrieved by the receiving application as needed—the queue is a container
that can keep hold of a message until the recipient collects it. The message
queue is independent of both the sender and receiver applications and acts
as a buffer between the communicating applications. The physical location
of the queue or the physical details of the host platform are immaterial, all
that is required is that an application is in some way registered or connected
to the message queue subsystem. This provides a useful form of abstrac-
tion that enables physical implementations to be changed on either platform,
without affecting the rest of the implementation.

The store and forward queuing mechanism is typical of a many-to-one mes-
saging paradigm where multiple applications can send messages to a single
application. The same application can be sender, receiver, or both sender and
receiver. Message queuing provides a highly reliable, although not always
timely, means of ensuring that application operations are completed.

5.3.2 Publish/Subscribe Messaging

Publish/subscribe messaging is a slightly more scalable form of messaging
when compared to the store and forward mechanism. With this type of
asynchronous communication, the application that produces information
publishes it and all other applications that need this type of information

113Integration Technologies

subscribe to it. Messages containing new information are placed in a queue
for each subscriber by the publishing application. Each application in this
scheme may have a dual role: it may act as a publisher or subscriber of
different types of information. The subscription list can be easily modi-
fied, on the fly, providing a highly flexible communications system that
can run on different systems and networks. The publish/subscribe mes-
saging mode usually includes the ability to transform messages, acting as
an interpreter, which enables applications that were not designed to work
together to do so.

The message server takes the responsibility of delivering the published
messages to the subscribing applications based on the subscribed topic. Every
message has an expiration time that specifies the maximum amount of time
that it can live from the time of its publication in a topic. The message server
first delivers messages to its associated active subscribers and then checks to
make sure if there are any nonactive durable subscribers subscribed to the
published topic. If, after the initial delivery, any of the durable subscribers
did not acknowledge receipt of the message, the message is retained in the
message server for the period of the expiration time, in the hope that the
durable subscribers, if any, will connect to the message server and accept
delivery of the message.

All subscribers have a message event listener that takes delivery of the
message from the topic and delivers it to the messaging client application for
further processing. Subscribers can also filter the messages that they receive
by qualifying their subscriptions with a message selector. Message selectors
evaluate a message’s headers and properties (not their bodies) with the pro-
vided filter expression strings.

5.3.3 Point-to-Point Messaging

Point-to-point model is a pull-based or polling-based model, where messages
are requested from a queue instead of being pushed to the client automati-
cally as is the case with publish/subscribe model. Many large systems are
divided into several separate units; the point-to-point messaging model pro-
vides reliable communication for such multistaged applications. The point-
to-point messaging model allows clients to send and receive messages both
synchronously and asynchronously via queues. One important difference
between the publish/subscribe messaging and the point-to-point messaging
is that point-to-point messages are always delivered, regardless of the cur-
rent connection status of a receiver.

5.3.4 Event-Driven Processing Mechanism

The asynchrony, heterogeneity, and inherent loose coupling that character-
ize modern applications in a wide area network promote event interaction
as a natural design abstraction for a growing class of software systems.

114 Guide to Cloud Computing for Business and Technology Managers

Such systems are based on a technical infrastructure known as an event
notification service. An event notification service complements other
general-purpose middleware services, such as point-to-point and multicast
communication mechanisms, by offering a many-to-many communication
and integration facility. Clients in an event notification scheme are of two
kinds: objects of interest, which are the producers of notifications, and inter-
ested parties, which are the consumers of notifications. It is noteworthy that
a client can act as both an object of interest and an interested party. An event
notification service typically emulates the publish/subscribe asynchronous
messaging scheme wherein clients publish event (or notification) messages
with highly structured content, and other clients make available a filter
(a kind of pattern) specifying the subscription: the content of events to be
received at that client. Event message distribution is handled by an underly-
ing content-based routing network, which is a set of server nodes intercon-
nected as a peer-to-peer network. The content-based router is responsible
for sending copies of event messages to all clients whose filters match that
message.

In order to achieve scalability in a wide area network, the event notifica-
tion service by necessity must be implemented as a distributed network of
servers. It is the responsibility of the event notification service to route each
notification through the network of servers to all subscribers that registered
matching subscriptions and to keep track of the identity of the subscriber
that registered each subscription. The event notification scheme is partic-
ularly appealing for developing service-based applications. The fact that
notifications are delivered based on their content rather than on an explicit
destination address adds a level of indirection that provides a great deal of
flexibility and expressive power to clients of the service.

5.4 Synchronous Middleware

Programming models for synchronous forms of middleware are composed
of cooperating programs running in several interacting distributed pro-
cesses. Such programs need to be able to invoke operations synchronously in
other processes, which frequently run in different computing systems. The
most familiar approaches to non-message-based forms of middleware are
typified by the remote procedure call (RPC) and the remote method invoca-
tion (RMI).

5.4.1 Remote Procedural Call (RPC)

RPC is based on the function call technique in traditional programming.
With RPC, the client application passes the arguments for the function call

115Integration Technologies

to a local stub. Stubs are code within the local system that handles commu-
nication and passing data to and from the remote system. When a local stub
receives the arguments, it establishes communication with the server and
passes the arguments for the procedure call to the stub on the server. The cli-
ent application blocks processing while it waits for the response to its remote
procedure calls. When the server stub receives the arguments, it calls the
procedure. After the server executes the procedure call, it passes the results
to the server stub, which sends the results to the client stub. The client stub
passes the results to the calling application. The connection between the two
systems is closed only after the server returns the results of the request or the
connection reaches a preset time limit. The client proceeds with its process-
ing after it has received the response. Figure 5.1 describes the basic operation
of RPC. In this example, the calling application in system A calls the RPC cli-
ent stub. The stub then communicates with the RPC server stub in system B.
After the target application in system B finishes processing, the result is sent
back to the calling application via the client and server stubs.

RPC utilizes synchronous communication, which is different from the
asynchronous nature of messaging. Using RPC, an application can invoke
functions on another system as if they are on the same system. This is a tre-
mendous help for application development. In a client–server development
environment, developers can build distributed applications that span mul-
tiple computers using RPC without having to worry about network interface
details. Unlike message-oriented middleware (MOM), RPC is not a discrete
middleware layer. It requires stub codes on the client and the server. As long
as the RPC stubs are available on the client and the server, the communica-
tion can be established directly without a discrete middleware intermediary.
RPC technology comes with its set of specifications; when applications on dif-
ferent platforms follow the same set of specifications, these applications can
interact with one another. Thus, RPC standards are platform independent.

RPCs work well for smaller, simple applications where communication
is primarily point to point (rather than one system to many). RPCs do not
scale well to large, mission-critical applications, as they leave many crucial
details to the programmer, including handling network and system failures,
handling multiple connections, and synchronization between processes.
RPC-style programming leads to tight coupling of interfaces and applica-
tions. In an RPC environment, each application needs to know the intimate
details of the interface of every other application—the number of methods
it exposes and the details of each method signature it exposes. This figure
clearly shows that the synchronized nature of RPC tightly couples the cli-
ent to the server. The client cannot proceed—it is blocked—until the server
responds, and the client fails if the server fails or is unable to complete. This
can be understood by the fact that when performing a synchronous opera-
tion across multiple processes, the success of one RPC call depends on the
success of all downstream RPC-style calls that are part of the same synchro-
nous request/response cycle. This makes the invocation a whole-or-nothing

116 Guide to Cloud Computing for Business and Technology Managers

proposition. If one operation is unable to complete for any reason, all other
dependent operations will fail with it.

Remote procedure calls are also a client/server infrastructure intended
to enable and increase interoperability of applications over heterogeneous
platforms. Similar to MOM, it enables communication between software
on different platforms and hides almost all the details of communication.
RPC is based on procedural concepts—developers use remote procedure
or function calls. The first implementations date back to the early 1980s.
The main difference between MOM and RPC is the manner of communica-
tion. While MOM supports asynchronous communication, RPC promotes
synchronous, request–reply communication (sometimes referred to as call/
wait), which blocks the client until the server fulfills its requests. To achieve
remote communication, applications use procedure calls; RPC middleware
hides all communication details, which makes using remote procedure
calls very similar to local procedure calls.

RPC guards against overloading a network, unlike the asynchronous
mechanism, MOM. There are a few asynchronous implementations avail-
able, but they are more the exception than the rule. RPC increases the flex-
ibility of architecture by allowing a client of an application to employ a
function call to access a server on a remote system. RPC allows the remote
access without knowledge of the network address or any other lower-level
information. The semantics of a remote call is the same whether or not the
client and server are collocated. RPC is appropriate for client/server applica-
tions in which the client can issue a request and wait for the server to return
a response before continuing with its own processing. On the other hand,
RPC requires that the recipient be online to accept the remote call. If the
recipient fails, the remote calls will not succeed, because the calls will not be
temporarily stored and then forwarded to the recipient when it is available
again, as is the case with MOM.

RPC is often connected with the Distributed Computing Environment
(DCE), developed by the Open Systems Foundation (OSF). DCE is a set of
integrating services that expand the functionality of RPC. In addition to
RPC, the DCE provides directory, time, security, and thread services. Over
these fundamental services, it places a layer of data-sharing services, includ-
ing distributed file system and diskless support. Technologies that predomi-
nantly use RPC-style communication include the Common Object Request
Broker Architecture (CORBA), the Java Remote Method Invocation (RMI),
DCOM, Active X, Sun RPC, Java API for XML-RPC (JAX-RPC), and the Simple
Object Access Protocol (SOAP) v1.0 and v1.1. Component-based architectures
such as EJB are also built on top of this model. However, due to their syn-
chronous nature, RPCs are not a good choice to use as the building blocks for
enterprise-wide applications where high performance and high reliability
are needed. The synchronous tightly coupled nature of RPCs is a severe hin-
drance in system-to-system processing where applications need to be inte-
grated together. Under synchronous solutions, applications are integrated by

117Integration Technologies

connecting APIs together on a point-to-point basis; consequently, it results in
a lot of integration points between applications.

5.4.2 Remote Method Invocation (RMI)

Traditional RPC systems are language neutral and therefore cannot provide
functionality that is not available on all possible target platforms. The Java
RMI provides a simple and direct model for distributed computation with
Java objects on the basis of the RPC mechanism. The Java RMI establishes
interobject communication. If the particular method happens to be on a
remote machine, Java provides the capability to make the RMI appear to
the programmer to be the same as if the method is on the local machine.
Thus, Java makes RMI transparent to the user. RMI applications comprise
two separate programs: a server and a client. RMI provides the mechanism
by which the server and the client communicate and pass information back
and forth.

There are two different kinds of classes that can be used in RMI: remote
and serializable classes. A remote object is an instance of a remote class. When
a remote object is used in the same address space, it can be treated just like
an ordinary object. But if it is used externally to the address space, the object
must be referenced by an object handle. Correspondingly, a serializable
object is an instance of a serializable class. A serializable object can be copied
from one address space to another. This means that a serializable object can
be a parameter or a return value. Note that if a remote object is returned, it is
the object handle being returned.

5.5 Messaging-Oriented Middleware (MOM)

Message-oriented middleware (MOM) is a client/server infrastructure that
enables and increases interoperability, flexibility, and portability of appli-
cations. It enables communication between applications over distributed
and heterogeneous platforms. It reduces complexity because it hides the
communication details and the details of platforms and protocols involved.
The functionality of MOM is accessed via APIs. It typically resides on both
ends, the client and the server side. It provides asynchronous communi-
cation and uses message queues to store the messages temporarily. The
applications can thus exchange messages without taking care of the details
of other applications, architectures, and platforms involved. The messages
can contain almost any type of data; asynchronous nature of communica-
tion enables the communication to continue even if the receiver is tempo-
rarily not available. The message waits in the queue and is delivered as
soon as the receiver is able to accept it. But asynchronous communication

118 Guide to Cloud Computing for Business and Technology Managers

has its disadvantages as well. Because the server side does not block the
clients, they can continue to accept requests even if they cannot keep pace
with them, thus risking an overload situation.

MOM products are proprietary products and have been available from the
mid-1980s. Therefore, they are incompatible with each other. Using a single
product results in dependence on a specific vendor; this can have negative
influence on flexibility, maintainability, portability, and interoperability.
MOM product must specifically run on each and every platform being inte-
grated. Not all MOM products support all platforms, operating systems, and
protocols. However, Java platform provides ways to achieve relatively high
independence from a specific vendor through a common interface, used to
access all middleware products—the Java Message Service (JMS).

MOM is particularly suitable for integrating applications by reason of fea-
tures like the following:

• Transparent cooperation of heterogeneous systems: The integration bro-
ker provides transformation software to transform application data
running under diverse programming environments, operating sys-
tems, and hardware platforms.

• Prioritization of requests: All messages in an MOM environment may
have priority attached to them. This forces higher-priority messages
to be processed before lower-priority messages sent at an earlier
time.

• Automatic message buffering and flow control: A distributed application
often will need to read messages from diverse applications and pro-
grams. To support this undertaking, each application can have mes-
sage queues that transparently buffer the messages when there are
variable traffic rates, providing automatic flow control.

• Persistent messaging: This enables reliability and ensures that mes-
sages are guaranteed to be delivered at most once to their subscribers.

• Flexibility and reliability: Flexibility with MOM is achieved because
an application can send its messages whenever it decides, inde-
pendently of the recipient’s availability. Senders and recipients are
independent and thus unattached. Reliability is achieved because a
persistent message is never lost.

• Load balancing: The asynchronous nature of MOM enables flexibil-
ity for load balancing. Load balancing is achieved as messages can
be forwarded from a relatively busy application system to a less
busy one. Dynamic load balancing can be designed into an MOM
environment using selected algorithms including least busy and
round-robin. This results in a cost-effective use of network facili-
ties. In addition, the load balancing facility generates highly avail-
able message queues and enables an effective peak-hours network

119Integration Technologies

management. With this configuration, a low-bandwidth system may
still attain acceptable performance, whereas it would have collapsed
in a synchronous messaging environment.

• Scalability and optimal use of resources: When process volumes increase,
MOM brokers employ dynamic routing and multiplexing techniques.
Dynamic routing allows clients and servers that are not prepro-
grammed to communicate as the MOM automatically connect the
requestor to the necessary service (without developer intervention).
In addition, in case of a server breakdown, the MOM platform can
dispatch a message to another backup server. Multiplexing is a func-
tion offered by MOM brokers that enables several applications to
share a message queue.

MOM has demonstrated an ability to deliver the benefits of asynchronous
messaging for applications and process-to-process interoperability, dis-
tributed transaction processing (such as banking, brokerage, airline reser-
vations), distributed enterprise workflow (such as process manufacturing,
insurance claims processing), real-time automation (such as utility and pro-
cess control), and systems management (such as distributed backup, soft-
ware distribution), among others.

5.5.1 Integration Brokers

Integration brokers perform necessary content and format transformation to
translate incoming messages into a format that the subscribing system(s) can
understand and utilize. Integration brokers are usually built on top of some
MOM implementations and so the general principles of MOM also apply to
them. An integration broker is usually built on a queue manager and routes
messages to applications. The integration broker allows multiple applications
to implement a published service with the broker providing application inte-
gration. In addition to these functions, integration brokers account for any
differences at the structural level of applications; integration brokers take
care of structural mismatches by keeping track of message schemas and by
changing accordingly the content of messages to the semantics of a specific
application. These unique capabilities of integration brokers enable them to
broker not only between applications but also between types of middleware.

An integration broker is an application-to-application middleware service
that is capable of one-to-many, many-to-one, and many-to-many message
distribution. An integration broker is a software hub that records and man-
ages the contracts between publishers and subscribers of messages. When a
business event takes place, the application will publish the message(s) corre-
sponding to that event. The broker reviews its lists of subscriptions and acti-
vates delivery to each subscriber for this type of message so that subscribers
receive only the data to which they subscribe.

120 Guide to Cloud Computing for Business and Technology Managers

Integration brokers consist of components that provide the following
functions:

• Message transformation: The message transformation functionality
understands the format of all messages transmitted among applica-
tions. This is possible since the integration broker holds a reposi-
tory of schemas of interchanged messages. Using this knowledge,
the broker can translate between schemas by restructuring the data
of these messages. In this way, subscribing applications can make
sense of received messages.

• Business rules processing: The integration broker allows the applica-
tion of business rules to messages so that new application logic can
reside within the integration broker.

• Routing services: The routing functionality takes care of the flow
control of messages.

• Naming services: The directory services functionality is needed
since integration brokers function in a distributed environment and
need a way to locate and use network resources. Applications using
the integration broker are able to find other applications or hardware
on the network.

• Adapter services: Many integration brokers use adapters as layers
between the broker and large enterprise’s back-end information sys-
tems to convert the data formats and application semantics from the
source application to the target application. Adapters map the differ-
ences between two distinct interfaces: the integration broker inter-
face and the native interface of the source or target application. For
instance, an integration broker vendor may have adapters for sev-
eral different source and target applications (such as packaged ERP
applications), adapters for certain types of databases (such as Oracle,
Sybase, or DB2), or even adapters for specific brands of middleware.

• Repository services: Repository houses information on rules, logic,
objects, and metadata on target and source applications. The reposi-
tory keeps track of input/output to the applications, its data ele-
ments, interrelationships between applications, and all the metadata
from the other subsystems of the broker like the rules processing
component. Metadata is one of the key elements of any integration
solution as it is used to describe the structure of information held in
disparate systems and processes.

• Events and alerts: Messages passing through the integration broker
may trigger events or alerts based on specified conditions. Such con-
ditions may be used for tracking business processes that move out-
side the range of given parameters and create a new message, run a
special-purpose application, or send an alert.

121Integration Technologies

5.5.2 Java Message Service (JMS)

As indicated earlier, applications that were designed for use with one
middleware product could not be used with another middleware product.
Middleware vendors attempted to standardize programming interfaces
to MOM packages, but with little success. In 1999, Sun launched the Java
Message Service (JMS), a framework that specified a set of programming
interfaces by which Java programs could access MOM software. JMS is not
a messaging system itself; it is an abstraction of the interfaces and classes
needed by messaging clients when communicating with different messag-
ing systems. JMS is a vendor-independent API for enterprise messaging
that can be used with many different MOM vendors. JMS acts as a wrap-
per around different messaging products, allowing developers to focus on
actual application development and integration, rather on the particulars of
each other’s APIs; application developers use the same API to access many
different systems. JMS not only provides a Java API for connectivity to MOM
systems but also supports messaging as a first-class Java distributed comput-
ing paradigm on the same footing as RPC. JMS-based communication is a
potential solution in any distributed computing scenario that needs to pass
data either synchronously or asynchronously between application elements,
for instance; interfacing Enterprise Java Beans (EJB) with legacy applications
and sending legacy-related data between the two.

JMS provides two principal models of MOM messaging:

 1. The JMS point-to-point messaging model allows JMS clients to send
and receive messages both asynchronously and synchronously
via queues. A given queue may have multiple receivers, but only
one receiver may consume each message. This guarantees that, for
example, if a packaging order is sent to multiple warehouses, a sin-
gle warehouse receives the message and processes the order.

 2. The JMS publish/subscribe messaging model allows publishers to
send messages to a named topic; all subscribers to this topic receive
all messages sent to this topic. There may be multiple message listen-
ers subscribed to each topic and an application can be both sender
and receiver. JMS supports different message-sending configura-
tions, including one-to-one messages, one-to-many messages, and
many-to-many messages. One-to-one messages allow one message
to be sent from one publisher (sender) to one subscriber (receiver),
that is, point-to-point messaging; one-to-many messages allow one
message to be sent from one publisher to numerous subscribers;
and many-to-many messages allow many messages to be sent from
many publishers to numerous subscribers.

JMS supports two types of message delivery: reliable message delivery and
guaranteed message delivery. With reliable message delivery, the messaging

122 Guide to Cloud Computing for Business and Technology Managers

server will deliver a message to its subscribing client as long as there are no
application or network failures—delivery would fail if some disruption were
to occur during delivery. With guaranteed message delivery, the message
server will deliver a message even if there are application or network fail-
ures. The messaging server will store the message in its persistent store and
then forward the message to its subscribing clients. After the client processes
the message, it sends an acknowledgment to the messaging server and veri-
fies the receipt of the message.

5.6 Request/Reply Messaging Middleware

Most of the asynchronous messaging mechanisms that we have examined so
far follow the fire-and-forget messaging principle. On many occasions, appli-
cations require that request/reply messaging operations be performed. Here,
we can distinguish between two types of request/reply messaging opera-
tions: synchronous request/reply messaging and asynchronous request/
reply messaging operations. Synchronous request/reply messaging is often
necessary when trying to integrate with a Web Service client that blocks and
waits for a synchronous response to return to it. In the asynchronous version
of request/reply messaging, the requestor (sender) expects the reply to arrive
at a later time and continue its work unaffected.

To perform a request/reply operation, the sender must use two channels:
one for the request and one for the reply. The request message needs to contain
reference to the receiver’s end point, along with a correlation identifier that
is needed to correlate the request with the response message. The requestor
needs to poll a reply channel for the reply message. Both request/reply mes-
saging modes can be layered on top of message-oriented middleware. Some
Message-oriented middleware systems can further automate this process by
managing the contents of the request/reply message.

5.7 Transaction Processing Monitors

Most messaging systems allow for transactional messaging that entail four
ACID properties, namely, atomicity, consistency, isolation, and durability.
In a synchronous request using distributed objects, the request by the call-
ing object and the response from the receiving object use one process. This
ensures the calling object receives the response to the request in the same
connection to the object-based middleware. In contrast, transactional mes-
saging uses one process for sending the message and a separate process for

123Integration Technologies

receiving a response to the message. Because the processes are distinct, it
is also not possible for most MOM products to encapsulate the sending of a
message and the receiving of that same message into one transaction—the
transactional context is lost once the message has been sent to the des-
tination. This is a result of the asynchronous, loosely coupled nature of
messaging.

An approach to implementing transactional scope across the sending and
receiving messaging clients is for the programmer to include a compensat-
ing transaction in the application logic. For instance, if the transaction in the
receiving client fails, a message has to be sent to the sending client to inform
it of the failure. When the sending client receives the message, it has to per-
form a compensating transaction to reverse the original database transaction
it has performed. Due to the asynchronous nature of message queuing, it
is difficult for MOM to maintain ACID properties of transactions. A basic
MOM product does not provide this mechanism, and it has to be custom
developed.

A transaction represents a sequence of database operations
(insert, update, delete, select) for which the system guarantees
four properties also known as Atomicity, Consistency, Isolation,
and Durability (ACID):

• Atomicity: A transaction is executed completely or not at all,
thus exhibiting the characteristics of atomicity. As a con-
sequence, all changes to the data made by this transaction
become visible only if the transaction reaches commit success-
fully. Otherwise, if the transaction was terminated abnormally
before reaching a commit, the original state of the data from
the beginning is restored.

• Consistency: The property of consistency guarantees that all
defined integrity or consistency constraints are preserved at
the end of a transaction, that is, a transaction always moves the
database from one consistent state to another consistent state.
This has two consequences: In case a consistency constraint is
violated, the transaction may be abnormally terminated and
secondly, constraints can be temporarily violated during trans-
action execution but must be preserved upon the commit.

• Isolation: A transaction behaves as if it runs alone on the data-
base without any concurrent operations. Furthermore, it only
sees effects from previously committed transactions.

• Durability: When a transaction reaches the commit, it is guar-
anteed that all changes made by this transaction will survive
subsequent system and disk failures.

124 Guide to Cloud Computing for Business and Technology Managers

In an application program, the boundaries of a transaction are specified by
two commands:

• Begin-of-Transaction (BOT) denotes the beginning of the opera-
tion sequence – in some systems (e.g. in SQL database systems),
this command is implicitly performed after the end of the previous
transaction.

• Commit and rollback denote the end of the transaction. Commit is
the successful end and requires that all updates must be made per-
manent, while rollback is for aborting the entire sequence, that is,
undoing all effects.

The ACID properties are usually implemented by different components of a
data management solution. Maintaining isolation of transactions is achieved
by a concurrency control component implementing the concept of serial-
izibility. Atomicity and durability are guaranteed by providing recovery
strategies coping with possible failures. Finally, consistency is either explic-
itly supported by checking integrity rules or only implicitly by allowing roll-
backs of transactions.

The transaction is the mechanism that binds the client to one or more serv-
ers and is the fundamental unit of recovery, consistency, and concurrency in
a client–server system. From the perspective of application integration, trans-
actions are more than just business events. They have become an important
vehicle of guaranteeing consistency and robustness in distributed systems.

Transaction processing (TP) monitors enable building online TP by coor-
dinating and monitoring the efforts of separate applications. TP monitor
technology provides the distributed client–server environment with the
capability and capacity to efficiently and reliably develop, execute, and man-
age transaction applications. TP monitors reside between front-end appli-
cations and back-end applications and databases to manage operations on
transactional data; they manage processes and orchestrate applications by
breaking complex applications into a set of transactions. Under the control
of a TP monitor, a transaction can be managed from its point of origin—
typically on a client—across one or more servers and back to the originating
client. When a transaction ends, all parties involved agree that it either suc-
ceeded or failed. Transaction models define when a transaction starts, when
it ends, and what the appropriate units of recovery are in case of failure. A
TP monitor is needed for transactions requiring guaranteed completion of
multiple discrete functions on multiple application systems.

Transaction processing (TP) monitors are important middleware technol-
ogy in mission-critical applications. They represent the first generation of
application servers. TP monitors are based on the concept of transactions.
They monitor and coordinate transactions among different resources.
Although the name suggests that this is their only task, they have at least
two very important additional roles: providing performance management

125Integration Technologies

and security services. They provide performance management with load
balancing and resource pooling techniques, which enable efficient use of
computing resources and thus a larger number of concurrent clients. TP
monitors map client requests through application service stateless routines
to improve system performance. They can also take some application transi-
tion logic from the client. They also provide security management where
they enable or disable access of clients to certain data and resources. TP
monitors can be viewed as middle-tier technology, and this is why they are
predecessors of today’s application servers.

TP monitors have been traditionally used in legacy information systems.
They are based on the procedural model, use remote procedure calls for com-
munication between applications, and are difficult to program because of com-
plex APIs through which they provide the functionality. In spite of that, they
have been successfully used for more than 25 years. TP monitors are proprietary
products, which makes migration from one product to another very difficult.

A TP monitor can manage transactional resources on a single server or
across multiple servers, and it can also cooperate with other TP monitors in
federated arrangements. TP monitors are primarily designed to run applica-
tions that serve large numbers of clients. By interjecting themselves between
clients and servers, TP monitors can manage transactions, route them across
systems, load balance their execution, and restart them after failures. The
router subsystem of a TP monitor mediates the client request to one or more
server processes. Each server in turn executes the request and responds.
Typically, the server manages a file system, database, or other mission-critical
resources shared among several clients.

TP monitors have several drawbacks to contend with; namely, TP monitors
are much more intrusive than MOM—they demand more modification of
the applications themselves in order take advantage of the TP monitor’s spe-
cific services. TP can adversely affect application performance because, from
the point of view of the transaction’s requestor, the processing of a transac-
tion is synchronous. The requestor must wait until all the processing of the
transaction has completed before it can proceed with further computations.
Moreover, during the processing of a transaction, all the resources used by
it are locked until the transaction completes—no other application can use
these resources during the execution of a transaction.

5.8 Object Request Brokers

Object request brokers (ORBs) are a middleware technology that man-
ages and supports the communication between distributed objects or
components. ORBs enable seamless interoperability between distributed
objects and components without the need to worry about the details of

126 Guide to Cloud Computing for Business and Technology Managers

communication. The implementation details of ORB are not visible to the
components. ORBs provide location transparency, programming language
transparency, protocol transparency, and operating system transparency.

The communication between distributed objects and components is based
on interfaces. This enhances maintainability because the implementation
details are hidden. The communication is usually synchronous, although
it can also be deferred synchronous or asynchronous. ORBs are often con-
nected with location services that enable locating the components in the
network. ORBs are complex products but they manage to hide almost all
complexity. More specifically, they provide the illusion of locality—they
make all the components appear to be local, while in reality, they may be
deployed anywhere in the network. This simplifies the development con-
siderably but can have negative influence on performance. A basic outline of
ORB architecture is shown in the next figure.

The differences between messages and interfaces as the method
of integrating are subtle but important. Interface-based integra-
tion requires the specification and implementation of a well-
defined interface that describes the actions that an application

can perform. The interface is associated with an application. Messages
are not associated with any application. In addition, with interfaces, the
actions that can be processed by any application are easy to read and
explicitly stated. Messages, as described previously, inherently hide the
applications that use them. The nature of interfaces usually requires
less processing to decode than a message, and errors are discovered
earlier in the development process. The bottom line is that messages
provide a lower degree of coupling than interfaces at the cost of greater
potential of errors and inability to reuse solutions.

Over the long term, interface-based integration should be easier
to reuse and maintain because the interface is explicitly defined and
visible to the developer while messages can be hidden in the applica-
tions. It does not require looking at the code to see if an application
will respond to a request. Interfaces are self-describing in terms of the
actions that can be taken. With messages, either documentation or code
must be read unless a directory service is provided that maps message
use by application. Interfaces, however, may be more difficult to change
and extend depending on implementation. For example, depending on
the design of a message, control information can be modified with-
out having to change application code. Changes to an interface may
require a compilation of any and all applications to make them effec-
tive. Finally, interfaces require some discipline in the definition of the
interface to allow plug and play.

127Integration Technologies

ORB products may choose different scenarios as to how and where to
implement their functionality. They can move some functions to the client
and server components, or they can provide them as a separate process or
integrate them into the operating system kernel.

There are three major standards of ORBs:

 1. OMG CORBA ORB compliant
 2. Java RMI and RMI-IIOP (Internet Inter-ORB Protocol)
 3. Microsoft COM/DCOM/COM+/.NET Remoting/WCF

There are many ORB products compliant with the CORBA ORB specifica-
tions and various implementations of RMI and RMI-IIOP. Particularly, RMI-
IIOP is important, because it uses the same protocol for communication
between components as the CORBA ORB, namely, the IIOP. This makes RMI-
IIOP (Internet Inter-ORB Protocol) interoperable with CORBA.

5.9 Application Servers

Application servers handle all or the majority of interactions between the
client tier and the data persistence tier. They provide a collection of already
mentioned middleware services, together with the concept of a manage-
ment environment in which we deploy business logic components—the con-
tainer. In the majority of application servers, we can find support for Web
Services, ORBs, MOM, transaction management, security, load balancing,
and resource management. Application servers provide a comprehensive
solution to enterprise information needs. They are also an excellent plat-
form for integration. Today, vendors often position their application serv-
ers as integration engines or specialize their common purpose application
servers by adding additional functionality, like connections to back-end and
legacy systems, and position their products as integration servers. Although
such servers can considerably ease the configuration of different middleware
products, it is still worth thinking of what is underneath.

Whether used for integration or new application development, application
servers are software platforms. A software platform is a combination of soft-
ware technologies necessary to run applications. In this sense, application
servers, or more precisely the software platforms that they support, define
the infrastructure of all applications developed and executed on them.
Application servers can implement some custom platform, making them the
proprietary solution of a specific vendor (these are sometimes referred to as
proprietary frameworks). Such application servers are more and more rare.
On the other hand, application servers can support a standardized, open,
and generally accepted platform, such as Java Enterprise Edition.

128 Guide to Cloud Computing for Business and Technology Managers

The following lists the most important aspects of a platform:

• Technical aspects define the software technologies that are included
in the software platform, the architecture of the applications devel-
oped for that platform, interoperability, scalability, portability, avail-
ability, reliability, security, client contracts, possibilities to grow and
accommodate new solutions, and so on. In terms of integration, a
very important aspect is the interoperability with other systems.

• Openness enables the application server vendors and third-party
companies to have some possibility of influencing the development
of the platform. Different solutions exist, from fully closed platforms
that bind us to a certain vendor to the fully open platforms, for
example, the open-source initiative, where everything, even source
code, is free and can also be freely modified. Open platforms are
often defined with specifications. These are documents that strictly
define the technologies included in the platform and enable differ-
ent vendors to implement the platform (e.g., as application servers).
A tight specification guarantees consistency, and a platform defined
in terms of specifications can also have a reference implementation
and a set of compatibility tests.

• Interoperability among platform implementations is crucial for the
adoption of a certain platform. Particularly, the way the platform
regulates additions and modifications is crucial. The stricter a plat-
form is with the implementation of the core specification, the bet-
ter chances it has to be successful and to gain a large market share.
Each platform, however, has to provide ways for application servers
to differentiate their product, possibly through implementing some
additional functionality.

• The Cost of the platform is also an important factor, and it is prob-
ably the most difficult to assess because it includes the cost of the
application server and other development software, the cost of hard-
ware, the training, and the cost of the maintenance of the applica-
tions through their lifecycle.

• The Last factor is maturity, from which we can predict how stable
the platform is. The more mature the platform is, the more it has
been tested and the more has been proved that it is suitable for large-
scale applications.

5.10 Web Services

Web Services are the latest distributed technology. They provide the tech-
nological foundation for achieving interoperability between applications

129Integration Technologies

using different software platforms, operating systems, and programming
languages. From the technological perspective, Web Services are the next
evolutionary step in distributed architectures. Web Services are similar to
their predecessors but also differ from them in several aspects.

Web Services are the first distributed technology to be supported by all
major software vendors. Therefore, it is the first technology that fulfills the
universal interoperability promise between applications running on dispa-
rate platforms. The fundamental specifications that Web Services are based on
are SOAP (Simple Object Access Protocol), WSDL (Web Services Description
Language), and UDDI (Universal Description, Discovery, and Integration).
SOAP, WSDL, and UDDI are XML based, making Web Services protocol mes-
sages and descriptions human readable (see Chapter 8, “Web Services”).

From the architectural perspective, Web Services introduce several impor-
tant changes compared to earlier distributed architectures. They support
loose coupling through operations that exchange data only. This differs
from component and distributed object models, where behavior can also be
exchanged.

Operations in Web Services are based on the exchange of XML-formatted
payloads. They are a collection of input, output, and fault messages. The
combination of messages defines the type of operation (one way, request/
response, solicit response, or notification). This differs from previous dis-
tributed technologies. For more information, please refer to WSDL and XML
schema specifications.

Web Services provide support for asynchronous as well as synchronous
interactions. They introduce the notion of end points and intermediar-
ies. This allows new approaches to message processing. Web Services are
stateless and utilize standard Internet protocols such as HTTP (hypertext
transfer protocol), SMTP (Simple Mail Transfer Protocol), FTP (File Transfer
Protocol), and MIME (Multipurpose Internet Mail Extensions). So, connec-
tivity through standard Internet connections, even those secured with fire-
walls, is less problematic.

In addition to several advantages, Web Services also have a few disad-
vantages. One of them is performance, which is not as good as distributed
architectures that use binary protocols for communication. The other is that
plain Web Services do not offer infrastructure and quality of service (QoS)
features, such as security and transactions, which have been provided by
component models for several years. Web Services fill this important gap by
introducing additional specifications:

• WS-Security: This addresses authentication and message-level secu-
rity and enables secure communication with Web Services.

• WS-Coordination: This defines a coordination framework for Web
Services and is the foundation for WS-Atomic Transaction and
WS-Business Activity.

130 Guide to Cloud Computing for Business and Technology Managers

• Transaction specifications (WS-Atomic Transaction and WS-Business
Activity): These specify support for distributed transactions with
Web Services. Atomic Transaction specifies short duration, ACID
transactions, and Business Activity specifies longer running busi-
ness transactions, also called compensating transactions.

• WS-Reliable Messaging: This provides support for reliable commu-
nication and message delivery between Web Services over various
transport protocols.

• WS-Addressing: This specifies message coordination and routing.
• WS-Inspection: This provides support for dynamic introspection of

Web Service descriptions.
• WS-Policy: This specifies how policies are declared and exchanged

between collaborating Web Services.
• WS-Eventing: This defines an event model for asynchronous notifi-

cation of interested parties for Web Services.

5.11 Enterprise Service Bus (ESB)

An Enterprise Service Bus (ESB) is a software infrastructure acting as an
intermediary layer of middleware that addresses the extended requirements
that usually cannot be fulfilled by Web Services, such as integration between
Web Services and other middleware technologies and products, higher level
of dependency, robustness, and security, management, and control of ser-
vices and their communication. An ESB addresses these requirements and
adds flexibility to communication between services and simplifies the inte-
gration and reuse of services. An ESB makes it possible to connect services
implemented in different technologies (such as EJBs, messaging systems,
CORBA components, and legacy applications) in an easy way. An ESB can
act as a mediator between different, often incompatible, protocols and mid-
dleware products (see Chapter 9, “Enterprise Service Bus (EBS)”).

The ESB provides a robust, dependable, secure, and scalable communi-
cation infrastructure between services. It also provides control over the
communication and the use of services. It has message interception capa-
bilities, which allow us to intercept requests to services and responses from
services and apply additional processing to them. In this manner, the ESB
acts as an intermediary. An ESB usually provides routing capability to route
the messages to different services based on their content, origin, or other
attributes and transformation capability to transform messages before they
are delivered to services. For XML-formatted messages, such transforma-
tions are usually done using XSTLT (Extensible Style sheet Language for
Transformations) or XQuery engines.

131Integration Technologies

An ESB also provides control over the deployment, usage, and maintenance
of services. This allows logging, profiling, load balancing, performance tun-
ing, charging for service use, distributed deployment, on-the-fly reconfigu-
ration, etc. Other important management features include the definition of
correlation between messages, definition of reliable communication paths,
and definition of security constraints related to messages and services.

An ESB should make services broadly available. This means that it should
be easy to find, connect, and use a service irrespective of the technology it
is implemented in. With broad availability of services, an ESB can increase
reuse and can make the composition of services easier. Finally, an ESB should
provide management capabilities, such as message routing, interaction, and
transformation, which we have already described.

5.12 Enterprise Systems

There are many issues to deal with in enterprise integration, but at the core is
an architectural problem concerning modifiability. Consider enterprise has
“n” number of different business applications that need integrating to sup-
port some new business processes that may entail communicating between
these “n” applications using their published messaging interfaces. Assuming
one-way messages only, this means the business process under consideration
must be able to transform its source data into the remaining (n – 1) different
message formats (this direct dependency creates a tight coupling between
these applications); but this does not end here; similar changes may be
necessitated in other applications leading to requirement for corresponding
number of interfaces. In the general case, the number of interfaces between
N applications is N × (N – 1)/2. So as N grows, the number of possible inter-
faces grows exponentially, making such point-to-point architectures nons-
calable in terms of modifiability. Considering that many interfaces between
two applications are two way, requiring two transformations, and most
applications have more than one interface, so in reality, the number of inter-
faces between N tightly coupled applications can be considerably greater
than N(N – 1)/2. This results in a highly complex architecture.

5.12.1 Replacing a Point-to-Point Integration Architecture with a Broker

An introduction of a message broker as an intermediatory between the
applications can reduce the complexity dramatically. Complexity in the inte-
gration end points, namely, the business applications, is greatly reduced as
they just send messages using their native formats to the broker, and these
are transformed inside the broker to the required destination format. If there
is a need to change an end point, then one just needs to modify the message

132 Guide to Cloud Computing for Business and Technology Managers

transformations within the broker that are dependent on that end point. No
other business applications have to be made aware of the change or be modi-
fied. Thus, the number of interfaces from applications to the broker is reduced
to N plus the number of interfaces required to transform from the broker to
these very applications would be N, resulting in a total of 2 × N interfaces.
Thus, by introduction of the broker, the problem complexity reduces broadly
from N × N to N + N—a dramatic reduction in the reduction in complexity
(see Chapter 4, Section 4.2.3.3, “Hub–Spoke Integration”).

There is a downside here in that the brokers are potentially a
performance bottleneck, as all the messages between applica-
tions must pass through the broker. Good brokers support repli-
cation and clustered deployments to scale their performance.

But of course, this increases deployment and management complexity
and, more than likely, the license costs associated with a solution.

5.12.2 Enterprise Systems with an Enterprise Model

So message brokers are very useful, but not a panacea by any means for inte-
gration architectures. There is however a design approach that can be utilized
that possesses the scalability of a point-to-point architecture with the modi-
fiability characteristics of broker-based solution. The solution is to define an
enterprise data model (also known as a canonical data model) that becomes
the target format for all message transformations between applications. For
instance, a common issue is that all your business systems have different data
formats to define customer information. When one application integrates with
another, it (or a message broker) must transform its customer message format
to the target message format (say) the canonical customer information format.

Using this canonical message format, a message exchange is now reduced
to the following steps:

 1. Source application transforms local customer data into canonical
customer information format.

 2. Source sends message to target with canonical customer informa-
tion format as payload.

 3. Target receives message and transforms the canonical customer
information format into its own local customer data representation.

This implies that each end point, that is, business application must know

• How to transform all messages it receives from the canonical format
to its local format

• How to transform all messages it sends from its local format to the
canonical format

133Integration Technologies

Thus, by using the enterprise data model to exchange messages, we get
the best of both worlds. The number of transformations is reduced to 2 × N
(assuming a single interface between each end point). This gives us much
better modifiability characteristics. Also, as there are now considerably
fewer and less complex transformations to build, the transformations can be
executed in the end points themselves. We have no need for a centralized,
broker-style architecture. This scales well, as there’s inherently no bottleneck
in the design. And there’s no need for additional hardware for the broker
and additional license costs for our chosen broker solution.

However, the strategy of using an enterprise data model for obviating
the need of enterprise integration issues is not prevalent—the primary rea-
son for this is existing enterprises have to confront the reality of myriad of
enterprise applications and the corresponding enterprise data models and
the sheer impossibility of converting or migrating to a uniform canonical
enterprise data model.

5.13 Summary

Most of the enterprises have a host of existing enterprise applications and
infrastructure technologies including integration technologies themselves.
We looked at a spectrum of technologies that have been employed toward
obtaining integration between enterprise applications. These include data-
base access technologies, asynchronous and synchronous middleware,
message-oriented middleware, request/reply messaging middleware,
transaction processing monitors, object request brokers, application servers,
Web Services, enterprise service buses, and enterprise systems. The inability
of enforcing a uniform enterprise system/architecture/data model within
the enterprise gave a fillip to the service-oriented architecture, which we
discuss in Chapter 7.

135

6
J2EE for Enterprise Integration

6.1 Choosing an Enterprise Application Integration Platform

To implement the integration architecture requires an enterprise software
platform that gathers together all of the necessary technologies and mid-
dleware solutions needed for building enterprise information systems. The
prime choices are the J2EE platform, COBRA (Common Object Request
Broker Architecture), and the Microsoft.NET architecture.

6.1.1 CORBA

CORBA is a standardized open architecture managed by OMG (Object
Management Group). CORBA technology can be considered a generalization
of Remote Procedure Call (RPC) technology and includes several improve-
ments on the data objects and on the data primitives. The purpose of this
technology and architecture was to enable the development of distributed
applications and services that can interoperably communicate with other dis-
parate applications over the network. The CORBA was essentially developed
to bring about a discipline to implement portability and interoperability of
applications across different hardware platforms, operating environments,
and disparate hardware implementations. CORBA technology uses a binary
protocol called Internet Inter-ORB Protocol (IIOP) for communicating with
remote objects.

6.1.2 DCOM

In the mid-1990s, Microsoft Corporation introduced a technology called
COM that enabled the development of software modules called components
for integrating applications over the client–server architecture. To build
these components, developers adhered to the COM specification so that the
components could operate interoperably within the network. The DCOM
technology, introduced sometime in the late 1990s, enabled interaction
among network-based components to bring in the Distributed Computing
Environment (DCE). DCOM technology is essentially built on an object

136 Guide to Cloud Computing for Business and Technology Managers

RPC layer, which in turn is on top of DCE RPC to enable the communi-
cation among remote objects. DCOM technology uses a binary protocol,
termed Object Remote Procedure Call (ORPC), for distributed communi-
cation among remote objects. Technologies such as Object Linking and
Embedding (OLE), ActiveX, and Microsoft Transaction Server (MTS) are
some of Microsoft’s technological advancements built on COM and DCOM
technologies.

6.1.3 J2EE

Developed by Dr. James Gosling of Sun Microsystems, Java technology
was introduced in 1995. It was based on a simple idea that a Java Virtual
Machine (JVM) would behave the same way on any platform, and therefore,
applications developed using Java programming language would behave
reliably and consistently on any platform. The Java programming environ-
ment provided unique features unlike any other programming language,
namely, portability and platform independence. The core feature is the Java
Runtime Environment (JRE) that can be made available on any hardware
or operating environment. The application is developed using the Java pro-
gramming language and compiled into platform-independent bytecodes.
This bytecode can then be deployed to run on JRE that is installed on any
compatible system.

Java EE is the server-side extension of Java. The applications are not just Java
objects but are also appropriate server-side components. For creating Web
applications, components such as Java Servlets and JavaServer Pages (JSP)
are used and deployed on Web servers, and these Web servers run on JRE.
Likewise, for creating enterprise applications, components such as Enterprise
JavaBeans (EJB) are developed and deployed, optionally with Web applica-
tions, in application servers. Again, these application servers also run in JRE.

The J2EE platform is controlled by the Java Community Process (JCP).
The JCP is responsible for the development of the whole Java technology.
Anyone can join the JCP and influence the evolution of the Java platform.
Modifications to the platform require consensus among the members of
the JCP process. This guarantees that there will be no rapid changes that
would cut the compatibility with existing software. On the other hand, it
gives the members the possibility to influence its development and direction.
Sun Microsystems (now part of Oracle Corp.) still has the rights on the J2EE
trademark and requires licenses to be paid, but it is the JCP, not Oracle, who
controls the platform.

The J2EE specification, controlled by the JCP, is then implemented by many
different application server vendors who compete in a very large market.
This means that the customer is free to choose the application server and
the vendor and, at a later date, to switch to a different vendor if needed,
but any existing software should be portable between different vendors’
implementations.

137J2EE for Enterprise Integration

6.1.4 .NET

The .NET product suite is largely a rewrite of Windows DNA, which con-
stitutes Microsoft’s previous platform constituents for developing enter-
prise applications. The .NET technologies offer language independence
and language interoperability. A .NET component can be written par-
tially in different programming languages. The .NET technology converts
this composite language component into an intermediary neutral lan-
guage called Microsoft Intermediate Language (MSIL). This MSIL code
is then interpreted and compiled to a native executable file. The .NET
Framework also includes a runtime environment called the Common
Language Runtime (CLR). This environment is analogous to the Sun
Microsystems’ Java Runtime Environment (JRE).

Microsoft has packed a number of servers as part of the .NET platform
called the .NET Enterprise Servers. These servers provide vital services for
hosting enterprise-class applications. Some important servers included as
part of the .NET Servers are SQL Server, Exchange Server, Commerce Server,
Cluster Server, Host Integration Server, and BizTalk Server.

If .NET becomes an open platform and is ported to operating systems
other than Windows, it will be a valuable contender to Sun’s J2EE.

6.2 Enterprise Application Integration (EAI) Using J2EE

J2EE is the result of Sun’s effort to integrate the assortment of Java technolo-
gies and API together into a cohesive Java development platform for devel-
oping complex distributed Java applications. Sun’s enhancement of the n-tier
development model for Java, combined with the introduction of specific
functionalities to permit easier development of the server-side scalable Web-
based enterprise applications, has led to a wide adoption of Java for Web-
centric application development.

Enterprise application development entails expertise in a host of areas
like interprocess communications, memory management, security issues,
and database-specific access queries. J2EE provides built-in support for ser-
vices in all these areas, enabling developers to focus on implementing busi-
ness logic rather than intricate code that supports basic application support
infrastructure.

There are numerous advantages of application development in the J2EE
area:

• J2EE offers support for componentization of enterprise applications
that enable higher productivity via reusability of components, rapid
development of functioning applications via prebuilt functional

138 Guide to Cloud Computing for Business and Technology Managers

components, higher-quality test-driven development via pretested
components, and easier maintenance via cost-effective upgrades to
individual components.

• J2EE offers support for hardware and Operating systems (OS) inde-
pendence by enabling system services to be accessed via Java and
J2EE rather than directly via APIs specific to the underlying systems.

• J2EE offers a wide range of APIs to access and integrate with third-
party products in a consistent manner, including databases, mail
systems, and messaging platforms.

• J2EE offers clear-cut segregation between system development,
deployment, and execution, thus enabling independent develop-
ment, integration, and upgradation of components.

• J2EE offers specialized components that are optimized for specific
types of roles in an enterprise application like Entity Beans for han-
dling persistent data and Session Beans for handling processing.

All the aforementioned features make possible rapid development of com-
plex, distributed applications by enabling developers to focus on develop-
ing business logic, implementing the system without being impacted by
prior knowledge of the target execution environment(s), and creating sys-
tems that can be ported more easily between different hardware platforms
and Operating systems (OS).

6.2.1 Reference Architecture

The objective of the flexibility and reusability can be achieved primarily
at two levels: application architecture level and the application component
design level. The reference architecture is the vision of the application archi-
tecture that integrates common elements into a component structure model-
ing the current business and also positioning it to meet the challenges of the
future. From a technical point of view, the architecture positions the devel-
opment organization to automatically meet the benchmark requirements on
time to market, flexibility, and performance.

A set of key elements drive the definition of the reference architecture that
is comprised of three layers, namely, business objects, process-oriented or
service-based objects, and user interface layer.

The defining elements of enterprise applications are as follows:

• Business entities are the foci of the enterprise applications. These
range from top-level entities such as a customer or a supplier down
to bottom-level entities such as purchase orders, sales orders, or even
individual level line items of these orders. Entities participate in the
business processes, have attributes or properties, have methods for
responding to requests for information, and have different sets of

139J2EE for Enterprise Integration

enforceable policies or rules applicable to them. The latter include
the requirement for persistence of the state of the entities as reflected
in the snapshot of all attributes.

• Business processes carry out the tasks of the enterprise. They have
some kind of specified workflow and essentially involve one or more
business entities. They must be executed in a secure manner and
also be accessible via a host of user interfaces or devices or clients.

• User interactions carry out the access and display of information
related to business entities as an outcome of some business pro-
cesses for scrutiny by the users of the enterprise application. This
essentially involves some kind of screen flow or page navigation,
attributes for presentation, user requests, or generated responses,
that is, static or dynamic content, form-oriented processing, and
error handling. The user interaction could be via a host of user inter-
faces or devices or clients.

Each of these elements gives rise to the three primary architecture layers of
the reference architecture. These layers could reside on the same physical
layer or be distributed across a network. Figure 6.1 presents the three archi-
tecture layers constituting the reference architecture.

6.2.1.1 User Interaction Architecture

User interactions are modeled by user interface components that com-
prise the User Interaction Architecture. In J2EE platform, this is typically
implemented as a combination of servlets and Java Server Pages (JSP). In a
Web-based application, this layer would process HTML form submissions,
manage state within an application, generate Web-page content, and control
navigation between pages. Many of the functions within this layer can be
automated through configurable foundation components.

6.2.1.2 Service-Based Architecture

Business processes are modeled by service components that comprise the
Service-Based Architecture. In J2EE platform, this is typically implemented
as a process-oriented object wrapped with a stateless Session Bean. The con-
cept of services allows the front end to be decoupled from the back-end busi-
ness object components. The service-based layer adds tremendous value in
terms of flexibility, reusability, and component design.

6.2.1.3 Business Object Architecture

Business entities are modeled by object components that comprise the
Business Object Architecture. Each of these components manages the data

140 Guide to Cloud Computing for Business and Technology Managers

and business logic associated with a particular entity, including persistence
of that data into a relational database. In J2EE platform, this is typically
implemented as a combination of regular Java classes and Entity beans in
J2EE application. The database access can be implemented by the container
in the case of CMP (Container-Managed Persistence) Entity Beans or by the
developer in the case of BMP (Bean-Managed Persistence) Entity Beans or
regular Java classes. The persistence of each business object is abstracted
out to the extent possible so that separate data objects, persistent frame-
works, or CMP services can be used to affect the data object persistence in
the database.

A major portion of the reference architecture is a generic and configurable
implementation of the Model 2 architecture discussed later in the following
section.

6.2.2 Realization of the Reference Architecture in J2EE

The Java Enterprise Edition (J2EE) platform provides a component-based
approach to implement n-tier distributed enterprise applications. Figure 6.1
shows how the J2EE components provide the implementations for the differ-
ent layers of the reference architecture.

Web
browser

Web
container

Middle
tier

EJB
container

JSP
HTTP

response

HTTP
request

Servlet

Session
bean

Entity
bean

J2EE
connector

JDBC Database

Enterprise
application

Business
object

architecture

Enterprise
information

tier

Service-
based

architecture

RMI RMI/
local
inter-
face

Client
tier

Wireless
device

B2B Web
Service
client

User
interaction

architecture

FIGURE 6.1
Enterprise application in J2EE.

141J2EE for Enterprise Integration

The components that make up the application are executed in runtime envi-
ronments called containers. Containers are used to provide infrastructure-type
services such as life-cycle management, distribution, and security. Containers
and components in the J2EE application are broadly divided into three tiers.
The client tier is typically a Web browser or alternatively Java application cli-
ent. The middle tier contains two primary containers of the J2EE application,
namely, Web container and EJB container. The function of the Web container
is to process client requests and generate corresponding responses, while the
function of the EJB container is to implement the business logic of the applica-
tion. The EIS tier primarily consists of data sources and a number of interfaces
and APIs to access the resources and other existing or legacy applications.

6.2.2.1 JavaServer Pages and Java Servlets as the
User Interaction Components

JSP and Java Servlets are meant to process and respond to Web user request.
Servlet provides a Java-centric programming approach for implementing
Web tier functionality. The Servlet API provides an easy-to-use set of objects
that process HTTP requests and generate HTML/XML responses. JSPs pro-
vide an HTML-centric version of the Java Servlets. JSP components are docu-
ment based rather than object based and possess built-in access to Servlet API
request and response objects as also the user session object. JSPs also provide
a powerful custom tag mechanism, enabling the encapsulation of reusable
Java presentation code that can be placed directly into the JSP document.

6.2.2.2 Session Bean EJBs as Service-Based Components

Session Beans are meant for representing services provided to a client. Unlike
Entity Beans, Session Beans do not share data across multiple clients—each
user requesting a service or executing a transaction invokes a separate
Session Bean to process the request. A stateless Session Bean after process-
ing a request goes on to the next request or next client without maintaining
or sharing any data. On the other hand, stateful Session Beans are often con-
structed for a particular client and maintain a state across method invoca-
tions for a single client until the component is removed.

6.2.2.3 Entity Bean EJBs as the Business Object Components

Entity Beans are meant for representing persistent data entities within an
enterprise application. One of the major component services that are pro-
vided to the Entity Beans is that of Container Managed Persistence (CMP).
However, in EJB 2.0 specification, CMP persistence is limited to one table
only. Any object-relational mapping involving more than a one-to-one table-
object mapping is supported only through Bean-Managed Persistence (BMP)
(see “Entity Beans”).

142 Guide to Cloud Computing for Business and Technology Managers

6.2.2.4 Distributed Java Components

Java Naming and Directory Interface (JNDI) enables naming and distri-
bution of Java components within the reference architecture. JNDI can be
used to store and retrieve any Java object. However, JNDI is usually used to
look up for component (home or remote) interfaces to enterprise beans. The
client uses JNDI to look up the corresponding EJB Home interface, which
enables creation, access, or removal of instances of Session and Entity
Beans. In case of local Entity Bean, a method invocation is proxied directly
to the bean’s implementation. While in case of remote Entity Beans, the
Home interface is used to obtain access to the remote interface to invoke the
exposed methods using RMI. The remote interface takes the local method
call, serializes the objects that will be passed as arguments, and invokes
the corresponding remote method on the distributed object. These serial-
ized objects are converted back into normal objects to invoke the method to
return the resulting value upon which the process is reversed to revert the
value back to the remote interface client.

6.2.2.5 J2EE Access to the EIS (Enterprise Information Systems) Tier

J2EE provides a number of interfaces and APIs to access resources in the EIS
tier. The use of JDBC API is encapsulated primarily in the data access layer or
within the CMP classes of the Entity Bean. Data sources that map to a data-
base are defined in JDBC, which can be looked up by a client searching for a
resource using the JNDI. This enables the J2EE application server to provide
connection pooling to different data resources, which should appropriately
be closed as soon as the task is over to prevent bottlenecks.

The various J2EE interfaces and APIs available are as follows:

• Java Connector Architecture provides a standard way to build
adapters to access existing enterprise applications.

• JavaMail API provides a standard way to access mail server
applications.

• Java Message Service (JMS) provides a standard interface to enter-
prise messaging systems. JMS enables reliable asynchronous com-
munication with other distributed components. JMS is used by
Message-Driven Beans (MDBs) to perform asynchronous or parallel
processing of messages.

6.2.3 Model–View–Controller Architecture

The Model 2 architecture is based on the Model–View–Controller (MVC)
design pattern. A generic MVC implementation is a vital element of the
reference architecture as it provides a flexible and reusable foundation for
very rapid Web-based application development.

143J2EE for Enterprise Integration

The components of the MVC architecture are as follows:

• View deals with the display on the screens presented to the user.
• Controller deals with the flow and processing of user actions.
• Model deals with the business logic.

MVC architecture modularizes and isolates screen logic, control logic, and
business logic in order to achieve greater flexibility and opportunity for
reuse. A critical isolation point is between the presentation objects and the
application back-end objects that manage the business logic and data. This
enables the user interface to affect major changes on the display screens
without impacting the business logic and data components.

View does not contain the source of data and relies on the model to furnish
the relevant data. When the model updates the data, it notifies as also fur-
nishes the changed data to the view so that it can re-render the display to the
user with the up-to-date data and correct data.

The controller channels information from the view on the user actions
for processing by the business logic in the model. Controller enables an
application design to flexibly handle things such as page navigation and
access to the functionality provided by the application model in case of
form submissions. Thus, controller provides an isolation point between
the model and the view, resulting in a more loosely coupled front end and
back end.

Figure 6.2 gives a complete picture of how objects in the MVC architecture
are mapped to the reference architecture in J2EE.

6.2.4 Overview of J2EE Platform Technologies

These can be subdivided into three main categories, namely, component ser-
vices, horizontal services, and communication services.

6.2.4.1 Component Services

These services assist in expediting and simplifying the development of the
enterprise applications. They insulate the resulting applications from the
underlying J2EE APIs.

6.2.4.1.1 JavaServer Pages (JSP)

As discussed in MVC architecture previously, the objective is to sepa-
rate the presentation and content from the application logic, with the
presentation and content contained in the JSP. JSP is similar to server-
side scripting technology, except that JSP is compiled, whereas scripts are
interpreted. JSP utilizes the Java Servlet technology to achieve server-side
processing.

144 Guide to Cloud Computing for Business and Technology Managers

A JSP consists of Java code embedded within a structured document such
as HTML or XML. The basic idea is to use the markup language for the static
portion of the presentation and embed special tags within the page to mark
up the dynamic content. The tags are used to process incoming requests
from a client and consequently generate a response. As JSP uses additional
system resources, wherever the presentation content is static, a plain HTML
page should be used. The use of JSP allows the presentation code to be easily
maintained as regular HTML code and shields the Web developer from hav-
ing to deal with unfamiliar language and tools.

Java Scriptlets can be embedded in a JSP file, though their usage should
be kept to the minimum. Sun recommends the use of JSP where there is a
significant amount of dynamic content.

6.2.4.1.2 Servlets

Servlets are primarily used as a conduit for passing data back and forth
between a Web client and an enterprise application running on a server.
Servlets are server-side programs that execute in a servlet engine, which
often forms a part of the HTTP server, but may also run standalone as well.
Servlets run inside the servlet engine or container hosted on a Web server;
the servlet container manages the life cycle of a servlet and translates the

Web
browser

JSP
View

View Model

HTTP
response

HTTP
request

Servlet
Controller

Session
bean

Controller

Service
components

Entity bean/
Java classes

JDBC
Data access

objects

Business
objects

Database

Business
object

architecture

Service-
based

architecture

RMI RMI/
local
inter-
face

Wireless
device

B2B Web
Service
client

User interaction architecture

FIGURE 6.2
MVC and enterprise application architecture.

145J2EE for Enterprise Integration

Web client’s requests into object-based requests and, in reverse, the object-
based responses back to the Web client via HTTP.

Servlets provide a more effective alternate mechanism to the traditional
CGI scripts for interaction between the server-based business logic and the
Web-based clients. Servlets are usually employed to handle preliminary
tasks like gathering and checking for valid inputs from the entry fields of a
Web page. Once the basic checks are completed, the data are then passed on
to more suitable component(s) for actual processing.

JSP specification provides the JSP with the same capabilities as
the servlet. The basic idea is to leverage JSP for presentation-
centric tasks and utilize the servlets for business logic processing-
centric tasks. Servlets are preferred for more logical tasks as they

are also comparatively easier to debug. Since Java code is embedded
within the JSP, it may seem that the separation of presentation from
business logic is not realistic. JSP should primarily be focused on pre-
sentation, and any Java code embedded within the JSP should primar-
ily be for communication with servlets, other control or data entities,
and so on.

JSP development usually adopts the Model 2 architecture based on
the Model-View-Controller (MVC) architecture discussed earlier. It
uses one or more servlets as controllers; requests received by frontline
servlet(s) are redirected to the concerned JSPs. Usually JavaBeans is
used as the model that acts as the conduit to pass information between
the controller servlet(s) and the JSPs. The controller fills in the JavaBean
based on the request, and the JSP in turn composes the actual page
using values from the JavaBean.

6.2.4.1.3 Enterprise JavaBeans (EJB)

EJB components encapsulate business logic. EJB defines a comprehensive
component model for building scalable, distributed server-based enterprise
Java application component.

EJB components have four parts:

 1. An implementation class that contains the business logic.
 2. Home and remote interfaces that present the EJB’s methods to the

outside world.
 3. A deployment descriptor: An XML file that is used to configure

the EJB component being deployed in a J2EE server. For example, a
deployment descriptor can define the security properties or transac-
tion properties of EJB methods.

146 Guide to Cloud Computing for Business and Technology Managers

EJBs are container-managed components; that is, the container manages
their life cycle and, based on the configuration specified in the deployment
descriptor, interacts on behalf of the EJBs with various J2EE services.

The success of EJBs is based on a set of key concepts. First, EJBs are deployed
within a container hosted by an application server, rather than deploying
directly onto the application server. A container provides the environment
for execution of EJBs, management of their life cycle, and provisioning of
additional services. Second, EJBs take an approach based on proxy pattern
rather than a monolithic component, which effectively separates out the com-
ponent into client objects and remote objects. While the EJB user only sees
the client object represented by the EJB interfaces, the remote object is free to
change in terms of implementation details like location on the network and
underlying transport mechanism. Third, EJBs use the concept of deployment
descriptors that decouples the development from the deployment aspects.

There are three types of EJBs:

 1. Entity Beans: Entity beans are EJBs designed specifically to repre-
sent data in a persistent store, which is typically a database. They
encapsulate persistent data in a data store, which is typically a row
or record of data in a database table. Apart from the built-in database
access and synchronization capabilities, entity beans automatically
provide the ability to share both state and behavior across multiple
clients concurrently, disaster recovery facilities, and so on.

 An entity bean consists of a Home interface, a Remote interface, an
implementation class, and a primary key class. The Home interface
defines create, finder, remove, and home methods. The remote inter-
face defines business methods. It also has a primary key class that
contains methods for operating on the primary key for a single or a
compounded database table. The implementation class implements
all of the life cycle, finder, select, and business methods. Like all
EJBs, entity beans also make use of the deployment descriptor to
hold additional information pertaining to the component including
transaction settings on business methods, relationships with other
entity beans, and persistent filed settings.

 2. Session Beans: Session beans are the most popular of the EJBs and
are used primarily to manage transactions or client sessions. In an
enterprise application, they are often used as the main controller con-
necting servlets or JSPs to entity beans or other components. Apart
from the built-in transaction management and state management
capabilities, EJB container also provides additional services such as
automated resource management, concurrency, and security.

 These are used mainly for transient activities. They are nonpersis-
tent and often encapsulate bulk of the business logic. While state-
ful session beans retain client state between successive interactions

147J2EE for Enterprise Integration

with the client, stateless session beans do not do so. In the case of
a stateless session bean, each successive invocation of the bean is
treated as an independent activity.

 Entity beans have the option to use two different kinds of per-
sistence mechanisms. First, container-managed persistence (CMP)
entails using entity beans, while all database access and synchroni-
zation is handled automatically by the EJB container. Second, bean-
managed persistence (BMP) entails using entity beans, while all data
access and synchronization is handled by hand-crafted custom code.

 3. Message-Driven Beans (MDBs): Message-driven beans are EJBs
designed to be asynchronous consumers and processors of JMS
messages. These were introduced newly in J2EE 1.3 and are use-
ful for situations where synchronicity is not essential, for example,
integrating loosely coupled systems. Session beans employ Remote
Procedure Call (RPC)-based communication, which has the dis-
advantage that the sender must wait for a response before it can
undertake the next activity. Message-driven beans are stateless, and,
unlike session and entity beans, Message-driven beans do not have
published interfaces.

Message-driven beans are useful for achieving the following:

• Efficiency: Messaging can be used for separating out those elements
of the business logic that can be processed independent of the main
thread of processing. This enables the main thread to obviate the
need to expend resources and time on nonessential operations and
move on to the next requests.

• Decoupling: Different subsystems are developed so that they are not
tightly integrated with each other.

• Flexible integration: Loosely coupled systems can be composed by
using Message-driven beans to wrap existing systems.

6.2.4.2 Horizontal Services

These are general services that are required across multiple tiers in enter-
prise application.

6.2.4.2.1 Java Database Connectivity (JDBC)

JDBC enables via database neutral APIs to perform a host of operations like
obtaining database connections, execute SQL queries and updates via these
connections, and process the results of such queries. The J2EE extensions
also provide support for connection pooling and distributed transactions.

The database driver modules in the JDBC are responsible for mapping a
database neutral request onto the request expected by a specific RDBMS.

148 Guide to Cloud Computing for Business and Technology Managers

6.2.4.2.2 Java Naming and Directory Interface (JNDI)

In J2EE application servers, JNDI provides via neutral APIs a mechanism that
is used by the clients, Web components, and EJBs to find J2EE resources using
a symbolic naming scheme. Directory and naming services are used to map
symbolic names or a set of search attributes onto a resource. For example,
the Domain Name System maps symbolic host names onto their Internet
addresses. Similarly, a File System maps a symbolic pathname onto a system
file identifier like an inode in Unix. Individually, all of these naming and direc-
tory services have specific APIs and may be written in a variety of languages.

6.2.4.2.3 Java Connector Architecture (JCA)

JTS is a comprehensive service that supports distributed transactions and
consequently two-phase commit protocol.

JCA, which is a subset of JTS, is made available as a resource to J2EE
application.

6.2.4.2.4 XML Processing APIs

XML is a widely accepted way of representing data in a standard format
that can be validated against a Document Type Definition (DTD) or schema.
These data can then be transmitted between various systems that convert the
neutral format to system-specific formats, for example, to a relational form.
Just as Java provides code portability, XML provides data portability. XML is
also used as the configuration language in J2EE.

6.2.4.3 Communication Services

6.2.4.3.1 HTTP/HTTPS

Hypertext Transfer Protocol (HTTP) is a text-based protocol used for com-
munication across the Internet and supports Web browser interactions with
the HTTP servers listening on server machines. The protocol is stateless in
that the server does not maintain any client state—every request made by an
HTTP client will have to provide all essential information needed to process
the request like

• The nature of the client (e.g., kind of browser)
• The kind of request
• The resource target on the server (e.g., a particular HTML page or

servlet)
• The data to be sent to the server

Client requests are matched with server responses that provide information
about the request like

149J2EE for Enterprise Integration

• The status of the request
• The MIME type of the response data
• The response data

HTTPS is the secure form of the HTTP in that the HTTP communications are
transmitted over the Secure Socket Layer (SSL).

6.2.4.3.2 Remote Method Invocation (RMI)

RMI enables communication between distributed objects transparent of their
remote locations on the network by communicating with a local proxy or a
stub that is generated automatically to communicate with the corresponding
remote objects. The code for the proxy is generated automatically and com-
municates using sockets with the remote object—there is helper code at the
remote end that reads from the socket, processes the bytes, and makes the
method call on the remote object.

Initially, RMI allowed communication only between Java objects.
Subsequently, RMI began to support communication with non-Java objects
using RMI-IIOP that is a CORBA transport protocol on top of TCP/IP.

RMI enables developers to effectively concentrate on developing the busi-
ness logic rather than worrying about the details of the distribution.

6.2.4.3.3 Java Message Service (JMS)

JMS enables asynchronous communication between producers and consum-
ers in that a producer sends a message to a queue or topic, and, rather than
waiting for a response, it moves on to undertake other tasks. As and when
they are ready, consumers read messages from queues and topics.

JMS employs two models of communication:

 1. Point to point: This involves the uses of FIFO queues and supports
one-to-one and many-to-one interactions between producers and
consumers. Message objects are created by the producers and sent
to a named queue. Consumers who wish to read messages from the
head of the queue obtain a reference to the queue head and then
listen or wait for messages to be placed on the queue. As and when
a message is placed on the queue, it will be read and removed from
the queue by the listening consumer.

 2. Publish and subscribe: This involves the use of topics and sup-
ports many-to-many communication between producers and
consumers. Topics are analogous to newsgroups, and consumers
subscribe to one or more topics. As and when producers publish
messages to topics, a separate copy of a message is sent to each
consumer.

150 Guide to Cloud Computing for Business and Technology Managers

6.2.4.3.4 JavaMail

JavaMail enables the sending and receiving of e-mail from within a Java pro-
gram. It provides APIs that enable the creation of MIME message objects
that can be sent and received using the underlying mail protocols like SMTP,
POP3, and IMAP4. It is a form of asynchronous mail though slower than JMS
and is used mainly for interaction between end users.

6.3 Summary

This chapter describes the platforms for the realization of the Enterprise
Application Integration, namely, CORBA, DCOM, J2EE, and .NET. Then we
sketch the reference architecture and detail the realization of this reference
architecture in J2EE. In the end, the chapter describes the services constitut-
ing the J2EE platform.

Section II

Road to Cloudware

Enterprises require much more agility and flexibility than what could be
provided by EAI solutions. SOA exposes the fundamental business capabili-
ties as flexible and reusable services—the services support a layer of agile
and flexible business processes that can be easily changed to provide new
products and services to keep ahead of the competition.

Chapter 7 presents the basic concepts and characteristics of SOA. Chapter 8
presents the defining architecture of Web Services. Chapter 9 explains the
basic design of an enterprise service bus (ESB), and Chapter 10 introduces
the principles of service composition and the related business process execu-
tion language (BPEL). Chapters 11 and 12 respectively, present two different
service delivery models, namely, applications service providers (ASP) and
grid computing.

In the final analysis, cloud computing is an extension of the network is com-
puter vision, namely, network is service provider.

153

7
Service-Oriented Architecture

Integration seems to be one of the most important strategic priorities mainly
because new innovative business solutions demand integration of dif-
ferent business units, business systems, enterprise data, and applications.
Integrated information systems improve the competitive advantage with
unified and efficient access to the information. Integrated applications make
it much easier to access relevant, coordinated information from a variety of
sources. It is clear that replacing existing systems with new solutions will
often not be a viable proposition. Companies soon realize that the replace-
ment is more complicated, more complex, more time consuming, and more
costly than even their worst-case scenarios could have predicted: too much
time and money have been invested in them, and there is too much knowl-
edge incorporated in these systems. Therefore, standard ways to reuse exist-
ing systems and integrate them into the global, enterprise-wide information
system must be defined.

The modern answer to application integration is a SOA with Web Services;
SOA is a style of organizing (services), and Web Services are its realization.
An SOA with Web Services is a combination of architecture and technol-
ogy for consistently delivering robust, reusable services that support today’s
business needs and that can be easily adapted to satisfy changing business
requirements. An SOA enables easy integration of IT systems, provides
multichannel access to your systems, and automates business processes.
When an SOA with its corresponding services is in place, developers can
easily reuse existing services in developing new applications and business
processes.

A service differs from an object or a procedure because it is defined by
the messages that it exchanges with other services. A service’s loose cou-
pling to the applications that host it gives it the ability to more easily share
data across the department, enterprise, or Internet. An SOA defines the
way in which services are deployed and managed. Companies need IT sys-
tems with the flexibility to implement specialized operations, to change
quickly with the changes in business operations, to respond quickly to
internal as well as external changes in conditions, and consequently gain a
competitive edge. Using an SOA increases reuse, lowers overall costs, and
improves the ability to rapidly change and evolve IT systems, whether old
or new.

154 Guide to Cloud Computing for Business and Technology Managers

An SOA also maps IT systems easily and directly to a business’s opera-
tional processes and supports a better division of labor between the business
and technical staff. One of the great potential advantages of solutions created
using an SOA with SOAP or REST Web Services is that they can help resolve
this perennial problem by providing better separation of concerns between
business analysts and service developers. Analysts can take responsibility
for defining how services fit together to implement business processes, while
the service developers can take responsibility for implementing services that
meet business requirements. This will ensure that the business issues are
well enough understood to be implemented in technology and the technol-
ogy issues are well enough understood to meet the business requirements.

Integrating existing and new applications using an SOA involves defin-
ing the basic Web Service interoperability layer to bridge features and
functions used in current applications such as security, reliability, transac-
tions, metadata management, and orchestration; it also involves the abil-
ity to define automated business process execution flows across the Web
Services after an SOA is in place. An SOA with Web Services enables the
development of services that encapsulate business functions and that are
easily accessible from any other service; composite services allow a wide
range of options for combining Web Services and creating new application
functionality.

As a prerequisite, one will have to deal with a plethora of legacy
technologies in order to service-enable them. But the beauty of
services and SOA is that the services are developed to achieve
interoperability and to hide the details of the execution environ-

ments behind them. In particular, for Web Services, this means the
ability to emit and consume data represented as XML, regardless of
development platform, middleware, operating system, or hardware
type. Thus, an SOA is a way to define and provision an IT infrastruc-
ture to allow different applications to exchange data and participate in
business processes, regardless of the operating systems or program-
ming languages underlying these applications.

7.1 Defining SOA

SOA provides an agile technical architecture that can be quickly and easily
reconfigured as business requirements change. The promise of SAO is that
it will break down the barriers in IT to implement business process flows

155Service-Oriented Architecture

in a cost-effective and agile manner that would combine the best of custom
solutions as well as packaged applications while simultaneously reducing
lock-in to any single IT vendor.

A Service-oriented architecture (SOA) is a style of organization that guides
all aspects of creating and using business services throughout their life cycle
(from conception to retirement), as well as defining and provisioning the IT
infrastructure that allows different applications to exchange data and partici-
pate in business processes regardless of the operating systems or program-
ming languages underlying these applications. The key organizing concept of
an SOA itself is a service. The processes, principles, and methods defined by
SOA are oriented toward services; the development tools selected by an SOA
are oriented toward creating and deploying services; and the runtime infra-
structure provided by an SOA is oriented to executing and managing services.

A service is a sum of constituting parts including a description, the imple-
mentation, and the mapping layer (termed as transformation layer) between
the two. The service implementation, termed as the executable agent, can be
any environment for which Web Service support is available. The description
is separated from its executable agent; one description might have multiple
different executable agents associated with it and vice versa. The executable
agent is responsible for implementing the Web Service processing model as
per the various Web Service specifications and runs within the execution
environment, which is typically a software system or programming lan-
guage environment. The description is separated from the execution envi-
ronment using a mapping or transformation layer often implemented using
proxies and stubs. The mapping layer is responsible for accepting the mes-
sage, transforming the XML data to be native format, and dispatching the
data to the executable agent.

Web Service roles include requester and provider; a requester can be a pro-
vider and vice versa. The service requester initiates the execution of a service
by sending a message to a service provider, which executes the service and
returns the results, if any specified, to the requester.

7.1.1 Services

Services are coarse-grained, reusable IT assets that have well-defined inter-
faces (or service contracts) that clearly separate the service accessible inter-
face from the service technical implementation. This separation of interface
and implementation serves to decouple the service requesters from the ser-
vice providers so that both can evolve independently as long as the service
contract remains unchanged.

A service is a location on the network that has a machine-readable descrip-
tion of the messages it receives and optionally returns. A service is therefore
defined in terms of the message exchange patterns it supports. A schema for
the data contained in the message is used as the main part of the contract

156 Guide to Cloud Computing for Business and Technology Managers

between a service requester and a service provider; other items of metadata
describe the network address for the service, the operations it supports,
and its requirements for reliability, security, and transactional integrity.
However, developing a service is quite different from developing an object
because a service is defined by the message it exchanges with other services,
rather than a method signature. A service usually defines a coarse-grained
interface that accepts more data in a single invocation than an object because
of the need to map to an execution environment, process the XML, and often
access it remotely. Services are executed by exchanging messages accord-
ing to one or more supported message exchange patterns (MEPs), such as
request/response, one-way asynchronous, or publish/subscribe. Services are
meant to solve interoperability problems between applications and for use
in composing new applications or application systems, but not meant like
objects to create the detailed business logic for the applications.

From a business perspective, services are IT assets that correspond to
real-world business activities or identifiable business functions that can be
accessed according to the service policies related to

• Who is authorized to access the service
• When can the service be accessed
• What is the cost of using the service
• What are the reliability levels of using the service
• What are the performance levels for the service

A service is normally defined at a higher level of abstraction than an object
because it is possible to map a service definition to a procedure-oriented lan-
guage, such as COBOL or PL/1, or to a message queuing system such as JMS
or MSMQ, as well as to an object-oriented system such as J2EE or the .NET
Framework. Whether the service’s execution environment is a stored proce-
dure, message queue, or object does not matter; the data are seen through
the filter of a Web Service, which includes a layer that maps the Web Service
to whatever execution environment is implementing the service. The use of
XML in Web Services provides a clear separation between the definition of
a service and its execution so that Web Services can work with any software
system. The XML representation of the data types and structures of a service
via the XML schema allows the developer to think solely in terms of the data
being passed between the services without having to consider the details
of the service’s implementation. This is quite in contrast to the traditional
nature of the integration problem that involves figuring out the implementa-
tion of the service in order to be able to talk to it.

One of the greatest benefits of service abstraction is its ability to eas-
ily access a variety of service types, including newly developed services,
wrapped legacy applications, and applications composed of other newer and
legacy services.

157Service-Oriented Architecture

7.2 SOA Benefits

SOA delivers the following business benefits:

 a. Increased business agility: SOA improves throughput by dramatically
reducing the amount of time required to assemble new business
applications, from existing services and IT assets. SOA also makes
IT significantly easier and less expensive to reconfigure and adapt
services and IT assets to meet new and unanticipated requirements.
Thus, the business adapts quickly to new opportunities and com-
petitive threats, while IT quickly changes existing systems.

 b. Better business alignment: As SOA services directly support the ser-
vices that the organization provides to customers.

 c. Improved customer satisfaction: As SOA services are independent of
specific technology, they can readily work with an array of customer-
facing systems across all customer touch points that effectively
reduce development time, increase customer engagement time, and,
hence, increase customer solutioning, enabling enhanced customer
satisfaction.

 d. Improved ROI of existing assets: SOA dramatically improves the ROI
of existing IT assets by reusing them as services in the SOA by iden-
tifying the key business capabilities of existing systems and using
them as the basis for new services as part of the SOA.

 e. Reduced vendor lock-in and switching costs: As SOA is based on loosely
coupled services with well-defined, platform-neutral service con-
tracts, it avoids vendor and technology lock-in at all levels, namely,
application platform and middleware platform.

 f. Reduced integration costs: SOA projects can focus on composing, pub-
lishing, and developing Web Services independently of their execu-
tion environments, thus obviating the need to deal with avoidable
complexity. Web Services and XML simplify integration because
they focus on the data being exchanged instead of the underlying
programs and execution environments.

Technical benefits of SOA include the following:

 a. More reuse: Service reuse lowers development costs and speed.
 b. Efficient development: As services are loosely coupled, SOA promotes

modularity that enables easier and faster development of compos-
ite applications. Once service contracts have been defined, develop-
ers can separately and independently design and implement each
of the various services. Similarly, service requestors too can be

158 Guide to Cloud Computing for Business and Technology Managers

designed and implemented based solely with reference to the pub-
lished service contracts without any need to contact the concerned
developers or without any access to the developers of the service
providers.

 c. Simplified maintenance: As services are modular and loosely coupled,
they simplify maintenance and reduce maintenance costs.

 d. Incremental adoption: As services are modular and loosely coupled,
they can be developed and deployed in incremental steps.

7.3 Characteristics of SOA

7.3.1 Dynamic, Discoverable, Metadata Driven

Services should be published in a manner by which they can be discovered
and consumed without intervention of the provider. Service contracts should
use metadata to define service capabilities and constraints and should be
machine readable so that they can be registered and discovered dynamically
to lower the cost of locating and using services, reduce corresponding errors,
and improve management of services.

7.3.2 Designed for Multiple Invocation Styles

Design and implement service operations that implement business logic
that supports multiple invocation styles, including asynchronous queuing,
request/response, request/callback, request/polling, batch processing, and
event-driven publish/subscribe.

7.3.3 Loosely Coupled

This implies loose coupling of interface and technology; interface coupling
implies that the interface should encapsulate all implementation details and
make them nontransparent to service requesters, while technology coupling
measures the extent to which a service depends on a particular technology,
product, or development platform (operating systems, application servers,
packaged applications, and middleware).

7.3.4 Well-Defined Service Contracts

Service contracts are more important than the service implementations
because it defines the service capabilities and how to invoke the service in
an interoperable manner. A service contract clearly separates the service’s
externally accessible interface from the service’s technical implementation;

159Service-Oriented Architecture

consequently, the service contract is independent of any single service
implementation. The service contract is defined based on the knowledge of
the business domain and not so much on the service implementation. The
service contract is defined and managed as a separate artifact, is the basis
for sharing and reuse, and is the primary mechanism for reducing interface
coupling.

Changing a service contract is generally more expensive than modifying
the implementation of a service because while changing a service implemen-
tation is relatively a localized effort, changing a service contract may entail
changing hundreds or thousands of service requesters.

7.3.5 Standard Based

Services should be based on open standards as much as possible to the
following benefits:

• Minimizing vendor lock-in by isolating from proprietary, vendor-
specific technologies and interfaces

• Increasing the choice of service requesters for alternate service pro-
viders and vice versa

It is important to base the service-level data and process models on mature
business domain standards as and when they become available. This is in
addition to complying with technology standards like SOAP, WSDL, UDDI,
and the WS* specification.

7.3.6 Granularity of Services and Service Contracts

Services and service contracts must be defined at a level of abstraction that
makes sense to service requesters as also service providers. To achieve this,
services should perform discrete tasks and provide simple interfaces to
encourage reuse and loose coupling.

An abstract interface at the appropriate level of granularity promotes
ready substitutability, which enables any of the existing service providers to
be replaced by a new service provider without affecting any of the service
requesters.

7.3.7 Stateless

Services should be stateless because they scale more efficiently as any service
request can be routed to any service instance. In contrast, stateful interac-
tions do not scale efficiently because the server needs to track which service
is serving which client and cannot reuse a service until the conversation is
finished or a time-out has occurred.

160 Guide to Cloud Computing for Business and Technology Managers

Thus, services should be implemented so that each invocation is indepen-
dent and does not depend on the service maintaining client-specific conver-
sations in memory or in persistent state between the invocations.

7.3.8 Predictable Service-Level Agreements (SLAs)

Service delivery platform must provide service-level management capabili-
ties for defining, monitoring, incident logging, and metering of SLAs for
service usage. SLAs should be established early because they affect service
design, implementation, and management. There should also be provision
for fine-tuning of SLAs based on the feedback of ongoing operations.

Typically, SLAs define metrics for services such as response time, through-
put, availability, and meantime between failures. Above all, SLAs are usu-
ally tied up to a business model whereby service requesters pay more for
higher or more stringent SLAs but charge a penalty when service providers
default on their SLA commitments.

7.3.9 Design Services with Performance in Mind

Service invocation should not be modeled on local function calls since local
transparency may result in a service that is on another machine on the same
LAN or another LAN or WAN.

7.4 SOA Ingredients

Web Services are new standards for creating and delivering cooperative
applications over the Internet. Web Services allow applications to communi-
cate irrespective of the platform or the operating system.

7.4.1 Objects, Services, and Resources

Any distributed system involves sending messages to some remote entity.
Underlying the differences between many systems are the abstractions
used to model these entities; they define the architectural qualities of the
system. Three abstractions—in particular, object, resource, and service—are
commonly used to describe remote entities; their definitions, however, are
not always clearly distinguished. Yet the nature of these abstractions has
a profound effect on the distributed communication paradigms that result
from their use. One approach to identifying the similarities and differences
between them is to understand them in terms of their relationship to two
properties: state and behavior.

161Service-Oriented Architecture

7.4.1.1 Objects

Objects have both state and behavior. The state is maintained through the
internal data, and the behavior of the object is defined through the public
operations on that data. A primary issue in these systems is the manage-
ment of object identifiers, which are global pointers to instances of objects.
It has been argued that architectures based on global pointers lead to brittle
systems if they scale to Internet size because of the proliferation of refer-
ences and the need to maintain the integrity of the pointers. As a result, these
systems are considered to be best suited to medium-sized networks within
a single domain, with known latencies and static addressing and intimate
knowledge of the middleware models used.

7.4.1.2 Services

A service is a view of some resource, usually a software asset. Implementation
detail is hidden behind the service interface. The interface has well-defined
boundaries, providing encapsulation of the resource behind it. Services com-
municate using messages. The structure of the message and the schema, or
form, of its contents are defined by the interface. Services are stateless. This
means all the information needed by a service to perform its function is con-
tained in the messages used to communicate with it.

The service abstraction shares commonalities with the object abstraction
but displays crucial differences:

• Like an object, a service can have an arbitrary interface.
• Like distributed object systems that use an IDL, services usually

describe this interface in a description language.
• Unlike objects, services use a message-oriented model for com-

munication. This has quite different semantics and implications
to invoking a procedure on a remote object. In the latter, what the
remote entity is plays a part. In the case of objects, the class of an
object must be known. Once this class is known, behavior based
on the class can be inferred by the consumer. Services, however, do
not share class. Instead, they share contracts and schema. Therefore,
what an entity is has no bearing on communication, and nothing
is inferred. Furthermore, communication with an object involves
addressing an instance. This is not the case with services as is dis-
cussed in the next item.

• Unlike objects, services do not have state. Object orientation teaches
us that data and the logic that acts on that data should be combined,
while service orientation suggests that these two things should be
separate. Therefore, a service acts upon state but does not expose
its own state. Put another way, services do not have instances. You
cannot create and destroy a service in the way you can to an object.

162 Guide to Cloud Computing for Business and Technology Managers

7.4.1.3 Resources

The term resource is used here to specifically refer to the abstraction used by
the Web and related initiative such as the Semantic Web. Such a resource is
different from a distributed object in a number of ways:

Resource state is not hidden from a client as it is in object systems. Instead,
standard representations of state are exposed. In object systems, the public
interface of an object gives access to hidden state:

• Unlike distributed objects, resources do not have operations asso-
ciated with them. Instead, manipulation and retrieval of resource
representations rely on the transfer protocol used to dereference the
uniform resource identifier (URI).

• As a consequence, a resource can be viewed as an entity that has
state, but not the logic to manipulate that state, that is, no behavior.

Because resources have no behavior, they do not define how their state can
be manipulated. While this could be viewed as limiting and potentially
leading to ad hoc, underspecified interactions, in the case of the Web, the
opposite is actually true. While an object-oriented system defines propri-
etary behavioral interfaces for every object, leading to a proliferation of
means of manipulating objects, the Web uses a single, shared interface:
HTTP. The few methods defined by HTTP allow arbitrary resources to
be exchanged and manipulated, making interactions between entities far
simpler and hence scalable. Imagine, for example, that every Web server
defined its own interface to accessing the resources in its charge. This
would require a browser to digest a new service interface and generate
client-side code every time you clicked on a link, a process that would
severely influence the scalability of the system as a whole.

7.4.2 SOA and Web Services

Web Services are new standards for creating and delivering cooperative
applications over the Internet. The basic Web Service architecture consists
of specifications (SOAP, WSDL, and UDDI) that support the interaction of
a Web Service requester with a Web Service provider and the potential dis-
covery of the Web Service description. The provider is typically publishing a
WSDL description of its Web Service, and the requester accesses the descrip-
tion using a UDDI or other type of registry and requests the execution of the
provider’s service by sending a SOAP message to it. The basic Web Service
standards are good for some SOA-based applications but not adequate for
many others.

SOAP, originally defined as Simple Object Access Protocol is a protocol
specification for exchanging structured information in the implementa-
tion of Web Services in computer networks. It relies on XML as its message

163Service-Oriented Architecture

format and usually relies on other application-layer protocols, most nota-
bly Remote Procedure Call (RPC) and HTTP for message negotiation and
transmission. SOAP can form the foundation layer of a Web Service protocol
stack, providing a basic messaging framework on which Web Services can
be built.

As a simple example of how SOAP procedures can be used, a SOAP mes-
sage can be sent to a Web Service–enabled website—for example, a house
price database—with the parameters needed for a search. The site returns an
XML-formatted document with the resulting data (prices, location, features,
etc.). Because the data are returned in a standardized machine-parseable for-
mat, it may be integrated directly into a third-party site.

The SOAP architecture consists of several layers of specifications for MEPs,
underlying transport protocol bindings, message processing models, and
protocol extensibility. SOAP is the successor of XML-RPC. SOAP makes use
of an Internet application-layer protocol as a transport protocol. Critics have
argued that this is an abuse of such protocols, as it is not their intended
purpose and therefore not a role they fulfill well. Proponents of SOAP have
drawn analogies to successful uses of protocols at various levels for tunnel-
ing other protocols.

Both SMTP and HTTP are valid application-layer protocols used as trans-
port for SOAP, but HTTP has gained wider acceptance because it works well
with today’s Internet infrastructure; specifically, HTTP works well with
network firewalls. SOAP may also be used over HTTPS (which is the same
protocol as HTTP at the application level but uses an encrypted transport
protocol underneath) with either simple or mutual authentication; this is the
advocated WS-I method to provide Web Service security as stated in the WS-I
Basic Profile 1.1. This is a major advantage over other distributed protocols
such as GIOP/IIOP or DCOM, which are normally filtered by firewalls. XML
was chosen as the standard message format because of its widespread use
by major corporations and open-source development efforts. Additionally,
a wide variety of freely available tools significantly ease the transition to a
SOAP-based implementation.

The advantages of using SOAP over HTTP is that SOAP allows for easier
communication through proxies and firewalls than previous remote execu-
tion technology and is versatile enough to allow for the use of different
transport protocols. The standard stacks use HTTP as a transport protocol,
but other protocols are also usable (e.g., SMTP). SOAP is platform indepen-
dent and language independent, and it is simple and extensible.

Because of the verbose XML format, SOAP can be considerably slower
than competing middleware technologies such as CORBA (Common
Object Request Broker Architecture). This may not be an issue when only
small messages are sent. To improve performance for the special case of
XML with embedded binary objects, Message Transmission Optimization
Mechanism was introduced. When relying on HTTP as a transport pro-
tocol and not using WS-Addressing or an ESB, the roles of the interacting

164 Guide to Cloud Computing for Business and Technology Managers

parties are fixed. Only one party (the client) can use the services of the
other. Developers must use polling instead of notification in these com-
mon cases.

Most uses of HTTP as a transport protocol are made in ignorance of how
the operation is accomplished. As a result, there is no way to know whether
the method used is appropriate to the operation. The REST architecture has
become a Web Service alternative that makes appropriate use of HTTP’s
defined methods.

7.4.3 SOA and RESTful Web Services

REpresentational State Transfer (REST) is a style of software architecture for
distributed hypermedia systems such as the World Wide Web. As such, it
is not strictly a method for building Web Services. The terms representational
state transfer and REST were introduced in 2000 in the doctoral dissertation of
Roy Fielding, one of the principal authors of the Hypertext Transfer Protocol
(HTTP) specifications 1.0 and 1.1.

REST refers to a collection of network architecture principles, which outline
how resources are defined and addressed. The term is often used in a looser
sense to describe any simple interface that transmits domain-specific data
over HTTP without an additional messaging layer such as SOAP or session
tracking via HTTP cookies. These two meanings can conflict as well as over-
lap. It is possible to design a software system in accordance with Fielding’s
REST architectural style without using HTTP and without interacting with
the World Wide Web. It is also possible to design simple XML+HTTP inter-
faces that do not conform to REST principles but instead follow a model of
remote procedure call. Systems that follow Fielding’s REST principles are
often referred to as RESTful.

Proponents of REST argue that the Web’s scalability and growth are a
direct result of a few key design principles. Application state and function-
ality are abstracted into resources. Every resource is uniquely addressable
using a universal syntax for use in hypermedia links, and all resources share
a uniform interface for the transfer of state between client and resource. This
transfer state consists of a constrained set of well-defined operations and
a constrained set of content types, optionally supporting code on demand.
State transfer uses a protocol that is client–server based, stateless and cache-
able, and layered.

An important concept in REST is the existence of resources, each of
which is referenced with a global identifier (e.g., a URI in HTTP). In order
to manipulate these resources, components of the network (user agents and
origin servers) communicate via a standardized interface (e.g., HTTP) and
exchange representations of these resources (the actual documents convey-
ing the information). For example, a resource, which is a circle, may accept
and return a representation that specifies a center point and radius, format-
ted in Scalable Vector Graphics (SVG), but may also accept and return a

165Service-Oriented Architecture

representation that specifies any three distinct points along the curve as a
comma-separated list.

Any number of connectors (clients, servers, caches, tunnels, etc.) can medi-
ate the request, but each does so without seeing past its own request (referred
to as layering, another constraint of REST and a common principle in many
other parts of information and networking architecture). Thus, an applica-
tion can interact with a resource by knowing two things: the identifier of the
resource and the action required—it does not need to know whether there
are caches, proxies, gateways, firewalls, tunnels, or anything else between
it and the server actually holding the information. The application does,
however, need to understand the format of the information (representation)
returned, which is typically an HTML, XML, or JSON document of some
kind, although it may be an image, plain text, or any other content.

RESTful Web Services rely on HTTP as a sufficiently rich protocol to com-
pletely meet the needs of Web Service applications. In the REST model, the
HTTP GET, POST, PUT, and DELETE verbs are used to transfer data (often
in the form of XML documents) between client and services. These docu-
ments are representations of resources that are identified by normal Web URIs
(Uniform Resource Identifiers). This use of standard HTTP and Web technol-
ogies means that RESTful Web Services can leverage the full Web infrastruc-
ture, such as caching and indexing. The transactional and database integrity
requirements of CRUD (Create, Retrieve, Update, and Delete) correspond to
HTTP’s POST, GET, PUT, and DELETE.

One benefit that should be obvious with regard to web-based applications
is that a RESTful implementation allows a user to bookmark specific queries
(or requests) and allows those to be conveyed to others across e-mail and
instant messages or to be injected into wikis, etc. Thus, this representation
of a path or entry point into an application state becomes highly portable.
A RESTFul Web Service is a simple Web Service implemented using HTTP
and the principles of REST. Such a Web Service can be thought of as a collec-
tion of resources comprising three aspects:

 1. The URI for the Web Service
 2. The MIME type of the data supported by the Web Service (often

JSON, XML, or YAML but can be anything)
 3. The set of operations supported by the Web Service using HTTP

methods, including but not limited to POST, GET, PUT, and DELETE

REST provides improved response time and reduced server load due to its
support for the caching of representations. REST improves server scalability
by reducing the need to maintain session state. This means that different
servers can be used to handle different requests in a session.

REST requires less client-side software to be written than other
approaches, because a single browser can access any application and any

166 Guide to Cloud Computing for Business and Technology Managers

resource. REST depends less on vendor software and mechanisms, which
layer additional messaging frameworks on top of HTTP. It provides equiv-
alent functionality when compared to alternative approaches to communi-
cation, and it does not require a separate resource discovery mechanism,
because of the use of hyperlinks in representations. REST also provides
better long-term compatibility because of the capability of document
types such as HTML to evolve without breaking backward or forward
compatibility and the ability of resources to add support for new content
types as they are defined without dropping or reducing support for older
content types.

SOAs can be built using REST services—an approach sometimes referred
to as (ROA) REST-oriented architecture. The main advantage of ROA is ease
of implementation, agility of the design, and the lightweight approach.
The latest version of WSDL now contains HTTP verbs and is considered an
acceptable method of documenting REST services. There is also an alterna-
tive known as WADL (Web Application Description Language).

7.4.3.1 Web Application Description Language (WADL)

Most RESTful services are described using free text. Although the number
of RESTful services is increasing, there is currently no standard approach
to describe this kind of services. If, for WS-* Web Services, the Web Service
Description Language is the de facto standard, in the RESTful service domain,
all approaches to describe services are still in an early stage. More structured
approaches such as the Web Application Description Language (WADL)
are currently emerging. The Web Application Description Language is an
XML-based language for the description of RESTful services. It is designed
to provide a machine-processable protocol description format for use with
HTTP-based Web applications, especially those using XML to communicate.

A WADL document is defined using the following elements:

• Application is a top-level element that contains the overall descrip-
tion of the service. It might contain grammars, resources, methods,
representation, and fault elements.

• Grammars acts as a container for definitions of any XML structures
exchanged during the execution of the protocol described by the
WADL document. Using the subelement include, one or more struc-
tures can be included.

• Resources act as a container for the resources provided by the Web
application.

• Resource describes a single resource provided by the Web appli-
cation. Each resource is identified by a URI, and the associated
resources parent element. It can contain the following subelements:
path_variable that is used to parameterize the identifiers of the

167Service-Oriented Architecture

parent resource, zero or more method elements, and zero or more
resource elements.

• Method describes the input to and output from an HTTP protocol
method that may be applied to a resource. A method element might
have two child elements: a request element that describes the input
to be included when applying an HTTP method to a resource and
a response element that describes the output that results from per-
forming an HTTP method on a resource. A request element might
contain query variable elements.

• Representation describes a representation of the state of a resource
and can either be declared globally as a child of the application ele-
ment, embedded locally as a child of a request or response element,
or referenced externally.

• Fault is similar to a representation element in structure but differs in
that it denotes an error condition.

7.4.3.2 Data Exchange for RESTful Services

Data exchange is one important aspect in any communication between dis-
tinct applications. Just as any other kind of service, RESTful services can
be seen as applications or software entities that can be accessed over the
Internet. There are two existing approaches to exchange data to and from
RESTful services, namely, JSON, a lightweight computer data interchange
format, and XML, a general language for sharing structured data between
information systems.

JSON, short for JavaScript Object Notation, is a lightweight computer data
interchange format, easy for humans to read and write, and, at the same time,
easy for machines to parse and generate. Another key feature of JSON is that
it is a completely language independent. Programming in JSON does not raise
any challenge for programmers experienced with the C family of languages.

Though XML is a widely adopted data exchange format, there are several
reasons for preferring JSON to XML:

• Data entities exchanged with JSON are typed, while XML data are
typeless (some of the built-in data types available in JSON are string,
number, array, and Boolean); XML data, on the other hand, are all
strings.

• JSON is lighter and faster than XML as on-the-wire data format.
• JSON integrates natively with JavaScript, a very popular pro-

gramming language used to develop applications on the client
side; consequently, JSON objects can be directly interpreted in
JavaScript code, while XML data need to be parsed and assigned
to variables through the tedious usage of DOM APIs (Document
Object Model APIs).

168 Guide to Cloud Computing for Business and Technology Managers

JSON is built on two structures:

 1. A collection of name/value pairs. In various languages, this is real-
ized as an object, record, structure, dictionary, hash table, keyed list,
or associative array.

 2. An ordered list of values. In most languages, this is realized as an
array, vector, list, or sequence.

7.5 SOA Applications

An SOA can be thought of as an approach to building IT systems in which
business services are the key organizing principle to align IT systems with
the needs of the business. Any business that can implement an IT infra-
structure that allows it to change more rapidly than its competitors has an
advantage over them. The use of an SOA for integration, business process
management, and multichannel access allows any enterprise to create a more
strategic environment, one that more closely aligns with the operational
characteristics of the business. Earlier approaches to building IT systems
resulted in systems that were tied to the features and functions of a particu-
lar environment technology (such as CORBA, J2EE, and COM/DCOM) since
they employed environment-specific characteristics like procedure or object
or message orientation to provide solutions to business problems. The way
in which services are developed aligns them better with the needs of the
business than was the case with previous generations of technology. What is
new in the concept of SOA is the clear separation of the service interface from
execution technology, enabling choice of the best execution environment for
any job and tying all of these executional agents together using a consistent
architectural approach.

7.5.1 Rapid Application Integration

The combination of Web Services and SOA provides a rapid integration solu-
tion that readily aligns IT investments and corporate strategies by focusing
on shared data and reusable services rather than proprietary integration
products. These enterprise application integration (EAI) products proved
to be expensive, consumed considerable time and effort, and were prone to
higher rates of failure. Applications can more easily exchange data by using
a Web Service defined at the business logic layer than by using a different
integration technology because Web Services represent a common standard
across all types of software. XML can be used to independently define the
data types and structures. Creating a common Web Service layer or overlay
of services into the business logic tiers of application also allows you to use

169Service-Oriented Architecture

a common service repository in which to store and retrieve service descrip-
tions. If a new application seeks to use an existing service into one of these
applications, it can query the repository to obtain the service description to
quickly generate (say) SOAP messages to interact with it. Finally, the devel-
opment of service-oriented entry points at the business logic tier allows a
business process management engine to drive an automatic flow of execu-
tion across the multiple services.

7.5.2 Multichannel Access

Enterprises often use many channels to ensure good service and main-
tain customer loyalty; therefore, they benefit from being able to deliver
customer services over a mixture of access channels. In the past, enter-
prises often developed monolithic applications that were tied to single
access channel, such as a 3270 terminal, a PC interface, or a Web browser.
The proliferation of access channels represented a significant challenge to
IT departments to convert monolithic applications to allow multichannel
access. The basic solution is to service-enable these using an SOA with
Web Services that are good for enabling multichannel access because they
are accessible from a broad range of clients, including Web, Java, C#, and
mobile devices. In general, business services change much less frequently
than the delivery channels through which they are accessed. Business ser-
vices refer to operational functions such as vendor management, purchase
order management, and billing, which do not vary very often, whereas
client devices and access channels are based on new technologies, which
tend to change.

7.5.3 Business Process Management

A business process is a real-world activity that consists of a set of logically
related tasks that, when performed in an appropriate sequence and in con-
formity with applicable rules, produce a business outcome. Business pro-
cess management (BPM) is the name for a set of software systems, tools, and
methodologies that enable enterprises to identify, model, develop, deploy,
and manage such business processes. BPM systems are designed to help
align business processes with desirable business outcomes and ensure that
the IT systems support those business processes. BPM systems let business
users model their business processes graphically in a way that the IT depart-
ment can implement; the graphical depiction of a business process can be
used to generate an executable specification of the process. Unlike traditional
forms of system development where the process logic is deeply embedded
in the application code, BPM explicitly separates the business process logic
from other application code. Separating business process logic from other
application code renders increased productivity, reduced operational costs,
and improved agility. When implemented correctly, enterprises can quickly

170 Guide to Cloud Computing for Business and Technology Managers

respond to changing market conditions and seize opportunities for gaining
competitive advantage.

SOA with Web Services can better automate business processes because
Web Services help achieve the goals of BPM more quickly and easily.

7.6 Summary

Large-scale enterprise applications are increasingly being woven together
from applications, packages, and components that were never designed to
work together and may even run on incompatible platforms. This gives rise
to a critical need for interoperability, one that becomes even more impor-
tant as organizations start building a new generation of wide-area integrated
applications that directly incorporate functions hosted by business partners
and specialist service providers. Services and service-oriented architectures
are pragmatic responses to the complexity and interoperability problems
encountered by the builders of previous generations of large-scale integrated
applications. Although it is possible to design and build service-oriented sys-
tems using any distributed computing or integration middleware, only Web
Services technologies can today meet the critical requirement for seamless
interoperability that is such an important part of the service-oriented vision.
Just as J2EE middleware lets Java client applications call methods provided
by J2EE components, the main purpose of SOA and Web Services is to enable
applications to invoke functionality provided by other applications (devel-
oped in different languages and platforms). This chapter presented the
definition and characteristics of service-oriented architectures along with
alternate approaches to realizing the vision of service-oriented systems,
namely, Web Services and RESTful services.

171

8
Web Services

Web Services are new standards for creating and delivering cooperative
applications over the Internet. They allow applications to communicate irre-
spective of the platform or the operating system. By using Web Services,
developers can eliminate major porting and quality testing efforts, poten-
tially saving millions of dollars. They will radically change the way that
applications are built and deployed in future.

A developer can create an application out of reusable components. But
what good is it to have a large library of reusable components if nobody
knows that they exist, where they are located, and how to link to and com-
municate with such programmatic components? Web Services are stan-
dards for finding and integrating object components over the Internet. They
enable a development environment where it is no longer necessary to build
complete and monolithic applications for every project. Instead, the core
components can be combined from other standard components available on
the Web to build the complete applications that run as services to the core
applications.

Some of the past approaches for enabling program-to-program commu-
nications included combinations of program-to-program protocols such
as Remote Procedure Call (RPC) and Application Programming Interfaces
(APIs) coupled with architectures such as Common Object Model (COM),
the Distributed Common Object Model (DCOM), and the Common Object
Request Broker Architecture (CORBA). But, without a common underly-
ing network, common protocols for program-to-program communication,
and a common architecture to help applications to declare their availability
and services, it has proven difficult to implement cross platform program-
to-program communication between application modules. These previous
attempts to set up standards for accomplishing these objectives were not
very successful because

• They were not functionally rich enough and are difficult to maintain
as best of breed

• They were vendor specific as opposed to using open and cross
vendor standards

• They were too complex to deploy and use

172 Guide to Cloud Computing for Business and Technology Managers

The use of Web Service standards holds the potential for correcting each
of these deficiencies. This new approach presents applications as services
to each other and enables applications to be rapidly assembled by linking
application objects together.

With the advent of the Internet and its protocols, most vendors and enter-
prises have graduated to a common communication and network protocol—
the Internet’s TCP/IP. And with the availability of Web standards such as
Extensible Markup Language (XML); Simple Object Access Protocol (SOAP);
Universal Description, Discovery and Integration (UDDI); and Web Services
Description Language (WSDL), vendors enable customers to

 1. Publish specifications about application modules via WSDL
 2. Find those modules (either on the internal intranet or on the Internet)

via the UDDI
 3. Bind the applications together to work seamlessly and cooperatively

and deliver the holistic functionality of composite application via
SOAP and XML

Major hardware vendors and certain key software vendors are looking at
these new Web standards for providing solutions for program-to-program
communication. IBM’s WebSphere Server environment, Sun Microsystems’s
Open Network Environment (ONE) comprised of various Sun technolo-
gies and third-party products, and Microsoft’s .NET initiatives deliver Web
Service–based solutions.

The significance of Web Services for the future is by reason of the
following:

• Web Services will enable enterprises to reduce development costs
and expand application functionality at a fraction of the cost per tra-
ditional application development and deployment method.

• Web Services will enable independent software vendors (ISVs) to
bring products to market more quickly and respond to competitive
threats with more flexibility.

• Web Services will enable enterprises to reuse existing legacy appli-
cation functionality with the latest applications and technologies.

• Web Services will obviate the need of porting applications to dif-
ferent hardware platforms and operating systems at great expense.

• Web Services enable applications to communicate irrespective of
platform or operating system.

• Web Services will have the effect of leveling the playing field because
it will enable even specialized boutique application firms to compete

173Web Services

easily with well-established and resourceful original equipment
manufacturers (OEMs).

• Web Services will enable only those OEMs to flourish that focus on
providing comprehensive implementations and highly productive
application development environments for Web Services.

• Web Services will enable applications to be packaged not only as
licenses but also as services; this will give a big fillip to ASP services
(as discussed in the earlier section) and will consequently expand
the overall market size tremendously.

• Web Services will enable value-added resellers (VARs) to rapidly
add new functionality to current product offerings or to customize
the existing applications of customers.

• Web Services will enable enterprises to adapt better to changing
market conditions or competitive threats

Figure 8.1 shows the Web Services usage model.

8.1 Web Service Standards

The standards are a collection of specifications, rules, and guidelines
formulated and accepted by the leading market participants and are
independent of implementation details. Standards establish a base for com-
monality and enable wide acceptance through interoperability. Examples of
standards include a common communication language (XML), a common

Service
consumer

Finds
service

SOAP communication

Registry
(UDDI)

WSDL

Describes
Web service

Web
service

Points to description

Points to service

FIGURE 8.1
Web services usage model.

174 Guide to Cloud Computing for Business and Technology Managers

format for exchanging messages (SOAP), a common service specification
format (WSDL), a common means for service lookup (UDDI), and a stan-
dard that specifically deals with interoperability issues (WS-I Basic Profile).
Examples of technology development include further development of the
ideas behind ESB, so as to be able to handle the different protocols for the
service provider and service consumer, and further development of regis-
tries for easy registration and discovery of services.

Web Services are a set of integration technology standards that were
designed specifically to meet the requirements arising from service-
oriented architectures and systems. In many ways, Web Services are
really not much different from existing middleware technologies, but
they do differ in their focus on simplicity and interoperability. The most
important feature offered by Web Services is that all major software ven-
dors have agreed to support them. Interoperability is still not, of course,
guaranteed to be painless but at least the problems encountered will be
bugs and misinterpretations of common standards, not intentionally
introduced incompatibilities between similar but different proprietary
technologies.

All application integration technologies, including Web Services, really
only provide four basic functions that let developers (and programs) do the
following:

 1. Find suitable services (using UDDI or another directory)
 2. Find out about a service (using WSDL)
 3. Ask a service to do something (using SOAP)
 4. Make use of services such as security (using WS-* standards)

SOAP, WSDL, and UDDI were the first Web Service standards to be pub-
lished, but they only meet the most basic requirements for application inte-
gration. They lack support for security, transactions, reliability, and many
other important functions. This gap is being progressively filled by a series
of standards (commonly called WS-*) first outlined by IBM and Microsoft
at a W3C workshop in 2001. The task of creating these additional standards
and getting industry-wide agreement is a confusing work in progress, with
specifications in varying degrees of maturity and supported by various stan-
dards bodies. Some specifications complement, overlap, and compete with
each other. There are now however production-ready implementations avail-
able for many of them. See http://www.w3.org/2002/ws/ for some insights
into these specifications.

Web Services are XML standards. Services are defined using XML, and
applications request services by sending XML messages and the Web Service
standards make extensive use of other existing XML standards wherever pos-
sible. There are multiple Web Service standards, and these can be organized
into various categories. This number of standards may suggest complexity

175Web Services

rather than the desired simplicity, and in many applications, only a few
core standards are actually in use. There is also increasingly good tool and
library/framework support for these standards, so developers only have to
understand the capabilities offered rather than the detailed XML syntax; in
the following is a simple Web Service definition using the Java API for XML
Web Services (JAX-WS), part of the JEE platform. Creating a Web Service is
very simple:

package brokerservice.endpoint;
import javax.jws.WebService;
@WebService
public class Broker {

@WebMethod
public String viewStock(String name) {
//code omitted
}

}

So, with toolkits like JAX-WS, the service developer does not need to cre-
ate or understand XML messages formatted as SOAP. The JAX-WS runtime
system simply converts the API calls and responses to and from underlying
SOAP message formats.

One of the simplifying principles underlying Web Services is that the vari-
ous message fields and attributes used to support functions such as security
and reliability are totally independent of each other. Applications only need to
include just those few fields and attributes needed for their specific purposes
and can ignore all the other standards. For example, a SOAP request might
identify the requestor of a service by including a username and password
in the form specified in the WS-Security UsernameToken profile. This user/
password-related information is the only security-related header element
included in the message. WS-Security supports other forms of user authenti-
cation, as well as encryption and digital signatures, but as these are not used
by the service, they do not appear at all in the SOAP message request.

Another aim of the Web Service standards is to provide good support for
system architectures that make use of intermediaries. Rather than assuming
that clients always send requests directly to service providers, the interme-
diary model assumes that these messages can (transparently) pass along
a chain of other applications on their way to their final destination. These
intermediaries can do anything with the messages they receive, includ-
ing routing them, auditing, logging, checking security, or even adding or
subtracting bits of the message’s content. Web services provide support for
intermediary-based architectures in a number of ways. These include tag-
ging header elements with the role of their intended recipient and support-
ing the end-to-end principle for functions such as security, so ensuring that
they continue to work even if messages pass through intermediaries rather
than traveling directly from client to service. For example, the client can

176 Guide to Cloud Computing for Business and Technology Managers

use mechanisms provided by WS-Security to protect sensitive information
intended only for the credit card application, hiding it from the router that
the message must pass through on its journey.

We start our discussion of standards with the Extensible Markup Language
(XML) because XML forms the basis on which most of the other standards
are built.

8.2 XML

John Bosak of Sun Microsystems is credited with the revolutionary work on
eXtensible Markup Language (XML). The idea of XML essentially emerged
from the other nonexpendable markup languages such as Generalized
Markup Language (GML) from IBM, Standardized Generalized Markup
Language (SGML) from ISO, and Hypertext Markup Language (HTML)
from ECRN. XML’s popularity essentially stems out of its extensible capa-
bility. One of the biggest contributions of XML is its capability of interop-
erability. The development of XML resulted in its adoption by a variety of
industries—both vertical and horizontal. This has resulted in the creation of
a large number of XML vocabularies that cater to the interoperability needs
of different industries. But the biggest impact of XML for enterprise solution
has as a part of the SOAP, WSDL, and UDDI technologies.

XML is probably the most important of the standards on which Web
Services are built. XML documents are often used as a means for passing
information between the service provider and the service consumer. XML
also forms the basis for WSDL (Web Services Description Language), which
is used to declare the interface that a Web Service exposes to the consumer
of the service. Additionally, XML underlies the SOAP protocol for access-
ing a Web Service. Lastly, UDDI (Universal Description, Discovery, and
Integration), which is used to publish and discover a Web Service, is also
based on XML. Similar to HTML, XML uses tags. However, unlike HTML,
where tags are used to indicate how the data should be presented or dis-
played, in XML, tags are used to describe what the data are. Another dif-
ference from HTML is that tags are not fixed but can be invented whenever
there is a need for a new one.

XML has been adopted as a popular middleware-independent standard
format for the exchange of data and documents. XML is basically the lowest
common denominator upon which the IT industry can agree. Unlike CORBA,
IDL, and Java interfaces, XML is not bound to any particular technology or
middleware standard and is often used today as an ad hoc format for process-
ing data across different, largely incompatible middleware platforms. XML is
free and comes with a large number of tools on many different platforms,
including different open source parsing APIs such as SAX, StAX, and DOM.

177Web Services

These tools enable the processing and management of XML documents.
Another advantage of XML is that it retains the data’s structure in transit.
In addition, XML is very flexible, and this flexibility positions XML as the
most suitable standard for solving middleware and application heterogeneity
problems. XML also solves the data format problem mentioned previously.

A basic XML document consists of a top element. This top element may
consist of data (the payload), an attribute, and any number of other elements
in a recursive manner. A sample portion of a simple XML document is shown
in Listing 8.1. This document contains a top element named address, which
has a single attribute that is used to specify the country. This top element
has also four child elements, which provide information on the name of the
person, the street address, the city, and the postal code. Each of these child
elements has data (that is, a payload) contained in them. For example, the
data for the name element are Sachin Tendulkar.

Listing 8.1: Basic XML document structure

1 <address country = "India">
2 <name>Sachin Tendulkar</name>
3 <street>Dadar Gymkhana</street>
4 <city>Mumbai</city>
5 <state>Maharashtra</state>
6 <postal-code>45561</postal-code>
7 </address>

The grammar and structure of an XML type document is defined in a
schema. Another important concept used in XML is namespaces, which are
used to avoid the collision of names in different spaces and to extend the use
of vocabulary defined in one specific domain to other domains. The discus-
sion will include schemas, namespaces, and various models to use for XML
parsing, processing, creating, and editing.

8.3 WSDL

Web Services Description Language (WSDL) is an XML-based language for
describing the interface and other characteristics of a Web Service. This is the
second application of XML to solve the heterogeneity problems mentioned
earlier in this chapter. WSDL offers the following advantages in the descrip-
tion of the services as compared to previously described approaches:

• Unlike CORBA’s IDL and RPC’s specification files, WSDL is more
completely agnostic toward programming languages and middle-
ware technologies. This feature of WSDL is the direct result of it

178 Guide to Cloud Computing for Business and Technology Managers

being based on XML, thus making WSDL suitable to describe almost
any type of service.

• WSDL provides a method of specifying a communication protocol
for invoking a service. Therefore, a service is free to choose any pro-
tocol it can conveniently implement.

• WSDL also provides a way to specify a message format for commu-
nicating with a given service. Therefore, a service is free to choose
any convenient message format. An example of a message format is
SOAP.

• WSDL also provides wide latitude for the service provider to specify
the type of service operations they offer. In general, four different
types of service operations can be specified, including synchronous
operations and asynchronous operations.

• Finally, WSDL has a method for specifying a service endpoint.
A service endpoint is the network address at which the service is
available for invocation.

WSDL is used to describe Web Services, including their interfaces, meth-
ods, and parameters. WSDL characterizes the interface, which consists of
two parts:

 1. An abstract interface description containing the supported opera-
tions, the operation parameters, and their types

 2. A binding and implementation description containing a binding of
the abstract description to a concrete transport protocol, message
format, and network address

The WSDL description of a service called StockQuoteService that provides a
single operation named GetLastTradePrice is depicted in Listing 8.2.

Listing 8.2 WSDL for the GetLastTradePrice service

<?xml version = "1.0"?>
<definitions name = "StockQuote"

ta rgetNamespace = "http://myCompany.com/
stockquote.wsdl"

xm lns:tns = "http://myCompany.com/stockquote.
wsdl"

xm lns:soap = "http://schemas.xmlsoap.org/wsdl/
soap/"

xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
xmlns = "http://schemas.xmlsoap.org/wsdl/">

[Abstract data type definitions]
<message name = "GetLastTradePrice">

179Web Services

[Data that is sent]
<part name = "body" type = "xsd:string"/>

</message>
<message name = "LastTradePrice">

[Data that is returned]
<part name = "body" type = "xsd:float"/>

</message>

<portType name = "StockQuotePortType">
[Port type containing one operation]

<operation name = "GetLastTradePrice">
[An operation with Input and Output messages]

<i nput message =
"tns:GetLastTradePrice"/>

<o utput message =
"tns:LastTradePrice"/>

</operation>
</portType>

<binding name = "StockQuoteBinding"
type = "tns:StockQuotePortType">
<soap:binding style = "document"

tr ansport = "http://schemas.xmlsoap.org/
soap/http"/>

<operation name = "GetLastTradePrice">
<soap:operation soapAction =

"h ttp://myCompany.com/
GetLastTradePrice"/>

<input>
<soap:body use = "literal"/>

</input>
<output>

<soap:body use = "literal"/>
</output>

</operation>
[Binding to a specific protocol]

</binding>

<service name = "StockQuoteService">
<d ocumentation>Stock quote service</
documentation>

[Binding to a specific service]
<port name = "StockQuotePort"

binding = "tns:StockQuoteBinding">
<soap:address location =

"h ttp://myCompany.com/
stockServices"/>

</port>
</service>
</definitions>

180 Guide to Cloud Computing for Business and Technology Managers

This operation takes one parameter symbol of type string that names the
stock of interest and returns a float that holds the most recently traded price.
As this listing shows, a complete WSDL document consists of a set of def-
initions, starting with a root definition element, followed by six individual
element definitions—types, message, portType, binding, service and port—
which describe a service.

Here is a brief description of the top six elements:

 1. types: This element defines the data types contained in messages
exchanged as part of the service. Data types can be simple, complex,
derived, or array types. Types (either schema definitions or refer-
ences) that are referred to in a WSDL document’s message element
are defined in the WSDL document’s type element.

 2. message: This element defines the messages the service exchanges.
A WSDL document has a message element for each message that is
exchanged, and the message element contains the data types associ-
ated with the message. For example, in the Listing 8.2, the first mes-
sage contains a single part that is of the string type.

 3. portType: This element specifies, in an abstract manner, operations
and messages that are part of the service. A WSDL document has
one or more portType definitions for each service it defines. In
Listing 8.2, only one port type, StockQuotePortType, is defined.

 4. binding: This element binds the abstract port type, and its messages
and operations, to a transport protocol and to a message format. In
Listing 8.2, one operation, GetLastTradePrice, is defined, which has
an input message and an output message. Both of these messages
are exchanged in SOAP body formats. The binding transport proto-
col is HTTP.

 5. service: This element together with the port defines the name of an
actual service and, by providing a single address for binding, assigns
an individual endpoint for the service.

 6. port: A port can have only one address. The service element groups
related ports together and, through its name attribute, provides a
logical name for the service. In Listing 8.2, one service (stockSer-
vices) is defined that has a single port (or endpoint) with the address
http://mycompany.com/stockServices.

WSDL is well supported by development environments such as Visual
Studio, Eclipse, and WebSphere. These tools can generate WSDL automati-
cally from program method and interface definitions, and they take in
WSDL service definitions and make it easy for developers to write code
that calls these services. One adverse side effect of this tool support is that
it tends to encourage developers to think of services as remote methods,

181Web Services

rather than moving to the preferable and richer message-based model pro-
vided by Web Services.

8.4 SOAP and Messaging

Although adopting XML is an important step forward in dealing with het-
erogeneity and extensibility requirements, XML by itself is not sufficient for
two parties (the service provider and service consumer applications) to prop-
erly communicate. For effective communications, the parties must be able
to exchange messages according to an agreed-upon format. Simple Object
Access Protocol (SOAP) is such a protocol, providing a common message
format for services. SOAP originally stood for Simple Object Access Protocol,
but it is now officially no longer an acronym. SOAP clients send XML request
messages to service providers over any transport and can get XML response
messages back in return.

SOAP is a text-based messaging format that uses an XML-based data
encoding format. SOAP is independent of both the programming language
and the operational platform, and it does not require any specific technol-
ogy at the endpoints, thus making it completely agnostic toward vendors,
platforms, and technologies. It specifies a simple but extensible XML-based
application-to-application communication protocol, roughly equivalent to
DCE’s RPC or Java’s RMI, but much less complex and far easier to imple-
ment as a result. This simplicity comes from deliberately staying well away
from complex problems, such as distributed garbage collection and passing
objects by reference. Its text format also makes SOAP a firewall-friendly pro-
tocol. Although SOAP was originally designed to work only with HTTP, any
transport protocol or messaging middleware can be used to carry a SOAP
message. All that the SOAP standard does is define a simple but extensible
message-oriented protocol for invoking remote services, using HTTP, SMTP,
UDP, or other protocols as the transport layer and XML for formatting data.

The SOAP message is a complete (or valid) XML document, with the top
element being the envelope element. The envelope element contains a body
element and an optional header element. The body element usually carries
the actual message, which is consumed by the recipient. The header element
is generally used for advanced features for intermediate processors.

Listing 8.3 An example of SOAP message

<so ap:envelope xmlns:soap = "http://schemas.xmlsoap.org/soap/
envelope/"

so ap:encodingStyle = "http:/schemas.xmlsoap.org/soap/
encoding/"/>

<soap:header>
</soap:header>

182 Guide to Cloud Computing for Business and Technology Managers

<soap:body>
<m: GetLastTradePrice xmlns:m = "http://example.

org/Tradeprice" >
<tickerSymbol> COMPANY </tickerSymbol>
</m:GetLastTradePrice>
</soap:body>

</soap:envelope>

The listing shows how a SOAP message is encoded using XML and illustrates
some SOAP elements and attributes. As the listing shows, the top element in
SOAP must be the envelope element, which must contain two namespaces.
The namespace SOAP:encodingStyle indicates the SOAP encoding, and
the other namespace connotes the SOAP envelope. The header element is
optional, but when it is present, it should be the first immediate child of the
envelope element. The body element must be present in all SOAP messages
and must follow the header element if it is present. The body usually con-
tains the specification of the actual message. In this example, the message
contains the name (GetLastTradePrice) of the method as well as an input
parameter value (COMPANY).

Another sample SOAP message is shown in Listing 8.4. The request carries
a username and hashed password in the header to let the service know who
is making the request. The header holds information about the message pay-
load, possibly including elements such as security tokens and transaction
contexts. The body holds the actual message content being passed between
applications. The SOAP standard does not mandate what can go in a message
header, giving SOAP its extensibility as new standards, such as WS-Security,
can be specified just by defining new header elements and without requiring
changes to the SOAP standard itself.

Listing 8.4 SOAP message sample

<?xml version = "1.0" encoding = "utf-8" ?>
<soap:Envelopexmlns:soap =

"http://www.w3.org/2003/05/soap-envelope"
xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd = "http://www.w3.org/2001/XMLSchema"
xmlns:wsa = "http://schemas.xmlsoap.org/ws/2004/03/addressing"
xm lns:wsse = "http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd"

xm lns:wsu = "http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd">

<soap:Header>
<wsa:Action>
http://myCompany.com/getLastTradePrice</wsa:Action>

<wsa:MessageID>uuid:4ec3a973-a86d-4fc9-bbc4-ade31d0370dc
</wsa:MessageID>
<wsse:Security soap:mustUnderstand = "1"

183Web Services

<wsse:UsernameToken>
<wsse:Username>NNK</wsse:Username>
<wsse:PasswordType = "http://docs.oasisopen.
org/wss/2004/01/oasis-200401-wss-username

-token-profile-1.0#PasswordDigest">
we YI3nXd8LjMNVksCKFV8t3rgHh3Rw ==
</wsse:Password>

<w sse:Nonce>WScqanjCEAC4mQoBE07sAQ ==
</wsse:Nonce>

<w su:Created>2003-07-16T01:24:32Z</
wsu:Created>

</wsse:UsernameToken>
</wsse:Security>

</soap:Header>

<soap:Body>
<m:GetLastTradePrice
xmlns:m = "http://myCompany.com/stockServices">
<symbol>DIS</symbol>
</m:GetLastTradePrice>

</soap:Body>
</soap:Envelope>

SOAP was the original Web Service standard and is still the most important
and most widely used. Web Services do not depend solely on HTTP as a
transport layer. There are a number of other standards included in the Web
Service messaging category, including WS-Addressing and WS-Eventing.
SOAP messages can be sent over any transport protocol, including TCP/IP,
UDP, e-mail (SMTP), and message queues, and WS-Addressing provides
transport-neutral mechanisms to address services and identify messages.
WS-Eventing provides support for a publish–subscribe model by defining
the format of the subscription request messages that clients send to publish-
ers. Published messages that meet the provided filtering expression are sent
to callers using normal SOAP messages.

8.5 UDDI

In addition to service interface declaration (WSDL) and the SOAP messag-
ing standard, a large enterprise also needs a central place where the service
provider can publish their services using WSDL and the service consumer
can discover existing services. This is mainly due to the fact that in a large
enterprise, developer resources may be dispersed geographically. In par-
ticular, service providers and service consumers may be located far apart.
Such a central place is given the name registry. A registry is like a library

184 Guide to Cloud Computing for Business and Technology Managers

card catalog used for recording the arrival of new books and other media as
well as looking up books and other media. Another common analogy is the
telephone system’s Yellow Pages, used by service providers to publish their
services and by service consumers to find services.

The Universal Description, Discovery, and Integration (UDDI) specifica-
tion defines a standard way of registering, deregistering, and looking up
services. Figure 9.n shows how UDDI enables the dynamic description, dis-
covery, and integration of services. A service provider first registers a service
with the UDDI registry. A service consumer looks up the required service in
the UDDI registry. Then, when it finds the required service, the consumer
directly binds with the provider to use the service.

The role of the UDDI registry in Web Services is similar to the role played by
a search engine on the Internet. The power of the search engine comes from
the keywords used to classify content. In a similar manner, a fine-grained
search for a Web Service is possible only if a service is classified properly.
The classification and identification taxonomies present in the UDDI registry
provide a starting point for describing Web Services. Equally important is
the classification of the businesses and organizations that offer Web Services.

SOAP services that are normally described using WSDL (Web Services
Description Language) can be located by searching a UDDI (Universal
Description, Discovery, and Integration) directory. Services can describe
their requirements for things like security and reliability using policy state-
ments, defined using the WS-Policy framework, and specialized policy stan-
dards such as WS-SecurityPolicy. These policies can be attached to a WSDL
service definition or kept in separate policy stores and retrieved using WS
MetadataExchange.

UDDI has proven to be the least used so far of the original three Web
Service standards. Organizations are developing large complex Web Service
systems today without the use of global UDDI directories, using other meth-
ods of finding services such as personal contact or published lists of services
on websites. This could all change in the future, especially when industry
associations start releasing common service definitions and need to publish
directories of qualified service providers.

8.6 Security, Transactions, and Reliability

One of the problems faced by most middleware protocols is that they do not
work well on the open Internet because of the connectivity barriers imposed
by firewalls. Most organizations do not want outsiders to have access to
the protocols and technologies they use internally for application integra-
tion and so block the necessary TCP/IP ports at their perimeter firewalls.
The common technology response to this problem, and the one adopted by

185Web Services

Web Services, has been to coopt the Web protocol, HTTP, as a transport layer
because of its ability to pass through most firewalls. This use of HTTP is
convenient but also creates potential security problems as HTTP traffic is
no longer just innocuously fetching Web pages. Instead, it may be making
direct calls on internal applications.

WS-Security and its associated standards address these problems by
providing strong cryptographic mechanisms to identify callers (authenti-
cation), protect content from eavesdroppers (encryption), and ensure infor-
mation integrity (digital signatures). These standards are designed to be
extensible, letting them be adapted easily to new security technologies and
algorithms, and also supporting integration with legacy security technolo-
gies. WS-Security supports intermediary-based application architectures by
allowing multiple security header elements, each labeled with the role of
their intended recipient along the processing chain, and by supporting par-
tial encryption and partial signatures. For instance, the sensitive credit card
details can be hidden by encrypting them while leaving the rest of the mes-
sage unencrypted so that it can be read by the routing application.

The final set of Web Service standards supports transactions and reli-
able messaging. There are two types of Web Service transactions supported
by standards. WS-AtomicTransactions supports conventional distributed
ACID transactions and assumes levels of trust and fast response times
that make this standard suitable only for internal application integration
tasks and unusable for Internet-scale application integration purposes.
WS-BusinessActivity is a framework and a set of protocol elements for
coordinating the termination of loosely coupled integrated applications.
It provides some support for atomicity by invoking compensators when a
distributed application finishes in failure.

The support for reliable messaging in Web Services simply ensures that
all messages sent between two applications actually arrive at their destina-
tion in the order they were sent. WS-ReliableMessaging does not guarantee
delivery in the case of failure, unlike queued messaging middleware using
persistent queues. However, it is still a useful standard as it provides at most
once in-order message delivery over any transport layer, even unreliable
ones such as UDP or SMTP.

8.7 Semantic Web Services

Semantic Web Services (SWS) were proposed in order to pursue the vision
of the Semantic Web presented in, whereby intelligent agents would be
able to exploit semantic descriptions in order to carry out complex tasks on
behalf of humans. Semantic Web Services were first proposed as an exten-
sion of Web Services with semantic descriptions in order to provide formal

186 Guide to Cloud Computing for Business and Technology Managers

declarative definitions of their interfaces as well as to capture declaratively
what the services do. The SWS approach is about describing services with
metadata on the basis of domain ontologies as a means to enable their auto-
matic location, execution, combination, and usage. If services are described
and annotated using machine-understandable semantics, a service requestor
may specify the service needed in terms of the problem domain, or in other
words, using business terminology. This is the essential progress over what
can be achieved with Web Services. While Web services could act as prox-
ies for business services, which was the basis of their appeal for corporate
companies earlier, a number of problems emerged related to how online Web
Services could be found, invoked, and composed.

There are four main types of semantics that corresponding semantic
descriptions can capture:

 1. Data semantics: The semantics pertaining to the data used and
exposed by the service

 2. Functional semantics: Semantics pertaining to the functionality of
the service

 3. Nonfunctional semantics: Semantics related to the nonfunctional
aspects of the service, for example, quality of service (QoS), security,
or reliability

 4. Execution semantics: Semantics related to exceptional behaviors
such as runtime errors

The essential characteristic of SWS is therefore the use of languages with
well-defined semantics covering the subset of the mentioned categories
that are amenable to automated reasoning. Several languages have been
used so far including those from the Semantic Web, for example, Resource
Description Framework (RDF) and Web Ontology Language (OWL), SWS-
specific languages such as the Web Service Modelling Language (WSML),
or others originating from research on Knowledge-Based Systems such as
F-Logic and Operational Conceptual Modelling Language (OCML).

SWS technologies seek to automate the tasks involved in the life cycle of
service-oriented applications, which include the discovery and selection of
services, their composition, their execution, and their monitoring among
others.

8.8 Summary

This chapter discussed standards like XML, SOAP, WSDL, and UDDI.
XML provides a middleware-independent format for the exchange of data
and documents. SOAP provides a common message format for application

187Web Services

interaction. WSDL provides a language- and platform-independent way to
specify the interface offered by a service. A WSDL document consists of two
parts. The first part describes in an abstract manner the operations, input and
output parameters, and data types. The second part, which consists of a bind-
ing and implementation interface, specifies the transport protocol, message
format, and service endpoint network address. The Universal Description,
Discovery, and Integration (UDDI) specification defines a standard way of
registering, deregistering, and looking up services. The last standard, WS-I
Basic Profile, promotes the interoperability of services operating on differ-
ent platforms by specifying additional constraints and clarifications on the
aforementioned standards.

189

9
Enterprise Service Bus (ESB)

An ESB provides an implementation backbone for a SOA that treats appli-
cations as services. The ESB is about configuring applications rather than
coding and hardwiring applications together. It is a lightweight infrastruc-
ture that provides plug-and-play enterprise functionality. It is ultimately
responsible for the proper control, flow, and even translations of all mes-
sages between services, using any number of possible messaging protocols.
An ESB pulls together applications and discrete integration components to
create assemblies of services to form composite business processes, which in
turn automate business functions in an enterprise. It establishes proper con-
trol of messaging as well as applying the needs of security, policy, reliability,
and accounting, in an SOA architecture. With an ESB SOA implementation,
previously isolated ERP, CRM, supply chain management, and financial and
other legacy systems can become SOA enabled and integrated more effec-
tively than when relying on custom, point-to-point coding or proprietary
EAI technology. The end result is that with an ESB, it is then easier to create
new composite applications that use pieces of application logic and/or data
that reside in existing systems.

9.1 Defining Enterprise Service Bus (ESB)

The Enterprise Service Bus (ESB) is an open standard-based message back-
bone designed to enable the implementation, deployment, and management
of SOA-based solutions with a focus on assembling, deploying, and manag-
ing distributed service-oriented architecture (SOAs). An ESB is a set of infra-
structure capabilities implemented by middleware technology that enable
an SOA and alleviate disparity problems between applications running on
heterogeneous platforms and using diverse data formats. The ESB supports
service invocations, message, and event-based interactions with appropriate
service levels and manageability. The ESB is designed to provide interop-
erability between larger-grained applications and other components via
standard-based adapters and interfaces. The bus functions as both transport
and transformation facilitator to allow distribution of these services over dis-
parate systems and computing environments.

190 Guide to Cloud Computing for Business and Technology Managers

The ESB distributed processing infrastructure is aware of applications and
services and uses content-based routing facilities to make informed deci-
sions about how to communicate with them. In essence, the ESB provides
docking stations for hosting services that can be assembled and orchestrated
and are available for use to any other service on the bus. Once a service is
deployed into a service container, it becomes an integral part of the ESB and
can be used by any application or service connected to it. The service con-
tainer hosts, manages, and dynamically deploys services and binds them to
external resources, for example, data sources, enterprise, and multiplatform
applications, such as shown in Figure 9.1.

The distributed nature of the ESB container model allows individual
event-driven services to be plugged into the ESB backbone on an as-needed
basis. It allows them to be highly decentralized and work together in a
highly distributed fashion, while they are scaled independently from one
another. Applications running on different platforms are abstractly decou-
pled from each other and can be connected together through the bus as logi-
cal endpoints that are exposed as event-driven services. The WS-Notification
family of specifications will bring the publish/subscribe functionality to
ESB-focused current incarnations of Web Service standards (see Chapter 8,
Section 8.1, “Web Service Standards”).

To successfully build and deploy a distributed SOA, there are five design/
deployment and management aspects that need to be addressed first:

 1. Service analysis and design: A service development methodology
should be used to enable service-oriented development and the
reuse of existing applications and resources.

Service
interface

Service
orchestration-
based custom
applications Portals

Reliable asynchronous secure messaging

Service
container Distributed

query engine

Business
data sources

Enterprise
applications

Multiplatform
support

Java apps Mainframe
and legacy

apps

WebSphere,
.NET apps

Adapters Web
services

JMS/
J2EE

MQ
gateway

FIGURE 9.1
Enterprise Service Bus (ESB) linking disparate systems and computing environments.

191Enterprise Service Bus (ESB)

 2. Service enablement: The service development methodology should
determine which discrete application elements need to be exposed
as services.

 3. Service orchestration: Distributed services need to be configured and
orchestrated in a unified and clearly defined distributed process.

 4. Service deployment: Emphasis should also be placed on the produc-
tion environment that addresses security, reliability, and scalability
concerns.

 5. Service management: Services must be audited, maintained, and
reconfigured, and corresponding changes in processes must be
made without rewriting the services or underlying application.

9.1.1 Evolution of ESB

Conceptually, the ESB has evolved from the store and forward mechanism
found in middleware products and now is a combination of EAI, Web
Services, XSLT, and orchestration technologies, such as BPEL. To achieve its
operational objectives, the ESB draws from traditional EAI broker functional-
ity in that it provides integration services such as connectivity and routing of
messages based on business rules, data transformation, and adapters to appli-
cations. These capabilities are themselves SOA based in that they are spread
out across the bus in a highly distributed fashion and hosted in separately
deployable service containers. This is a crucial difference from traditional
integration brokers, which are usually heavyweight, highly centralized, and
monolithic in nature. The ESB approach allows for the selective deployment
of integration broker functionality exactly where it is needed with no addi-
tional overbloating where it is not required.

To surmount problems of system heterogeneity and information model
mismatches in an SOA implementation, an EAI middleware supporting hub-
and-spoke integration patterns could be used. The hub-and-spoke approach
introduces an integration layer between the client and server modules that
must support interoperability among and coexist with deployed infra-
structure and applications, and not attempt to replace them. However, this
approach has its own drawbacks as a hub can be a central point of failure and
can quickly become a bottleneck.

A scalable distributed architecture such as an SOA needs to employ a
constellation of hubs. The requirements to provide an appropriately capable
and manageable integration infrastructure for Web Services and SOA are
coalescing into the concept of the Enterprise Service Bus (ESB), which will
be the subject of this section. The two key ideas behind this approach are to
loosely couple the systems taking part in the integration and break up the
integration logic into distinct, easily manageable pieces.

Figure 9.1 above shows a simplified view of an ESB that integrates a J2EE
application using JMS, a .NET application using a C# client, an MQ application

192 Guide to Cloud Computing for Business and Technology Managers

that interfaces with legacy applications, and external applications and data
sources using Web Services. In an ESB application, development tools allow
new or existing distributed applications to be exposed as Web Services and
be accessed via a portal. In general, resources in the ESB are modeled as
services that offer one or more business operations. Technologies like J2EE
Connector Architecture (JCA) may also be used to create services by inte-
grating packaged applications (like ERP systems), which would then be
exposed as Web Services.

An ESB enables the more efficient value-added integration of a number
of different application components, by positioning them behind a service-
oriented facade and by applying Web Service technology to the problem. For
instance, in the figure above, a distributed query engine, which is normally
based on XQuery or SQL, enables the creation of business data services,
for example, sales order data or available product sets, by providing uni-
form access to a variety of disparate business data sources or organization
repositories.

Endpoints in the ESB depicted in the Figure 9.1 above provide
abstraction of physical destination and connection information
(like TCP/IP host name and port number). In addition, they
facilitate asynchronous and highly reliable communication

between service containers using reliable messaging conventions.
Endpoints allow services to communicate using logical connection
names, which an ESB will map to actual physical network destinations
at runtime. This destination independence gives the services that are
part of the ESB the ability to be upgraded, moved, or replaced without
having to modify code and disrupt existing ESB applications. For
instance, an existing ESB invoicing service could be easily upgraded or
replaced with a new service without disrupting other applications.
Additionally, duplicate processes can be set up to handle failover if a
service is not available. The endpoints can be configured to use several
levels of QoS, which guarantee communication despite network fail-
ures and outages.

9.2 Elements of an ESB Solution

There are alternative ways to implement an ESB. The ESB itself can be a single
centralized service or even a distributed system consisting of peer and sub-
peer ESBs—in the form of an ESB federation—all working in tandem to keep
the SOA system operational. In small-scale implementations of integration

193Enterprise Service Bus (ESB)

solutions, the physical ESB infrastructure is likely to be a centralized ESB
topology. A centralized ESB topology is concentrated on a single cluster, or
hub, of servers. This solution is reminiscent of hub-and-spoke middleware
topologies, which use a central node that manages all interactions between
applications and prevent an application having to integrate multiple times
with several other applications (see Chapter 5, Section 5.12.1, “Replacing a
Point-to-Point Integration Architecture with a Broker”). The hub-and-spoke
approach simply carries out one integration process on the central node,
which is a central point of control responsible for integration/translation
activities, maintaining routing information, service naming, and so forth.
The most popular hub-and-spoke EAI solution for the interenterprise arena
is integration brokering.

Even though a hub-and-spoke solution is capable of being stretched out
across organizational boundaries, it still does not allow the local autonomy
that individual business units require to operate semi-independently of each
other. This is usually caused by the integration broker’s inability to easily
span firewalls and network domains. However, as explained earlier in this
chapter, the most serious drawback of this approach is that hub-and-spoke
solutions can quickly become a point of contention for large-scale implemen-
tations. In an environment of loosely coupled units, it does not make sense
for business process flow between localized applications or security domains
to be managed by a single centralized authority like an integration broker.

In circumstances where organizational or geographically dispersed units
need to act independently from one another, the infrastructure may become
more physically distributed while retaining at least logically the central
control over configuration. This calls for a federated hub solution. A feder-
ated ESB allows different enterprises such as manufacturers, suppliers, and
customers to plug together their integration domains into a larger federated
integration network. This topology allows for local message traffic, integra-
tion components, and adapters to be locally installed, configured, secured,
and managed while allowing for a single integrated transaction and security
model. In this figure, a federated ESB solution is used to form a virtual net-
work of trading partners across industries and services able to take advan-
tage of the wider range of options and partnering models.

The physical deployment of the ESB depends on candidate ESB technolo-
gies such as specialized MOM, integration brokers, and application servers.
The use and combination of different candidate ESB technologies result in a
variety of ESB patterns, each having its own requirements and constraints
in connection with its physical deployment. Some ESB configurations might
be suited to very widespread distribution to support integration over large
geographical areas, while others might be more suited to deployment in
localized clusters to support high availability and scalability. Matching the
requirements for physical distribution to the capabilities of candidate tech-
nologies is an important aspect of ESB design. Also important is the ability to
incrementally extend the initial deployment to reflect evolving requirements,

194 Guide to Cloud Computing for Business and Technology Managers

to integrate additional systems, or to extend the geographical reach of the
ESB infrastructure.

Irrespective of its implementation topology, the main aim of the ESB is to
provide virtualization of the enterprise resources, allowing the business logic
of the enterprise to be developed and managed independently of the infra-
structure, network, and provision of those business services. Implementing
an ESB requires an integrated set of middleware facilities that support the
following interrelated architectural styles:

• Service-oriented architectures (SOAs), where distributed applica-
tions are composed of granular reusable services with well-defined,
published, and standard-compliant interfaces

• Message-driven architectures, where applications send messages
through the ESB to receiving applications

• Event-driven architectures, where applications generate and con-
sume messages independently of one another

The ESB supports these architectural styles and service interaction capabili-
ties and provides the integrated communication, messaging, and event infra-
structure to enable them, as explained in the previous section. To achieve its
stated objectives, the ESB amalgamates functional capabilities of application
servers, integration brokers, and business process management technologies
and product sets into a single integrated infrastructure. These middleware
solutions are discussed in turn in the following sections.

9.2.1 Integration Brokers

To integrate disparate business applications, one must concentrate on the
characteristics and functions of integration brokers, which we covered as
part of the introduction to the distributing infrastructure in Chapter 3,
Section 3.1 “Distributed Applications”.

The integration broker is the system centerpiece. It facilitates information
movement between two or more resources (source and target applications)
and accounts for differences in application semantics and heterogeneous
platforms. The various existing (or component) ESs, such as CRM, ERP
systems, transaction processing monitors, and legacy systems, in this con-
figuration, are connected to the integration broker by means of resource
adapters.

The integration broker architecture presents several advantages given that
integration brokers try to reduce the application integration effort by pro-
viding prebuilt functionality common to many integration scenarios. The
value proposition rests on reuse (in terms of middleware infrastructure and
the application integration logic) across multiple applications and initiatives.
Modern integration brokers incorporate integration functionality such as
transformation facilities, process integration, business process management

195Enterprise Service Bus (ESB)

and trading partner management functionality, packaged adapters, and
user-driven applications through front-end capabilities such as Java Server
Pages (JSPs).

In an ESB, the functionality of an integration broker, such as messaging
and connectivity, application adapters, a data transformation engine, and
routing of messages based on business rules, is spread out across a highly
distributed architecture that allows selective deployment and independent
scalability of each of those pieces. This is an important difference from the
classic integration broker model where these capabilities are localized to
a central monolithic server. In many situations, it is essential that newly
developed ESB solutions be bridged to existing integration broker installa-
tions. In this scenario, the integration broker installation now becomes the
asset, which the ESB utilizes to support new application development in
future.

9.2.2 Application Servers

Another critical middleware infrastructure used in connection with ESBs
is application servers. Application servers offer an integrated development
environment for developing and deploying distributed Web- and non-web-
based applications and services. Application servers typically provide Web
connectivity for extending existing solutions and bring transaction process-
ing mechanisms to the Web. An application server is a natural point for
application integration as it provides a platform for development, deploy-
ment, and management of web-based, transactional, secure, distributed, and
scalable enterprise applications. The application server middleware enables
the functions of handling business processes and transactions as well as
extending back-end business data and applications to the Web to which
it exposes them through a single interface, typically a Web browser. This
makes application servers ideal for portal-based ESB development. Unlike
integration brokers, application servers do not integrate back-end systems
directly but rather act as an integrated development and support frame-
work for integrating business processes between enterprises. An application
server expects the integration broker to function as a service provider pro-
viding data access, transformations, and content-based routing.

The adapter/component wrapper modules are responsible for providing
a layer of abstraction between the application server and the component ES.
This layer allows for ES component communications, as if the component ES
were executed within the application server environment itself. Execution
in this type of architecture occurs among component wrappers within the
application server. The component wrappers in this facilitate point integra-
tion of component systems by wrapping legacy systems and applications
and other back-end resources such as databases, ERP, CRM, and SRM, so that
they can express data and messages in the standard internal format expected
by the application server. The application server is oblivious to the fact that

196 Guide to Cloud Computing for Business and Technology Managers

these components are only the external facade of existing ESs that do the real
processing activities.

It is useful to clarify their meaning and intended purpose of wrappers.
A (component) wrapper is nothing but an abstract component that provides
a service implemented by legacy software that can be used to hide existing
system dependencies. In a nutshell, a wrapper performs specific business
functions, has a clearly defined API, and can appear as standard components
for clients and be accessed by using modern industry protocols. Wrappers
are normally deployed in modern, distributed environments, such as J2EE or
.NET. A wrapper can provide a standard interface on one side, while on the
other, it interfaces with existing application code in a way that is particular to
the existing application code. The wrapper combines the existing application
functionality that it wraps with other necessary service functionalities and
represents it in the form of a virtual component that is accessed via a stan-
dard service interface by any other service in an ESB. When a legacy busi-
ness process is wrapped, its realization comprises code to access an adapter
that invokes the legacy system. An adapter, unlike a wrapper, does not con-
tain presentation or business logic functions. It is rather a software mod-
ule interposed between two software systems in order to convert between
their different technical and programmatic representations and perceptions
of their interfaces. Resource adapters translate the applications’ messages to
and from a common set of standards—standard data formats and standard
communication protocols.

Application servers are principally J2EE based and include support for
JMS, the Java 2 Connector Architecture, and Web Services; these technolo-
gies help implement application servers in the context of the ESB. Recall
from Chapter 5, Section 5.5.2 “Java Messaging Service” that JMS is a
transport-level vendor-agnostic API for enterprise messaging that can be
used with many different MOM vendors. JMS frameworks not only func-
tion in asynchronous mode but also offer the capability of simulating a
synchronous request/response mode. For application server implementa-
tions, JMS provides access to business logic distributed among heteroge-
neous systems. Having a message-based interface enables point-to-point
and publish/subscribe mechanisms, guaranteed information delivery, and
interoperability between heterogeneous platforms.

JCA is a technology that can be used to address the hardships of integrat-
ing applications in an ESB environment. It provides a standardized method
for integrating disparate applications in J2EE application architectures. JCA
defines a set of functionality that application server vendors can use to con-
nect to back-end EISs, such as ERP, CRM, and legacy systems and applica-
tions. It provides support for resource adaptation, which maps the J2EE
security, transaction, and communication pooling to the corresponding ES
technology. When JCA is used in an ESB implementation, the ESB could
provide a JCA container that allows packaged or legacy applications to be
plugged into the ESB through JCA resource adapters. For instance, a process

197Enterprise Service Bus (ESB)

order service uses JCA to talk to a J2EE application that internally fulfills
incoming orders.

The centralized nature of the application-server-centric model of integrat-
ing applications, just like the case of integration broker solutions, can quickly
become a point of contention and introduce severe performance problems
for large-scale integration projects. The application server model of integrat-
ing applications is generally based on developing integration code. The cru-
cial difference between this model and the ESB integration model is that
an ESB solution is more about configuration than coding. However, applica-
tion servers have an important place in an enterprise architecture and are
best when used for what they were originally intended for—to provide a
component model for hosting business logic in the form of EJB and to serve
up Web pages in an enterprise portal environment. Application servers can
plug into an ESB using established conventions such as JMS and Message-
Driven Beans.

9.2.3 Business Process Management

Today, enterprises are striving to become electronically connected to their
customers, suppliers, and partners. To achieve this, they are integrating a
wide range of discrete business processes across application boundaries of
all kinds. Application boundaries may range from simple inquiries about
a customer’s order involving two applications to complex, long-lived trans-
actions for processing an insurance claim involving many applications
and human interactions and to parallel business events for advanced plan-
ning, production, and shipping of goods along the supply chain involving
many applications, human interactions, and business-to-business interac-
tions. When integrating on such a scale, enterprises need a greater latitude
of functionality to overcome multiple challenges arising from the existence
of proprietary interfaces, diverse standards, and approaches targeting the
technical, data, automated business process, process analysis, and visualiza-
tion levels. Such challenges are addressed by business process management
technology. In this section, we shall only provide a short overview of BPM
functionality in the context of ESB implementations.

BPM is the term used to describe the new technology that provides end-to-
end visibility and control over all parts of a long-lived, multistep information
request or transaction/process that spans multiple applications and human
actors in one or more enterprises. BPM also provides the ability to monitor
both the state of any single process instance and all process instances in an
aggregate, using real-time metrics that translate actual process activity into
key performance indicators. BPM is driven primarily by the common desire
to integrate supply chains, as well as internal enterprise functions, without
the need for even more custom software development. This means that the
tools must be suitable for business analysts, requiring less (or no) software
development. They reduce maintenance requirements because internally

198 Guide to Cloud Computing for Business and Technology Managers

and externally integrated environments routinely require additions and
changes to business processes.

Specialized capabilities such as BPM software solutions provide
workflow-related business processes, process analysis, and visualization
techniques in an ESB setting. In particular, BPM allows the separation of
business processes from the underlying integration code. When sophisti-
cated process definitions are called for in an ESB, a process orchestration
engine—which supports BPEL or some other process definition language
such as ebXML Business Process Specification Schema (BPSS)—may be lay-
ered onto the ESB. The process orchestration may support long-running
stateful processes. It may also support parallel execution paths, with
branching and merging of message flow execution paths based on join con-
ditions or transition conditions being met. Sophisticated process orchestra-
tion can be combined with stateless itinerary-based routing to create an
SOA that solves complex integration problems. An ESB uses the concept of
itinerary-based routing to provide a message with a list of routing instruc-
tions. In an ESB, routing instructions, which represent a business process
definition, are carried with the message as it travels through the bus across
service invocations. The remote ESB service containers determine where to
send the message next.

9.2.4 ESB Transport-Level Choices

Finally, before we close this section, it is important to understand the
transport-level protocol choices that can be used in conjunction with an ESB.
Web Services in the ESB can communicate using SOAP messages over a vari-
ety of protocols. Each protocol effectively provides a service bus connecting
multiple endpoints. Currently, the most common service bus transport layer
implementations include SOAP/HTTP(S) and SOAP/JMS.

The SOAP over HTTP service bus is the most familiar way to send
requests and responses between service requestors and providers. As
already explained in Chapter 2, Section 2.1.2 “TCP/IP Protocol”, HTTP is
a client–server model in which an HTTP client opens a connection and sends
a request message to an HTTP server. The client request message is to invoke
a Web Service. The HTTP server dispatches a response message containing
the invocation and closes the connection. The use of an ESB enables the ser-
vice requestor to communicate using HTTP and permits the service provider
to receive the request using a different transport mechanism. Many ESB
implementation providers have an HTTP service bus in addition to at least
one other protocol. Any of these protocols can be used for ESB interactions
and often are chosen based on service-level requirements.

JMS, part of the J2EE standard, provides a conventional way to create,
send, and receive enterprise messages. While it does not quite provide the
level of interoperability based on the wide adoption that the HTTP ESB can
boast, the SOAP/JMS ESB brings advantages in terms of QoS. A SOAP/JMS

199Enterprise Service Bus (ESB)

ESB can provide asynchronous and reliable messaging to a Web Service
invocation. This means that the requestor can receive acknowledgment of
assured delivery and communicate with enterprises that may not be avail-
able. A SOAP/JMS Web Service is a Web Service that implements a JMS
queue–based transport. As in the case of the SOAP/HTTP, the SOA/JMS
service bus enables service requestors and providers to communicate using
different protocols.

9.2.5 Connectivity and Translation Infrastructure

For the most part, business applications in an enterprise are not designed
to communicate with other applications. There is often an impedance mis-
match between the technologies used within internal systems and with
external trading partner systems. In order to seamlessly integrate these
disparate applications, there must be a way in which a request for infor-
mation in one format can easily be transformed into a format expected by
the called service. For instance, in Figure 9.1, the functionality of a J2EE
application needs to be exposed to non-J2EE clients such as .NET applica-
tions and other clients. In doing so, a Web Service may have to integrate
with other instances of ESs in an organization, or the J2EE application itself
may have to integrate with other ESs. In such scenarios, how the application
exchanges information with the ESB depends on the application accessibil-
ity options. There are three alternative ways an application can exchange
information with the ESB:

 1. Application-provided Web Service interface: Some applications and leg-
acy application servers have adopted the open standard philosophy
and have included a Web Service interface. WSDL defines the inter-
face to communicate directly with the application business logic.
Where possible, taking a direct approach is always preferred.

 2. Non–Web Service interface: The application does not expose business
logic via Web Services. An application-specific adapter can be sup-
plied to provide a basic intermediary between the application API
and the ESB.

 3. Service wrapper as interface to adapter: In some cases, the adapter may
not supply the correct protocol (e.g., JMS) that the ESB expects. In
this case, the adapter would be Web Service enabled.

As complementary technologies in an ESB implementation (resource),
adapters and Web Services can work together to implement complex inte-
gration scenarios. Data synchronization (in addition to translation services)
is one of the primary objectives of resource adapters. Adapters can thus
take on the role of data synchronization and translation services, whereas
Web Services will enable application functions to interact with each other.
Web Services are an ideal mechanism for implementing a universally

200 Guide to Cloud Computing for Business and Technology Managers

accessible application function (service) that may need to integrate with
other applications to fulfill its service contract. The drivers of data synchro-
nization and Web Services are also different. Web Services will generally be
initiated by a user request/event, whereas data synchronization is generally
initiated by state changes in data objects (e.g., customer, item, and order).

An event to which a Web Service reacts could be a user-initiated request
such as a purchase order or an online bill payment. User events can natu-
rally be generated by applications such as an order management application
requiring a customer status check from an accounting system. On the other
hand, a state change in a data object can be an activity like the addition of a
new customer record in the customer service application or an update to the
customer’s billing address. These state changes trigger an adapter to add the
new customer record or update the customer record in all other applications
that keep their own copies of customer data.

For the J2EE to .NET application connectivity scenario, a connectivity
service in the form of a resource adapter is required. In this implementa-
tion strategy, Web Services can become the interface between the company
and its customers, partners, and suppliers, whereas the resource adapters
become integration components tying up different ESs inside the company.
This is just one potential implementation pattern in which Web Services
and resource adapters can coexist. Another potential integration pattern in
which Web Services and resource adapters are required to collaborate is in
business process integration. Applications that use business processes will
have to expose required functionality. Obviously, Web Services are ideal for
this purpose. When the applications need to integrate with other EISs to ful-
fill their part in the business process, they will use resource adapters.

9.2.6 ESB Scalability

Scalability is a particularly important issue for any automated business inte-
gration solution. Scalability concerns in the case of ESB translate to how well
the particular ESB implementation has been designed. The use of asynchro-
nous communications, message itineraries, and message and process def-
initions allows different parts of the ESB to operate independently of one
another. This results in a decentralized model providing complete flexibil-
ity in scaling any aspect of the integration network. Such a decentralized
architecture enables independent scalability of individual services as well
as the communications infrastructure itself. For instance, parallel execution
of business operations and itinerary-based routing significantly contribute
to the highly distributed nature of the ESB, as there is no centralized rule
engine to refer back to for each step in the process.

Typical integration broker technologies handle scalability using a central-
ized hub-and-spoke model; that is, they handle changes in load and configu-
ration by increasing broker capacity or by adding brokers in a centralized
location. A centralized rule engine for the routing of messages can quickly

201Enterprise Service Bus (ESB)

become a bottleneck and also a single point of failure. In contrast, ESB allows
capacity to be added where it is most needed—at the service itself.

When the capacity of a single broker is reached, brokers can be combined
into clusters. These may act as a single virtual broker to handle increased
demand from users and applications. The ESB’s use of integration brokers
and broker clusters increases scalability by allowing brokers to communicate
and dynamically distribute load on the bus. For example, in the event that an
increase in the use of the inventory services has overloaded the capacity of
their host machine(s), new machines and new brokers can be added to handle
the load without the need to change any of the services themselves and with-
out requiring any additional development or administration changes to the
messaging system. The notion of a separately deployable, separately scalable
messaging topology combined with a separately deployable, separately scal-
able ESB service container model is what uniquely distinguishes this archi-
tectural configuration. The distributed functional pieces are able to work
together as one logical piece with a single, globally accessible namespace for
locating and invoking services.

9.3 Event-Driven Nature of ESB

In an ESB-enabled event-driven SOA, applications and services are treated
as abstract service endpoints, which can readily respond to asynchronous
events. Applications and event-driven services are tied together in an
ESB-enabled event-driven SOA in a loosely coupled fashion, which allows
them to operate independently from each other while still providing value
to a broader business function. An event source typically sends messages
through the ESB that publishes the messages to the objects that have sub-
scribed to the events. The event itself encapsulates an activity and is a com-
plete description of a specific action. To achieve its functionality, the ESB
must support both the established Web Service technologies such as SOAP,
WSDL, and BPEL, as well as emerging standards like WS-ReliableMessaging
and WS-Notification.

An SOA requires an additional fundamental technology beyond the ser-
vice aspect to realize its full potential: event-driven computing. Ultimately,
the primary objective of most SOA implementations is to automate as much
processing as necessary and to provide critical and actionable information
to human users when they are required to interact with a business process.
This requires the ESB infrastructure itself to recognize meaningful events
and respond to them appropriately. The response could be either by auto-
matically initiating new services and business processes or by notifying
users of business events of interest, putting the events into topical context
and, often, suggesting the best courses of action. In the enterprise context

202 Guide to Cloud Computing for Business and Technology Managers

business events, such as a customer order, the arrival of a shipment at a load-
ing dock, the payment of a bill, and so forth affect the normal course of a busi-
ness process and can occur in any order at any point in time. Consequently,
applications that use orchestrated processes that exchange messages need to
communicate with each other using a broad capability known as an event-
driven SOA.

An event-driven SOA is an architectural approach to distributed comput-
ing where events trigger asynchronous messages that are then sent between
independent software components that need not have any information about
each other by abstracting away from the details of underlying service con-
nectivity and protocols. An event-driven SOA provides a more lightweight,
straightforward set of technologies to build and maintain the service abstrac-
tion for client applications.

To achieve a more lightweight arrangement, an event-driven SOA requires
that two participants in an event (server and client) be decoupled. With
fully decoupled exchanges, the two participants in an event need not have
any knowledge about each other before engaging in a business transaction.
This means that there is no need for a service contract in WSDL that expli-
cates the behavior of a server to the client. The only relationship is indirect,
through the ESB, to which clients and servers are subscribed as subscribers
and publishers of events. Despite the notion of decoupling in an event-driven
SOA, recipients of events require metadata about those events. In such situ-
ations, recipients of events still have some information about those events.
For instance, the publishers of the events often organize them on the basis
of some (topical) taxonomy or, alternatively, provide details about the event,
including its size and format, which is a form of metadata. In contrast to ser-
vice interfaces, however, metadata that is associated to events is generated on
an ad hoc basis as metadata tends to come along with the event rather than
being contained in a separate service contract. In particular, ad hoc meta-
data describes published events that consumers can subscribe to, the inter-
faces that service clients and providers exhibit as well as the messages they
exchange, and even the agreed format and context of this metadata, without
falling into the formal service contracts themselves.

9.4 Key Capabilities of an ESB

In order to implement an SOA, both applications and infrastructure must
support SOA principles. Enabling an application for SOA involves the cre-
ation of service interfaces to existing or new functions, either directly or
through the use of adapters. Enabling the infrastructure, at the most basic
level, involves the provision of the capabilities to route and deliver secure
service requests to the correct service provider. However, it is also vital that

203Enterprise Service Bus (ESB)

the infrastructure supports the substitution of one service implementation
by another with no effect on the clients of that service. This requires not
only that the service interfaces be specified according to SOA principles but
also that the infrastructure allow client code to invoke services irrespective
of the service location and the communication protocol involved. Such ser-
vice routing and substitution are among the many capabilities of the ESB.
Additional capabilities can be found in the following list that describes
detailed functional requirements of an ESB. It should be noted that not all of
the capabilities described in the following are offered by current commercial
ESB systems:

 1. Dynamic connectivity capabilities: Dynamic connectivity is the ability
to connect to Web Services dynamically without using a separate
static API or proxy for each service. Most enterprise applications
today operate on a static connectivity mode, requiring some static
piece of code for each service. Dynamic service connectivity is a key
capability for a successful ESB implementation. The dynamic con-
nectivity API is the same regardless of the service implementation
protocol (Web Services, JMS, EJB/RMI, etc.).

 2. Reliable messaging capabilities: Reliable messaging can be primar-
ily used to ensure guaranteed delivery of these messages to their
destination and for handling events. This capability is crucial for
responding to clients in an asynchronous manner and for a success-
ful ESB implementation.

 3. Topic- and content-based routing capabilities: The ESB should be
equipped with routing mechanisms to facilitate not only topic-
based routing but also more sophisticated content-based routing.
Topic-based routing assumes that messages can be grouped into
fixed, topical classes so that subscribers can explicate interest in
a topic and as a consequence receive messages associated to that
topic. Content-based routing, on the other hand, allows subscrip-
tions on constraints of actual properties (attributes) of business
events. Content-based routing forwards messages to their destina-
tion based on the context or content of the service. Content-based
routing is usually implemented using techniques that can examine
the content of a message and apply a set of rules to its content to
determine which endpoints in the ESB infrastructure it may need
to be routed to next. Content-based routing logic (rules) is usually
expressed in XPath or a scripting language, such as JavaScript. For
example, if a manufacturer provides a wide variety of products to
its customers, only some of which are made in-house, depending
on the product ordered, it might be necessary to route the mes-
sage directly to an external supplier or route it internally to be
processed by a warehouse fulfillment service. Content-based ESB

204 Guide to Cloud Computing for Business and Technology Managers

capabilities could be supported by emerging standard efforts such
as WS-Notification.

 4. Transformation capabilities: A critical ability of the ESB is the ability
to route service interactions through a variety of transport proto-
cols and to transform from one protocol to another where necessary.
Another important aspect of an ESB implementation is the ability
to support service messaging models and data formats consistent
with the SOA interfaces. A major source of value in an ESB is that
it shields any individual component from any knowledge of the
implementation details of any other component. The ESB transfor-
mation services make it possible to ensure that messages and data
received by any component are in the format it expects, thereby
removing the need to make changes. The ESB plays a major role in
transforming between differing data formats and messaging mod-
els, whether between basic XML formats and Web Service messages
or between different XML formats (e.g., transforming an industry-
standard XML message to a proprietary or custom XML format).
The ESB connectivity and translation infrastructure is discussed in
Section 9.4.5 below.

 5. Service enablement capabilities: Service enablement includes the abil-
ity to access already existing resources such as legacy systems—
technically obsolete mission-critical elements of an organization’s
infrastructure—and includes them in an SOA implementation.
Tactically, legacy assets must be leveraged, service enabled, and inte-
grated with modern service technologies and applications.

 6. Endpoint discovery with multiple QoS capabilities: The ESB should
support the basic SOA need to discover, locate, and bind to ser-
vices. As many network endpoints can implement the same service
contract, the ESB should make it possible for the client to select
the best endpoint at runtime, rather than hard-coding endpoints
at build time. The ESB should therefore be capable of supporting
various QoSs and allow clients to discover the best service instance
with which to interact based on QoS properties. Such capabilities
should be controlled by declarative policies associated with the
services involved using a policy standard such as the WS-Policy
framework.

 7. Long-running process and transaction capabilities: Service orienta-
tion, as opposed to distributed object architectures such as .NET or
J2EE, more closely reflects real-world processes and relationships.
Hence, SOA represents a much more natural way to model and
build software that solves real-world business processing needs.
Accordingly, the ESB should provide the ability to support business
processes and long-running services—services that tend to run for
long duration, exchanging message (conversation) as they progress.

205Enterprise Service Bus (ESB)

Typical examples are an online reservation system, which interacts
with the user as well as various service providers (airline ticketing,
insurance claims, mortgage and credit product applications, etc.).
In addition, in order to be successful in business environments, it
is extremely important that the ESB provides certain transactional
guarantees. More specifically, the ESB needs to be able to ensure that
complex transactions are handled in a highly reliable manner, and if
failure should occur, transactions should be capable of rolling back
processing to the original, prerequest state. Long-duration transac-
tional conversations could be made possible if implemented on the
basis of messaging patterns using asynchrony, store and forward,
and itinerary-based routing techniques. It should be noted that the
base definition of an ESB as currently used by the ESB analyst and
vendor community does not mandate a long-duration transaction
manager.

 8. Security capabilities: Generically handling and enforcing security is
a key success factor for ESB implementations. The ESB needs both
to provide a security model to service consumers and to integrate
with the (potentially varied) security models of service providers.
Both point-to-point (e.g., SSL encryption) and end-to-end security
capabilities will be required. These end-to-end security capabilities
include federated authentication, which intercepts service requests
and adds the appropriate user name and credentials, validation of
each service request and authorization to make sure that the sender
has the appropriate privilege to access the service, and, lastly,
encryption/decryption of XML content at the element level for both
message requests and responses. To address these intricate security
requirements, the ESB must rely on WS-Security and other security-
related standards for Web Services that have been developed.

 9. Integration capabilities: To support SOA in a heterogeneous environ-
ment, the ESB needs to integrate with a variety of systems that do
not directly support service-style interactions. These may include
legacy systems, packaged applications, or other EAI technologies.
When assessing the integration requirements for ESB, several types
or styles of integration must be considered, for example, process ver-
sus data integration.

 10. Management and monitoring capabilities: In an SOA environment,
applications cross system (and even organizational) boundaries, they
overlap, and they can change over time. Managing these applications
is a serious challenge. Examples include dynamic load balancing,
failover when primary systems go down, and achieving topological
or geographic affinity between the client and the service instance.
Effective systems and application management in an ESB requires
a management framework that is consistent across an increasingly

206 Guide to Cloud Computing for Business and Technology Managers

heterogeneous set of participating component systems, while sup-
porting complex aggregate (cross component) management use
cases, like dynamic resource provisioning and demand-based rout-
ing, and SLA enforcement in conjunction with policy-based behav-
ior (e.g., the ability to select service providers dynamically based on
the quality of service they offer compared to the business value of
individual transactions).

An additional requirement for a successful ESB implementation
is the ability to monitor the health, capacity, and performance of
services. Monitoring is the ability to track service activities that
take place via the bus and provide visibility into various met-

rics and statistics. Of particular significance is the ability to spot prob-
lems and exceptions in the business processes and move toward
resolving them as soon as they occur. Chapter 18 examines the man-
agement and monitoring of distributed Web services based Cloudware
platforms and applications.

 11. Scalability capabilities: With a widely distributed SOA, there will be
the need to scale some of the services or the entire infrastructure
to meet integration demands. For example, transformation ser-
vices are typically very resource intensive and may require mul-
tiple instances across two or more computing nodes. At the same
time, it is necessary to create an infrastructure that can support the
large nodes present in a global service network. The loose-coupled
nature of an SOA requires that the ESB use a decentralized model to
provide a cost-effective solution that promotes flexibility in scaling
any aspect of the integration network. A decentralized architecture
enables independent scalability of individual services as well as the
communications infrastructure itself.

9.5 Leveraging Legacy Assets

There is a fundamental requirement in ESB settings to utilize functional-
ity in existing applications and repurpose it for use in new applications.
Enterprises are still burdened with older-generation operational applica-
tions that were constructed to run on various obsolescent hardware types,
programmed in obsolete languages. Such applications are known as legacy
applications.

207Enterprise Service Bus (ESB)

Legacy applications are critical assets of any modern enterprise as they
provide access to mission-critical business information and functional-
ity and thus control the majority of an organization’s business processes.
Legacy applications could implement core business tasks such as taking and
processing orders, initiating production and delivery, generating invoices,
and crediting payments, distribution, inventory management, and related
revenue-generating, cost-saving, and accounting tasks. Being able to leverage
this value in new ESB-based solutions would provide an extremely attractive
return on existing investments. Therefore, a best-of-breed ESB characteristic
is to offer connectivity for legacy applications.

It is not possible to properly integrate legacy systems into Web Service
solutions without extensive, intrusive modifications to these systems.
Modifications are needed to reshape legacy systems to provide a natural fit
with the Web Service architectural requirements and carefully retrofit busi-
ness logic so that it can be used with new applications. Therefore, legacy
applications need to be reengineered in order to reuse the core business pro-
cesses entrenched in legacy applications. The legacy system reengineering
process involves the disciplined evolution of an existing legacy system to a
new improved environment by reusing as much of it (implementation, design,
specification, requirements) as possible and by adding new capabilities.
Through reengineering, business processes become more modular and gran-
ular exposing submodules that can be reused and are represented as services.

The primary focus of legacy reengineering and transformation is enter-
prises, business processes, the EAI, and how a legacy system can contribute
to implementing the architecture without propagating the weaknesses of
past designs and development methods. In its most fundamental form, the
process of re-engineering involves three basic phases.

 1. Understanding of an existing application, resulting in one or more
logical descriptions of the application

 2. Restructuring or transformation of those logical descriptions into
new, improved logical descriptions

 3. Development of the new application based on these improved logi-
cal descriptions

The re-engineering and transformation steps in the following
have been considerably simplified. The purpose of these steps
is to facilitate the process of legacy application modernization
by modularizing legacy processes and business logic separately

from presentation logic and data management activities, and
representing them as components. These components can then be used
to create interfaces for new services, thereby service enabling legacy
applications.

208 Guide to Cloud Computing for Business and Technology Managers

These three broad phases comprise a series of six steps briefly described
in the following:

 1. Understanding existing applications: Before beginning the moderniza-
tion process, the first task is to understand the structure and archi-
tecture of the existing application’s architecture. This task includes
gathering statistics about size, complexity, the amount of dead or
unused code, and the amount of bad programming for each applica-
tion. In addition, in selecting which programs to improve together,
selecting the ones that affect common data is a critical step when
planning to move through all of the modernization stages, including
reengineering for reuse and/or migration.

 2. Rationalizing business logic: A typical legacy system is composed of
a large number of independent programs. These programs work
together in a hardwired net of business process flows. Once an appli-
cation’s program code is clean, any programming anomalies have
been removed, and nonbusiness logic has been filtered, it is possible
to apply pattern-matching techniques across all of the application’s
programs to identify and segregate candidate common business
logic.

 3. Identifying business rules: When candidate reusable business logic has
been rationalized to a subset of distinct, single occurrences of each
service, it is then possible to determine whether each should become
part of a process or express a business rule. For a definition and
examples of use of business rules, refer to Section 9.2 “Event-Driven
Nature of ESB”. To achieve this, sophisticated algorithms are used to
extract business rules from monolithic legacy systems within which
business rules exist in many different guises. The extraction of busi-
ness rules from legacy code is generally termed business rule recov-
ery. The accuracy with which this task is performed is key to legacy
application modernization.

 4. Extracting components: Extracted business rules can be grouped
together based on their contribution to achieve the intended business
functionality. A group of rules is normally processing some com-
mon set of data to achieve intended business functions. Candidate
business rules and associated business data are then extracted and
appropriately represented as a cohesive legacy component. The
number of rules that need to be grouped together is a matter of
choice, depending on the desired granularity of the legacy compo-
nent. A callable interface needs to be provided for these components.

 5. Wrapping component implementations: Legacy systems were, for the
most part, not implemented in a fashion that lends itself to componen-
tization. Presentation logic is often intertwined with business logic,
which is intertwined with systems and data access logic. During

209Enterprise Service Bus (ESB)

this step, system-level and presentation-level legacy components are
identified and separated from business-level legacy components.
In this way, candidate components are identified for wrapping.
Wrapping provides legacy functionality for new service-based solu-
tions in much shorter time than it would take to build a replacement
from scratch and recreate those dependencies. Wrapping requires
that the appropriate level of abstraction for components be deter-
mined. When it comes to wrapping and legacy componentization,
one should concentrate on identifying coarse-grained components.
Reusing a larger component saves more effort, and thus larger com-
ponents have greater value. Smaller components are more likely to
be frequently used, but their use saves less effort. This implies that
fine-grained components are less cost effective.

 6. Creating service interfaces: Component wrappers result in well-defined
boundaries of functionality and data. However, the modernized
legacy system as a whole is still tightly coupled with components
hardwired to each other via program-to-program calls. The SOA
approach to large-scale system coupling requires removing from
the individual component wrappers any direct knowledge of any
other such components. This can be accomplished by breaking up
program-to-program connectivity and replacing it with service-
enabled APIs that can be used in conjunction with event-driven and
business process orchestration mechanisms.

9.6 Summary

Reliable messaging protocols are at the heart of service-oriented com-
puting architectural approaches that serve as the enabling facilitator for
addressing the requirements of loosely coupled, standard-based, and pro-
tocol-independent distributed computing. This chapter explained how
service-oriented architectures, techniques, and technologies when combined
with those of event-based programming can offer the means to achieve the
desired levels of business integration effectively, mapping IT implementa-
tions more closely to the business processes of the enterprises. Combining
Web Service standards with an ESB infrastructure can potentially deliver the
broadest connectivity between systems. An ESB supporting Web Services
with more established application integration techniques enables an enter-
prise-wide solution that combines the best of both of these worlds.

211

10
Service Composition

Every enterprise has unique characteristics that are embedded in its busi-
ness processes. Most enterprises perform a similar set of repeatable routine
activities that may include the development of manufacturing products
and services, bringing these products and services to market and satisfy-
ing the customers who purchase them. Automated business processes can
perform such activities. We may view an automated business process as
a precisely choreographed sequence of activities systematically directed
toward performing a certain business task and bringing it to completion.
Examples of typical processes in manufacturing firms include among other
things new product development (which cuts across research and develop-
ment, marketing, and manufacturing), customer order fulfillment (which
combines sales, manufacturing, warehousing, transportation, and billing),
and financial asset management. The possibility to design, structure, mea-
sure processes, and determine their contribution to customer value makes
them an important starting point for business improvement and innovation
initiatives.

The largest possible process in an organization is the value chain. The
value chain is decomposed into a set of core business processes and support
processes necessary to produce a product or product line. These core busi-
ness processes are subdivided into activities. An activity is an element that
performs a specific function within a process. Activities can be as simple as
sending or receiving a message or as complex as coordinating the execu-
tion of other processes and activities. A business process may encompass
complex activities, some of which run on back-end systems, such as a credit
check, automated billing, a purchase order, stock updates and shipping, or
even such frivolous activities as sending a document, and filling a form.
A business process activity may invoke another business process in the
same or a different business system domain. Activities will inevitably vary
greatly from one company to another and from one business analysis effort
to another.

At runtime, a business process definition may have multiple instantia-
tions, each operating independently of the other, and each instantiation may
have multiple activities that are concurrently active. A process instance is
a defined thread of activity that is being enacted (managed) by a workflow
engine. In general, instances of a process, its current state, and the history of
its actions will be visible at runtime and expressed in terms of the business
process definition so that

212 Guide to Cloud Computing for Business and Technology Managers

• users can determine the status of business activities and business
• specialists can monitor the activity and identify potential improve-

ments to the business process definition.

10.1 Process

A process is an ordering of activities with a beginning and an end; it has
inputs (in terms of resources, materials, and information) and a specified out-
put (the results it produces). We may thus define a process as any sequence of
steps that is initiated by an event; transforms information, materials, or com-
mitments; and produces an output. A business process is typically associ-
ated with operational objectives and business relationships, for example, an
insurance claims process or an engineering development process. A process
may be wholly contained within a single organizational unit or may span
different organizations, such as in a customer–supplier relationship. Typical
examples of processes that cross organizational boundaries are purchasing
and sales processes jointly set up by buying and selling organizations, sup-
ported by EDI and value-added networks. The Internet is now a trigger for
the design of new business processes and the redesign of existing ones.

A business process is a set of logically related tasks performed to achieve
a well-defined business outcome. A (business) process view implies a hori-
zontal view of a business organization and looks at processes as sets of
interdependent activities designed and structured to produce a specific
output for a customer or a market. A business process defines the results
to be achieved, the context of the activities, the relationships between the
activities, and the interactions with other processes and resources. A busi-
ness process may receive events that alter the state of the process and the
sequence of activities. A business process may produce events for input to
other applications or processes. It may also invoke applications to perform
computational functions, and it may post assignments to human work lists
to request actions by human actors. Business processes can be measured,
and different performance measures apply, like cost, quality, time, and cus-
tomer satisfaction.

A business process has the following behavior:

• It may contain defined conditions triggering its initiation in each
new instance (e.g., the arrival of a claim) and defined outputs at its
completion.

• It may involve formal or relatively informal interactions between
participants.

• It has a duration that may vary widely.

213Service Composition

• It may contain a series of automated activities and/or manual activi-
ties. Activities may be large and complex, involving the flow of
materials, information, and business commitments.

• It exhibits a very dynamic nature, so it can respond to demands from
customers and to changing market conditions.

• It is widely distributed and customized across boundaries within
and between organizations, often spanning multiple applications
with very different technology platforms.

• It is usually long running—a single instance of a process such as
order to cash may run for months or even years.

Every business process implies processing: a series of activities (processing
steps) leading to some form of transformation of data or products for which
the process exists. Transformations may be executed manually or in an auto-
mated way. A transformation will encompass multiple processing steps.
Finally, every process delivers a product, like a mortgage or an authorized
invoice. The extent to which the end product of a process can be specified in
advance and can be standardized impacts the way that processes and their
workflows can be structured and automated.

Processes have decision points. Decisions have to be made with regard to
routing and allocation of processing capacity. In a highly predictable and
standardized environment, the trajectory in the process of a customer order
will be established in advance in a standard way. Only if the process is com-
plex and if the conditions of the process are not predictable will routing
decisions have to be made on the spot. In general, the customer orders will
be split into a category that is highly proceduralized (and thus automated)
and a category that is complex and uncertain. Here, human experts will be
needed, and manual processing is a key element of the process.

10.2 Workflow

A workflow system automates a business process, in whole or in part, dur-
ing which documents, information, or tasks are passed from one participant
to another for action, according to a set of procedural rules. Workflows are
based on document life cycles and form-based information processing, so
generally they support well-defined, static, clerical processes. They provide
transparency, since business processes are clearly articulated in the soft-
ware, and they are agile because they produce definitions that are fast to
deploy and change.

A workflow can be defined as the sequence of processing steps (execution of
business operations, tasks, and transactions), during which information and

214 Guide to Cloud Computing for Business and Technology Managers

physical objects are passed from one processing step to another. Workflow
is a concept that links together technologies and tools able to automatically
route events and tasks with programs or users.

Process-oriented workflows are used to automate processes whose struc-
ture is well defined and stable over time, which often coordinate subpro-
cesses executed by machines and which only require minor user involvement
(often only in specific cases). An order management process or a loan request
is an example of a well-defined process. Certain process-oriented workflows
may have transactional properties. The process-oriented workflow is made
up of tasks that follow routes, with checkpoints represented by business
rules, for example, pause for a credit approval. Such business process rules gov-
ern the overall processing of activities, including the routing of requests, the
assignment or distribution of requests to designated roles, the passing of
workflow data from activity to activity, and the dependencies and relation-
ships between business process activities.

A workflow involves activities, decision points, rules, routes, and roles.
These are briefly described later. Just like a process, a workflow normally
comprises a number of logical steps, each of which is known as an activity.
An activity is a set of actions that are guided by the workflow. An activity
may involve manual interaction with a user or workflow participant or might
be executed using diverse resources such as application programs or data-
bases. A work item or data set is created and is processed and changed in
stages at a number of processing or decision points to meet specific business
goals. Most workflow engines can handle very complex series of processes.

A workflow can depict various aspects of a business process including auto-
mated and manual activities, decision points and business rules, parallel and
sequential work routes, and how to manage exceptions to the normal busi-
ness process. A workflow can have logical decision points that determine which
branch of the flow a work item may take in the event of alternative paths.
Every alternate path within the flow is identified and controlled through a
bounded set of logical decision points. An instantiation of a workflow to sup-
port a work item includes all possible paths from beginning to end.

Within a workflow, business rules in each decision point determine how
workflow-related data are to be processed, routed, tracked, and controlled.
Business rules are core business policies that capture the nature of an enter-
prise’s business model and define the conditions that must be met in order
to move to the next stage of the workflow. Business rules are represented as
compact statements about an aspect of the business that can be expressed
within an application, and as such, they determine the route to be followed.
For instance, for a health-care application, business rules may include poli-
cies on how new claim validation, referral requirements, or special proce-
dure approvals are implemented. Business rules can represent among other
things typical business situations such as escalation (“send this document
to a supervisor for approval”) and managing exceptions (“this loan is more
than $50,000; send it to the MD”).

215Service Composition

Workflow technology enables developers to describe full intra- or inter-
organizational business processes with dependencies, sequencing selec-
tions, and iteration. It effectively enables the developers to describe the
complex rules for processing in a business process, such as merging,
selection based on field content, and time-based delivery of messages. To
achieve these objectives, workflows are predicated upon the notion of pre-
specified routing paths. Routes define the path taken by the set of objects
making up the workflow. The routes of a workflow may be sequential,
circular, or parallel work routes.

Routing paths can be sequential, parallel, or cyclic:

 1. Sequential routing: A segment of a process instance under enact-
ment by a workflow management system in which several activities
are executed in sequence under a single thread of execution is called
sequential routing.

 2. Parallel routing: A segment of a process instance under enactment
by a workflow management system where two or more activity
instances are executing in parallel within the workflow, giving rise
to multiple threads of control, is called parallel routing.

 3. Condition routing: A point within the workflow where a single
thread of control makes a decision as to which branch to take when
having to select between multiple alternative workflow branches is
known as condition routing.

A split point is a synchronization point within the workflow where a single
thread of control splits into two or more threads that are executed in parallel
within the workflow, allowing multiple activities to be executed simultane-
ously. A join point in the workflow is a synchronization point where two or
more parallel executing activities converge into a single common thread of
control. No split or join points occur during sequential routing. Parallel rout-
ing normally commences with an AND-Split (or split) and concludes with an
AND-Join (or join or rendezvous) point.

Workflow routing includes two more synchronization points: OR-Split
(or conditional routing) and OR-Join (or asynchronous join), which can be
employed by both sequential and parallel routing constructs. A point within
the workflow where two or more alternative activities workflow branches
reconverge to form a single common activity as the next step within the
workflow is known as asynchronous join. It must be noted that as no paral-
lel activity execution has occurred at the join point, no synchronization is
required.

Roles in a workflow define the function of the people or programs involved
in the workflow. A role is a mechanism within a workflow that associates
participants to a collection of workflow activity(ies). The role defines the con-
text in which the user participates in a particular process or activity. The role
often embraces organizational concepts such as structure and relationships,

216 Guide to Cloud Computing for Business and Technology Managers

responsibility, or authority but may also refer to other attributes such as skill,
location, value data, time, or date.

Workflow technology tends to relegate integration functions, such as syn-
chronizing data between disparate packaged and legacy applications, to
custom code within its activities—and thus outside the scope of the process
model. Moreover, it uses a tightly coupled integration style that employs low-
level APIs and that has confined workflow to local, homogeneous system
environments, such as within a department or division. Therefore, tradi-
tional workflow implementations are closely tied to the enterprise in which
they are deployed and cannot be reliably extended outside organizational
borders to customers, suppliers, and other partners. As a consequence, one
of the major limitations of WMSs is integration: they are not good at connect-
ing cross-enterprise systems together. Modern workflow technology tries to
address this deficiency by extending this functionality to cross-enterprise
process integration by employing business process management functional-
ity. They achieve this by integrating middleware, process sequencing, and
orchestration mechanisms as well as transaction processing capabilities (see
“Service Composition” later).

The definition, creation, and management of the execution of workflow
are achieved by a workflow management system running on one or more
workflow engines. A workflow management system is capable of interpret-
ing the process and activity definitions, interacting with workflow partici-
pants, and, where required, invoking the use of software-enabled tools and
applications. Most WMSs integrate with other systems used by an enter-
prise, such as document management systems, databases, e-mail systems,
office automation products, geographic information systems, and produc-
tion applications.

10.3 Business Process Management (BPM)

BPM is a commitment to expressing, understanding, representing, and man-
aging a business (or the portion of business to which it is applied) in terms of
a collection of business processes that are responsive to a business environ-
ment of internal or external events. The term management of business processes
includes process analysis, process definition and redefinition, resource allo-
cation, scheduling, measurement of process quality and efficiency, and pro-
cess optimization. Process optimization includes collection and analysis of
both real-time measures (monitoring) and strategic measures (performance
management) and their correlation as the basis for process improvement and
innovation. A BPM solution is a graphical productivity tool for modeling,
integrating, monitoring, and optimizing process flows of all sizes, crossing
any application, company boundary, or human interaction. BPM codifies

217Service Composition

value-driven processes and institutionalizes their execution within the
enterprise. This implies that BPM tools can help analyze, define, and enforce
process standardization. BPM provides a modeling tool to visually construct,
analyze, and execute cross-functional business processes.

BPM is more than process automation or traditional workflow. BPM
within the context of EAI and e-business integration provides the flexibility
necessary to automate cross-functional processes. It adds conceptual inno-
vations and technology from EAI and e-business integration and reimple-
ments it on an e-business infrastructure based on Web and XML standards.
Conventional applications provide traditional workflow features that work
well only within their local environment. However, integrated process man-
agement is then required for processes spanning organizations. Automating
cross-functional activities, such as checking or confirming inventory
between an enterprise and its distribution partners, enables corporations
to manage processes by exception based on real-time events driven from
the integrated environment. Process execution then becomes automated,
requiring human intervention only in situations where exceptions occur;
for example, inventory level has fallen below a critical threshold or manual
tasks and approvals are required.

The distinction between BPM and workflow is mainly based on
the management aspect of BPM systems: BPM tools place con-
siderable emphasis on management and business functions.
Although BPM technology covers the same space as workflow,

its focus is on the business user and provides more sophisticated man-
agement and analysis capabilities. With a BPM tool, the business user is
able to manage all the process of a certain type, for example, claim pro-
cesses, and should be able to study them from historical or current data
and produce costs or other business measurements. In addition, the
business user should also be able to analyze and compare the data or
business measurements based on the different types of claims. This
type of functionality is typically not provided by modern workflow
systems.

10.4 Business Processes via Web Services

Business processes management and workflow systems today support the
definition, execution, and monitoring of long-running processes that coor-
dinate the activities of multiple business applications. However, because
these systems are activity oriented and not communication (message) ori-
ented, they do not separate internal implementation from external protocol

218 Guide to Cloud Computing for Business and Technology Managers

description. When processes span business boundaries, loose coupling
based on precise external protocols is required because the parties involved
do not share application and workflow implementation technologies and
will not allow external control over the use of their back-end applications.
Such business interaction protocols are by necessity message centric; they
specify the flow of messages representing business actions among trad-
ing partners, without requiring any specific implementation mechanism.
With such applications, the loosely coupled, distributed nature of the Web
enables exhaustive and full orchestration, choreography, and monitoring
of the enterprise applications that expose the Web Services participating in
the message exchanges.

Web Services provide standard and interoperable means of integrating
loosely coupled web-based components that expose well-defined inter-
faces, while abstracting the implementation- and platform-specific details.
Core Web Service standards such as SOAP, WSDL, and UDDI provide a
solid foundation to accomplish this. However, these specifications primarily
enable the development of simple Web Service applications that can conduct
simple interactions. However, the ultimate goal of Web Services is to facili-
tate and automate business process collaborations both inside and outside
enterprise boundaries. Useful business applications of Web Services in EAI
and business-to-business environments require the ability to compose com-
plex and distributed Web Service integrations and the ability to describe the
relationships between the constituent low-level services. In this way, collab-
orative business processes can be realized as Web Service integrations.

A business process specifies the potential execution order of operations
originating from a logically interrelated collection of Web Services, each
of which performs a well-defined activity within the process. A business
process also specifies the shared data passed between these services, the
external partners’ roles with respect to the process, joint exception handling
conditions for the collection of Web Services, and other factors that may
influence how Web Services or organizations participate in a process. This
would enable long-running transactions between Web Services in order to
increase the consistency and reliability of business processes that are com-
posed out of these Web Services.

The orchestration and choreography of Web Services is enabled under three
specification standards, namely, the Business Process Execution Language
for Web Services (BPEL4WS or BPEL for short), WS-Coordination (WS-C),
and WS-Transaction (WS-T). These three specifications work together to form
the bedrock for reliably choreographing Web Service-based applications,
providing BPM, transactional integrity, and generic coordination facilities.
BPEL is a workflow-like definition language that describes sophisticated
business processes that can orchestrate Web Services. WS-Coordination and
WS-Transaction complement BPEL to provide mechanisms for defining spe-
cific standard protocols for use by transaction processing systems, workflow
systems, or other applications that wish to coordinate multiple Web Services.

219Service Composition

The next section describes briefly the problem of service composition before
moving on to an overview of BPEL.

10.4.1 Service Composition

The platform-neutral nature of services creates the opportunity for building
composite services by combining existing elementary or complex services
(the component services) from different enterprises and in turn offering them
as high-level services or processes. Composite services (and, thus, processes)
integrate multiple services—and put together new business functions—by
combining new and existing application assets in a logical flow.

The definition of composite services requires coordinating the flow of con-
trol and data between the constituent services. Business logic can be seen as
the ingredient that sequences, coordinates, and manages interactions among
Web Services. By programming a complex cross-enterprise workflow task or
business transaction, it is possible to logically chain discrete Web Services
activities into cross-enterprise business processes. This is enabled through
orchestration and choreography (because Web Services technologies sup-
port coordination and offer an asynchronous and message-oriented way to
communicate and interact with application logic).

10.4.1.1 Orchestration

Orchestration describes how Web Services can interact with each other at the
message level, including the business logic and execution order of the inter-
actions from the perspective and under control of a single endpoint. This is,
for instance, the case of the process flow where the business process flow is
seen from the vantage point of a single supplier. Orchestration refers to an
executable business process that may result in a long-lived, transactional,
multistep process model. With orchestration, business process interactions
are always controlled from the (private) perspective of one of the business
parties involved in the process.

10.4.1.2 Choreography

Choreography is typically associated with the public (globally visible) mes-
sage exchanges, rules of interaction, and agreements that occur between
multiple business process endpoints, rather than a specific business pro-
cess that is executed by a single party. Choreography tracks the sequence
of messages that may involve multiple parties and multiple sources, includ-
ing customers, suppliers, and partners, where each party involved in the
process describes the part it plays in the interaction and no party owns the
conversation. Choreography is more collaborative in nature than orchestra-
tion. It is described from the perspectives of all parties (common view) and,
in essence, defines the shared state of the interactions between business

220 Guide to Cloud Computing for Business and Technology Managers

entities. This common view can be used to determine specific deployment
implementations for each individual entity. Choreography offers a means by
which the rules of participation for collaboration can be clearly defined and
agreed to, jointly. Each entity may then implement its portion of the choreog-
raphy as determined by their common view.

10.5 Business Process Execution Language (BPEL)

The development of the BPEL language was guided by the requirement to
support service composition models that provide flexible integration, recur-
sive composition, separation of composability of concerns, stateful conversa-
tion and life-cycle management, and recoverability properties. BPEL has now
emerged as the standard to define and manage business process activities
and business interaction protocols comprising collaborating Web Services.
This is an XML-based flow language for the formal specification of busi-
ness processes and business interaction protocols. By doing so, it extends
the Web Service interaction model and enables it to support complex busi-
ness processes and transactions. Enterprises can describe complex processes
that include multiple organizations—such as order processing, lead man-
agement, and claims handling—and execute the same business processes in
systems from other vendors.

BPEL as a service composition (orchestration) language provides several
features to facilitate the modeling and execution of business processes based
on Web Services. These features include

 1. Modeling business process collaboration (through <partnerLink>s)
 2. Modeling the execution control of business processes (through the

use of a self-contained block and transition-structured language
that support the representation of directed graphs)

 3. Separation of abstract definition from concrete binding (static and
dynamic selection of partner services via endpoint references)

 4. Representation of participants’ roles and role relationships (through
<partnerLinkType>s)

 5. Compensation support (through fault handlers and compensation)
 6. Service composability (structured activities can be nested and com-

bined arbitrarily)
 7. Context support (through the <scope>mechanism)
 8. Spawning off and synchronizing processes (through <pick> and

<receive> activities)
 9. Event handling (through the use of event handlers)

221Service Composition

BPEL can also be extended to provide other important composition language
properties such as support for Web Service policies and security and reli-
able messaging requirements. In this section, we summarize the most salient
BPEL features and constructs.

10.5.1 Background of WSDL

BPEL’s composition model makes extensive use of Web Services Description
Language, WSDL. It is therefore necessary to provide an overview of WSDL
before going into the details of BPEL itself. A WSDL description consists of
two parts: an abstract part defining the offered functionality and a concrete
part defining how and where this functionality may be accessed. By sepa-
rating the abstract from the concrete, WSDL enables an abstract component
to be implemented by multiple code artifacts and deployed using different
communication protocols and programming models.

The abstract part of a WSDL definition consists of one or more interfaces,
called portTypes in WSDL. PortTypes specify the operations provided by
the service and their input and/or output message structures. Each mes-
sage consists of a set of parts; the types of these parts are usually defined
using XML schema. The concrete part of a WSDL definition consists of
three parts. It binds the portType to available transport protocol and data
encoding formats in a set of one or more bindings. It provides the location
of endpoints that offer the functionality specified in a portType over an
available binding in one or more ports. Finally, it provides a collection of
ports as services.

10.5.2 BPEL4WS

BPEL4WS is a workflow-based composition language geared toward
service-oriented computing and layered as part of the Web Service technol-
ogy stack. BPEL composes services by defining control semantics around
a set of interactions with the services being composed. The composition
is recursive; a BPEL process itself is naturally exposed as a Web Service,
with incoming messages and their optional replies mapped to calls to
WSDL operations offered by the process. Offering processes as services
enables interwork flow interaction, higher levels of reuse, and additional
scalability.

Processes in BPEL are defined using only the abstract definitions of the
composed services, that is, the abstract part (portType/operations/messages)
of their WSDL definitions. The binding to actual physical endpoints and the
mapping of data to the representation required by these endpoints is inten-
tionally left out of the process definition, allowing the choice to be made at
deployment time, at design time, or during execution. Added to the use of
open XML specifications and standards, this enables two main goals: flex-
ibility of integration and portability of processes.

222 Guide to Cloud Computing for Business and Technology Managers

The BPEL language is designed to specify both business proto-
cols and executable processes. A business protocol, called an
abstract process in BPEL, specifies the flow of interactions that a
service may have with other services. For example, one may

accompany a WSDL description with an abstract BPEL process to
inform parties using it in what order and in what situations operations
in the WSDL should be called (e.g., a call to a “request for quote” opera-
tion must precede a call to a “place order” operation). An executable
process is similar to an abstract process, except that it has a slightly
expanded BPEL vocabulary and includes information that enables the
process to be interpreted, such as fully specifying the handling of data
values, and including interactions with private services that one does
not want to expose in the business protocol. For example, when an
order is placed, the executable BPEL process might have to invoke a
number of internal applications wrapped as services (e.g., applications
related to invoicing, customer relationship management, stock control,
and logistics), but these calls should not be visible to the customer and
would be omitted from the abstract process the customer sees. In the
executable variant, the process can be seen as the implementation of a
Web Service. Most work in BPEL has been focused on the executable
variant of the language.

10.5.3 BPEL Process Model

BPEL has its roots in both graph- and calculus-based process models, giv-
ing designers the flexibility to use either or both graph primitives (nodes
and links) and complex control constructs creating implicit control flow. The
two process modeling approaches are integrated through BPEL’s exception
handling mechanism. The composition of services results from the use of
predefined interaction activities that can invoke operations on these services
and handle invocations to operations exposed by the process itself. The unit
of composition in BPEL is the activity. Activities are combined through nest-
ing in complex activities with control semantics and/or through the use of
conditional links. In contrast to traditional workflow systems in which data-
flow is explicitly defined using data links, BPEL gives activities the read/
write access to shared, scoped variables. In addition to the main forward
flow, BPEL contains fault handling and rollback capabilities, event handling,
and life-cycle management.

The role of BPEL is to define a new Web Service by composing a set of
existing services through a process-integration-type mechanism with con-
trol language constructs. The entry points correspond to external WSDL cli-
ents invoking either input-only (request) or input/output (request–response)

223Service Composition

operations on the interface of the composite BPEL service. BPEL provides a
mechanism for creating implementation- and platform-independent compo-
sitions of services woven strictly from the abstract interfaces provided in the
WSDL definitions. The definition of a BPEL business process also follows the
WSDL convention of strict separation between the abstract service interface
and service implementation. In particular, a BPEL process represents parties
and interactions between these parties in terms of abstract WSDL interfaces
(by means of <portType>s and <operation>s), while no references are made
to the actual services (binding and address information) used by a process
instance. Both the interacting process and its counterparts are modeled in
the form of WSDL services. Actual implementations of the services them-
selves may be dynamically bound to the partners of a BPEL composition,
without affecting the composition’s definition. Business processes specified
in BPEL are fully executable portable scripts that can be interpreted by busi-
ness process engines in BPEL conformant environments.

BPEL distinguishes five main sections:

 1. The message flow section of BPEL is handled by basic activities that
include invoking an operation on some Web Service, waiting for a
process operation to be invoked by some external client, and gener-
ating the response of an input/output operation.

 2. The control flow section of BPEL is a hybrid model principally based
on block-structured definitions with the ability to define selective
state transition control flow definitions for synchronization purposes.

 3. The dataflow section of BPEL comprises variables that provide the
means for holding messages that constitute the state of a business
process. The messages held are often those that have been received
from partners or are to be sent to partners. Variables can also hold
data that are needed for holding state related to the process and
never exchanged with partners. Variables are scoped, and the name
of a variable should be unique within its own scope.

 4. The process orchestration section of BPEL uses partner links to
establish peer-to-peer partner relationships.

 5. The fault and exception handling section of BPEL deals with errors
that might occur when services are being invoked with handling
compensations of units of work and dealing with exceptions during
the course of a BPEL computation.

BPEL consists of the following basic activities:

receive: The receive activity initiates a new process when used at its
start or does a blocking wait for a matching message to arrive when
used during a process.

224 Guide to Cloud Computing for Business and Technology Managers

reply: The reply activity sends a message in reply.
invoke: The invoke activity calls a Web Service operation of a partner

service. This can either be a one-way or a request–response call.
One way means that the called service will not send a response,
whereas request–response blocks the process until a response is
received.

assign: The assign activity updates the values of variables or partner
links with new data.

validate: The validate activity checks the correctness of XML data stored
in variables.

wait: The wait activity pauses the process, either for a given time period
or until a certain point in time has passed.

empty: The empty activity is a no-op instruction for a business process.

Another element of the WS-BPEL language is a variable. BPEL supports both
global (i.e., process level) and local (i.e., scope level) variables. BPEL variables
may be typed using an XML schema (XSD) type or element or a WSDL mes-
sage. For initializing or assigning variables, BPEL provides the assign activ-
ity. Each assign consists of one or more copy statements. In each copy, the
from element specifies the assignment source for data elements or partner
links, and the to element specifies the assignment target.

Additionally, there are basic activities that deal with fault situations:

throw: The throw activity generates a fault from inside the business
process.

rethrow: The rethrow activity propagates a fault from inside a fault han-
dler to an enclosing scope, where the process itself is the outermost
scope.

compensate: The compensate activity invokes compensation on all com-
pleted child scopes in default order.

compensateScope: The compensateScope activity invokes compensation
on one particular (completed) child scope.

exit: The exit activity immediately terminates the execution of a busi-
ness process instance.

Furthermore, WS-BPEL offers structured activities. Structured activities can
have other activities as children; that is, they represent container activities.
WS-BPEL consists of the following structured activities:

flow: The activities contained in a flow are executed in parallel, partially
ordered through control links. A flow activity represents a directed
graph. Note that cyclic control links are not allowed.

225Service Composition

sequence: The activities contained in a sequence are performed sequen-
tially in lexical order.

if: The if activity represents a choice between multiple branches.
However, exactly one branch is selected.

while: The contained activity of a while loop is executed as long as a
specified predicate evaluates to true.

repeatUntil: The contained activity of a repeatUntil loop is executed
until a specified predicate evaluates to true.

forEach: The activity contained in a forEach loop is performed sequen-
tially or in parallel, controlled by a specified counter variable. This
loop can be terminated prematurely by means of a completion
condition.

pick: The pick activity blocks and waits either for a suitable message to
arrive or for a time out, whichever occurs first.

scope: A container that associates its contained activity with its own
local elements, such as variables, partner links, correlation sets, and
handlers (please see the following).

To handle exceptional situations, WS-BPEL offers four different handlers:

 1. catch and catchAll: Fault handlers for dealing with fault situations in a
process. A fault handler can be compared to the catchpart of a try{}…
catch{}-block in programming languages like Java.

 2. onEvent and onAlarm: Event handlers for processing unsolicited
inbound messages or timer alarms concurrently to the regular con-
trol flow.

 3. compensationHandler: A compensation handler undoes the persisted
effects of a successfully completed scope.

 4. terminationHandler: A termination handler can be used for custom-
izing a forced scope termination, for example, caused by an external
fault.

In addition to concepts introduced already, there are three more concepts
for communication: partner links, correlation sets, and (variable) properties:

 1. PartnerLinks describe the relationship between a process and its ser-
vices. A partner link points to a Web Service interface the process
provides via a myRole attribute. Consequently, a partnerRole attri-
bute points to the Web Service interface that is required from the
partner. A partner link can only have one myRole attribute (inbound
partner), only one partnerRole attribute (outbound partner), and
both attributes (bidirectional partner).

226 Guide to Cloud Computing for Business and Technology Managers

 2. CorrelationSets are of help in identifying (stateful) process instances.
Each process instance will get one or more unique keys based on
business data, which are used to correlate a process instance with
an incoming message. A correlation set consists of one or more
properties.

 3. A property is business data that creates a name that has a semantic
meaning beyond an associated XML type, for example, a social secu-
rity number versus a plain XML schema integer type. Therefore,
properties help to isolate the process logic from the details of a vari-
able definition. Such typed properties are then mapped (aliased) to
the parts of a WSDL message or an XSD element.

Business Process Modeling Notation (BPMN): BPMN is a nota-
tion used to graphically depict business processes. The language
provides users the capability to capture their internal business
procedures in a graphical notation. In other words, BPMN is a

graph-oriented visual language that allows to model business pro-
cesses in a flowchart-like fashion. Such a standardized graphical nota-
tion for business processes allows to explain and exchange processes in
a standard manner and to better understand collaborations and busi-
ness transactions between organizations. Basically, the BPMN lan-
guage consists of four core elements:

 1. Flow objects are the nodes of the BPMN graph. There are three
kinds of flow objects: activities, events, and gateways.

 2. Connecting objects are the edges of a BPMN graph. BPMN
allows three different kinds of connecting objects: sequence
flow, message flow, and association.

 3. Swimlanes are used to group other modeling elements in two
distinct ways: a pool represents a process. It can be divided
up into multiple lanes, where each lane is a subpartition of
that process and is used to organize and categorize activities
(e.g., activities that are performed by the same department are
grouped in the same lane).

 4. Artifacts. As an example, a data object is an artifact that rep-
resents the data that an activity requires before it can be per-
formed or that an activity produced after it has been performed.
For the sake of completeness, there are two more artifacts men-
tioned in the BPMN standard, text annotation and group.

227Service Composition

10.6 Summary

This chapter described the characteristics and features of process, workflow,
and business process management systems. It explains how business pro-
cesses can be realized and composed using Web Services. It gives an over-
view of the Business Process Execution (BPEL) and how processes can be
described using BPEL.

229

11
Application Service Providers (ASPs)

Applications are evolving from those that facilitated a single business func-
tion (e.g., accounting and payroll) to integrated application environments
that facilitate business processes spanning entire enterprises or the extended
enterprises. This evolution entails more people, planning, and ongoing man-
agement, especially for mission-critical applications that must maintain a
high level of availability. With such increasing complexity and the increased
amount of time and skill needed to keep up with the rapidly changing tech-
nology cycles, organizations are increasingly seeking outside assistance to
deploy, manage, and enhance their applications.

Application Outsourcing (AO) is a service wherein responsibility for the
deployment, management, and enhancement of a packaged or customized
software application is handed out contractually to an external service pro-
vider. AO entails specific activities and expertise aimed at managing the soft-
ware application or set of applications. Contractual service-level agreements
(SLAs) are set at the application level and include responsibilities for

• Application availability
• Application performance
• Application enhancement

Figure 11.1 presents the positioning of the various types of application out-
sourcers based on the type of application being outsourced (proprietary vs.
packaged) and the configuration/location of the service provision (one to
one or one to many).

The salient characteristics of the various categories are as follows:

 1. Top-left quadrant—represents data center service providers that pro-
vide application-hosting services and support to other divisions and
are typically managed internally by the enterprises.

 2. Bottom-left quadrant—represents the application maintenance service
providers that provide hosting, maintenance, and support of custom-
developed application at the enterprises’ site(s).

 3. Top-right quadrant—represents the application service providers
that provide operations and maintenance of both packaged and
custom-developed application to disparate enterprises using the
same outsourcing infrastructure (hardware, software, networks,

230 Guide to Cloud Computing for Business and Technology Managers

operational staff, etc.). We will describe this category in Section 11.6
“Oracle Siebel On Demand.”

 4. Bottom-right quadrant—represents the private application service pro-
viders that provide operations and maintenance especially of custom
applications to an ecosystem of enterprises involved in a particu-
lar area of business. We will describe this category in Section 11.7
“Private ASPs”.

The top reasons cited by enterprises for resorting to outsourcing are as
follows:

• Free internal resources for more strategic projects
• Offload functions that are difficult to manage
• Receiving cash infusion from transfer of assets to outsourcers
• Replacing capital expenditure with pay-as-you-use operational

expenses
• Gaining access to world-class IT expertise
• Reducing costs for research, development, and successful deployment
• Reducing investment risk in a rapidly changing environment
• Obtaining additional manpower on an as-and-when-needed basis

Data
center
service
provider

Application
maintenance
service
provider

Application
service
provider

Private
application
service
provider

Configuration of service provision

One to one

Proprietary

Ty
pe

 o
f o

ut
so

ur
ce

d
ap

pl
ic

at
io

n

Packaged

One to many

FIGURE 11.1
Types of application outsourcers.

231Application Service Providers (ASPs)

In the simplest case, the application is merely hosted for the customer.
AO typically does not include responsibility for the underlying business
processes or functions; a more comprehensive engagement like Business
Processing Outsourcing (BPO) may include operations assessment, pro-
cess improvement, and change management services. When standard
applications are being outsourced, the level of staff and asset transfer to
this facility may be minimal and the application itself may be provided
via a license or lease agreement included in the overall service agreement.
On the other hand, for more customized applications, the contract may
include the transfer of people and assets associated with the outsourced
application.

11.1 Enterprise Application Service Providers (ASPs)

The basic idea behind the Application Service Provider (ASP) computing
model is that a provider hosts and manages applications that users can access
over networks like the Internet. This is the final step toward software mani-
festing as a service. The market is evolving toward a state where companies
will pay for the software as services on a usage basis, as they do tradition-
ally with utility services like electricity and gas. This market was pioneered
in 1998 by start-ups such as Breakaway Solutions, USinternetworking, and
Corio. The ASP model typically involves lease-to-own options on software. It
entails renting access at a low rate to the functionality of ERPs, CRMs, SCMs,
etc., over the Internet. In contrast, traditional outsourcing requires upfront
purchase of software licenses and often charges large fees for contracted
services. Recently, however, many ASPs are also experimenting with other
pricing models that involve charges for initial customization, migration, and
integration, plus a flat monthly fee depending on the use of functionality
and services, or even a percentage of the customer’s revenue. The ASP ser-
vices could range from infrastructure, colocation, cohosting, dedicated host-
ing right to even hosted businesses such as hosted buying services or hosted
customer relationship management services.

The level of the packaged application could vary from discrete applications
(like web-based transaction application for conducting a commerce-based
transaction) to environment applications (like ERP and CRM). The level of
service provided by an ASP can range from simple hosting of application(s)
to managing the application environment. Hosting is a standardized service
that is based on a high-volume and low-cost business model in which appli-
cations are hosted at a site and accessed remotely. Managing an application
environment goes beyond simple hosting and may include upfront consult-
ing, customization, and extensions of the application and ongoing applica-
tion technical support.

232 Guide to Cloud Computing for Business and Technology Managers

11.2 Fundamentals of ASP

International Data Corp. (IDC) describes an ASP scenario as “an end user
accesses an application resident on a server, just as he or she would on a
LAN or in the enterprise data center. However, the server resides at the ASP’s
third-party data center and is reached via a dedicated line or the Internet (or
extranet). The applications can range from low-end, productivity programs
(e.g., word processing) to high-end ERP modules. The service is provided
on a subscription basis and can bundle a full range of hosted application
services.”

Compare the process of leasing a car. Not much upfront money is
required, consumers get something they might not be able to buy outright,
they pay for it monthly, and, at the end of the lease, they decide what to
do with the car. By just licensing a few seats from an ASP, organizations
get a full-functioning application that might be something more powerful
and sophisticated than they could buy outright. They have access to the
application without having to pay for hardware, software, or installation.
Organizations can realize financial cost savings, reduce capital investments,
and lower IT management requirements. Such an option also allows organi-
zations to focus on their core businesses and react quickly to changes in the
marketplace—both opportunities and threats.

In traditional outsourcing arrangements, the entire business process is
handed off to the outsourcing company—operations, the legacy application
itself, the infrastructure it was built on, and some of the internal IT staff to
support it. Today, every level of the IT infrastructure (network, data, messag-
ing and system management) can be selectively outsourced. With the ASP
model, the software and its required infrastructure (including support) are
provided by the application service provider, but the actual business process
operations are still handled by the organization. If an insurance company
outsources its claims processing, the outsourcer receives the claims and pro-
cesses the claims on its hardware using its software and its staff. With the ASP
model, the insurance company’s staff receives the claims and processes the
claims on the ASP’s hardware using the ASP’s software and infrastructure.

An ASP service is not the time-sharing of the 1960s or the outsourcing of
the 1980s. The ASP model is much more than the rental of a slice of time.
The model allows an organization to decide the location of the computing
capability based on economic and financial grounds. It provides an option
for sharing information and conducting transactions. The ASP model uses
client–server architecture and relies on secure, cost-effective data communi-
cations. The IT staff does not need to have expertise in the application or the
infrastructure that is being handled by the ASP. ASPs can be used to fill gaps
in an application portfolio. So the focus is on saving time as well as cost, and
time and cost are two major variables of any IT project.

233Application Service Providers (ASPs)

Packaged software developers can use the ASP model to convert the
infrequent buyer into a steady revenue stream customer. Usually, a cus-
tomer buys the latest version of a software product and then elects not to
upgrade for two or three generations. Under the ASP model, an ASP cus-
tomer is provided with the latest version of a software package and pays
a monthly fee to use that software, thereby generating a steady stream
of revenue for the software package developer. The software vendor
upgrades only the master copies on licensed ASP servers. The software
vendor is not required to maintain old code or support multiple versions
of a product. If customers do not like the upgrade, they cannot go back to
a prior version.

Customers of ASPs usually pay a flat fee to sign up and from then on a
monthly fee. For that monthly fee, the customer gets all upgrades automat-
ically as soon as they are released—all the new drivers, the new features
and everything. However, because the ASP is monitoring the customer’s
payments, if the customer stops paying, it no longer gets the use of the
software.

11.3 ASP Business Model

ASP provides access to and management of an application. An ASP owns
the software or has a contractual agreement with the software vendor to
license it. Customers gain access to the environment without making invest-
ments in application license fees, hardware, and staff. The application is
managed from a central location (the ASP site) rather than the customer’s
sites. Customers access the application via the Internet or leased lines. The
ASP is responsible for delivering on the customer’s contract regardless of
its structure—sole provider or partnered. If a problem arises, the ASP is
responsible for resolving the issue. Service guarantees usually address avail-
ability, security, networked storage, and management and are spelled out in
service-level agreements (SLAs). ASPs enforce these guarantees by closely
monitoring the server environments and often add proprietary modifica-
tions to ensure performance uptime and security.

An ASP provides the application service as its primary business. The ser-
vice may be delivered from beginning to end by a single vendor or via part-
nerships among several vendors. A single-source vendor controls everything
from implementation to ongoing operations and maintenance of the applica-
tion. The customer deals with only one vendor, and that vendor has complete
control over the process. Under this model, the vendor must have expertise
in a variety of areas, maintain a data center infrastructure, and have high
capital requirements.

234 Guide to Cloud Computing for Business and Technology Managers

11.3.1 Service Level Agreements (SLAs)

SLAs spell out the customer’s expectations for service, which might range
from expected response times to minimum bandwidth. Some ASPs include
guarantees such as 99.9% uptime and disaster recovery. ASPs will add secu-
rity to an already secure platform (e.g., Windows NT/2000 or .Net) to guar-
antee security levels.

An SLA details the day-to-day expected service. There should be means
to award exceeded minimum requirements that can be offset against days
that failed to meet expectations. The SLA might also include provisions for
days when the ASP’s servers are offline for maintenance. An SLA should also
include a clause that allows the customer to terminate the contract without
penalty if it receives poor service. A customer should also make sure that it
can get out of the deal with whatever it needs to bring a new ASP on board—
data, customized software, and the like. Customers should keep the contract
term as short as possible—no more than 3 years. It is difficult to know what
hosting will look like in 5 years. Make sure that the performance penalties
truly motivate the ASP to address the organization’s issues (remember, the
ASP has other customers) and that penalties escalate each time the prob-
lem occurs. Establish metrics that truly measure growth. Choose two simple
ones and agree on a firm price for the service as usage grows. Furthermore,
customers should not try to trade reduced service for lower monthly fees.
The only way for an ASP to lower the organization’s costs is to cut service
levels. The quality of the service is key to the customer’s successful use of,
and, therefore the benefit derived from, the ASP.

11.4 ASP Value Drivers

Factors driving the ASP solutions are as follows:

 1. Enabling technologies
 a. Pervasiveness of the Internet
 b. Access and declining cost of bandwidth capacity
 c. Shared applications in a client–server environment
 d. Browsers as an accepted GUI application
 e. Potential of e-commerce and e-business solutions
 2. Technical drivers
 a. Utilization of emerging technologies and best-of-breed

applications
 b. Accelerated application development

235Application Service Providers (ASPs)

 c. Rapidly changing and increasing complexity of technology
 d. Obtaining business domain, functional and vertical industry

expertise
 e. Shortage skilled IT labor
 f. Transfer of risk regarding application ownership by the super

users
 3. Business drivers
 a. Reduction in total cost of ownership (TCO) by at least 30–50%
 b. Predictability of cash flows by eliminating the uncertainties of

post-implementation software-related expenditures
 c. Focus on core competencies and strategic objectives
 d. Improvement in the efficiency of internal IT staff by freeing them

to focus on processes and systems to leverage core competencies
 e. Improvement in coordination efforts on a global basis

However, merely hosting and managing an application is not adequate and
needs to be augmented for the creation of proprietary and sustainable cus-
tomer relationships with value-added variations like

• Domain expertise emphasis
• Vertical industry emphasis
• Vertical exchange emphasis
• Infrastructure emphasis
• Security infrastructure emphasis
• Full-service provider emphasis
• Aggregator emphasis

11.5 ASP Benefits, Risks, and Challenges

Application Service Providers (ASPs) present a real opportunity to replace
the in-house IT department. Smaller companies also need the full func-
tionality of high-end applications such as ERP, SCM, or CRM that cannot
be afforded by them. ASPs meet the needs of MME companies that cannot
afford the substantial upfront investments in establishing the infrastruc-
ture, knowledgeable and experienced staff, ongoing administration and
monitoring services, better backup and recovery methods, and so forth.
The top reasons that are cited by companies for renting applications are
guaranteed performance levels, high availability, and responsive service

236 Guide to Cloud Computing for Business and Technology Managers

and support. The cost of ownership of hosted applications can be 25%
cheaper than managing the applications internally. Other criteria for com-
panies to contract ASPs are lower upfront costs, faster implementations,
higher redundancy, larger scalability of hardware and bandwidth, auto-
matic upgrades, quicker distribution and deployment, and data storage,
backup, and recovery capabilities.

ASP services that include application-hosting services enable custom-
ers to evaluate, implement, and operate enterprise applications online.
This enables companies to perform detailed evaluations and prototype
company-specific solutions via the Internet prior to deciding to purchase
or actually purchasing the ERP, CRM, or SCM product. Customers also
have the facility to implement and continue using applications functional-
ity via the Web browser.

Using application service providers (ASPs) has many advantages, such as

• Enabling a company to concentrate on enhancing the competitive-
ness of its core functions

• Enabling a company to outsource the enhancing competitiveness of
its noncore but still-critical functions like implementing call center
operations

• Reengineering critical but noncore functions and processes quickly
• Comprehensive industry-specific and company-specific evaluations
• Rapid prototyping of company-specific implementations
• Lower upfront investments in hardware and software, technical

manpower resources, and training
• Reduced risks of initial erroneous decisions in pricing, reliability,

scalability, bandwidth, and security
• Flexibility of options like hosting, cohosting, and colocation
• Time to implement at a lower cost
• Time to go live at a lower cost
• Time to benefit at a lower cost
• Time to full ownership at a lower cost
• Time to deploy at other sites at a lower cost
• Higher service-level guarantees
• Better customer service
• Reduced administration, management, maintenance, and support

costs

ASPs need to gain customer acceptance as well as IT acceptance. The
selling focus is usually on business management—pitching a business

237Application Service Providers (ASPs)

solution or business service. The focus is on the value added. The IT orga-
nization often comes into the discussions to address security and network
issues. IT needs to view the ASP as an alternative, not an interloper. IT
needs to become advisors, not turf protectors. Potential customers must
be convinced that their application and its data will be available to them
24 × 7 but yet secure from outsiders. As Internet traffic continues to grow,
potential customers must also be convinced that their access will not
slow down. As mobile use escalates, ASPs need to deal with the needs of
employees out of the office and the security requirements mobile access
demands.

Some of the challenges faced by the ASP concept are

• Security of information
• Scope and flexibility of services
• Overall quality of service and support
• Adaptability of software

11.6 Oracle SAP CRM On Demand

Oracle SAP CRM On Demand provides organizations with all the compre-
hensive SAP CRM capabilities along with the power of SAP’s software devel-
opment, infrastructure management, and operational services to maximize
the business value of their software investment. Delivered to users over the
Internet, SAP CRM On Demand frees IT organizations from day-to-day
maintenance, upgrades, and software management while providing unparal-
leled levels of availability, reliability, and security. This results in a far more
efficient and cost-effective approach to managing CRM and SAP CRM tech-
nology over the long term.

SAP CRM On Demand achieves operational excellence and low total cost
of ownership (TCO) using standardization and automation as key enablers
to improve customers’ experience across the entire software ownership life
cycle, including in the core service areas like

• Infrastructure management
• Service-level management
• Security management
• Software management
• IT governance

238 Guide to Cloud Computing for Business and Technology Managers

11.7 Private ASPs

It has been well established that the largest cost component in an applica-
tion’s life cycle is the effort expended on maintenance and upgrades, and
this is valid even in cases of packaged software implementations by reason
of the customizations that are indispensable. The key idea underlying the
private ASP is that the high cost of maintenance and upgrades (and operations)
is spread across the boundary of the enterprise to include the associated ecosystem
of at least the exclusive suppliers. The viability of this business model can
be illustrated from the fact that the customization requirements for imple-
menting enterprise systems (ERP, SCM, CRM, etc.) at General Motors’s
partner/subsidiary Delphi Electronics are going to be similar to or will be
heavily influenced by the customization requirements of General Motors
itself. From there, it is not very difficult to see that there will be major
advantage in combining the implementation projects and teams, training
programs, testing centers, rollout projects, IT centers, disaster recovery
centers, and so on.

We will describe this concept by taking Ford as the hypothetical exam-
ple. A private ASP is an extended ASP service, managed and operated by a
major player like Ford for itself and its partners—both customers and ven-
dors. All customization and upgrade issues are dictated mainly by Ford,
unlike in the case of a traditional ASP where they may have to customize
for each customer independently, which basically makes the traditional ASP
model unviable.

Private ASP SCM CRM like SAP Net Markets on ASP basis for= + +()
FFord and its participating partners

None of the partners need to be compelled to join the private
ASP. Ford, however, must mandate that such partners need to
integrate and be compatible with its private ASP at their own
cost. Licensing issues are simplified in that all software licenses

are owned via the private ASP instituted jointly by Ford and/or its
partners.

The composite value proposition for Ford and its partners involves
the following:

 1. Easy to add/integrate new vendor partner.
 2. Value proposition of a NetMarket—Ford can service an

enlarged base of vendors for more competitive bidding but
within the class of these preferred partners/vendors.

239Application Service Providers (ASPs)

 3. Value proposition of an ASP for reduced application manage-
ment, operations, and maintenance costs.

 4. Value proposition of implementation, management, and main-
tenance of (say) a CRM for individual partners who do not have
a CRM that is also the same CRM as used by Ford (at much
reduced cost than outside of the private ASP).

 5. Value proposition of an EAI provider, especially for inte-
grating internal and proprietary applications of Ford and its
individual partners (at much reduced cost than outside of the
private ASP).

 6. Value proposition of profitable IT services via the private ASP
for Ford and/or its partners.

 7. Value proposition of an outsourcing service in terms of assets,
manpower, support, training, etc.

 8. Value proposition of SCM implementation, operations, and
management for itself and its partners—this would be of great
benefit in the long term.

11.7.1 What Does a Private ASP Offer?

A private ASP offers the following;

• It provides application services to a restricted business ecosystem of
Ford and its participating partners.

• It provides individual enterprise-oriented services for Ford and
each of the partners through separate instances of each of these
applications.

• It also provides individual company-specific services for internal
applications like HRMS, CRM, and e-mail to Ford and its partners
separately. Thus, if there are 100 partners who have joined Ford’s
private ASP program, there may be 100 different implementations of
HRMS, CRM, etc., (from different vendors) systems for the specific
requirements for each of these partners but handled by the same
entity—the private ASP.

Ford can own the private ASP facility fully and run it as a profit center. It can
charge its partners on subscription (and/or even on transaction basis) along
with a possible lump sum enrolment fee. Or Ford can float a separate com-
pany along with its participating partners to establish and run this private
ASP; the private ASP can then charge via a uniform model for all its deliv-
ered services, to all members of the private ASP.

240 Guide to Cloud Computing for Business and Technology Managers

11.8 Summary

This chapter introduced the concept of Application Service Provider (ASP). It
followed this discussion on the value drivers, benefits, risks, and challenges
of the ASP model. In the latter part of the chapter, we discussed the concept
of private ASP and its benefits.

241

12
Grid Computing

The grid computing paradigm based on resource sharing was brought to
broader public by the popular project (http://setiathome.berkeley.edu)
SETI@home. The goal of the Search for Extraterrestrial Intelligence (SETI)
project is the detection of intelligent life outside earth. The project uses radio
telescopes to listen for narrow-bandwidth radio signals from space. As such
signals are not known to occur naturally, it is expected that a detection of
them would provide evidence of extraterrestrial technology. The analysis of
radio telescope signals involves huge amounts of data and is very comput-
ing intensive. No single research lab could provide the computing power
needed for it. Given the tremendous number of household PCs, the involved
scientists came up with the idea to invite owners of PCs to participate in
the research by providing the computing power of their computers when
they are idle. Users download a small program on their desktop. When the
desktop is idle, the downloaded program would detect it and use the idle
machine cycles. When the PC is connected back to the Internet, it would send
the results back to the central site. The SETI initiative recently celebrated the
10th anniversary (it was launched on May 17, 1999) and has at present more
than 3 million users that participate with their PCs.

12.1 Background to Grid Computing

Grid computing means that computing power and resources can be obtained
as utility similar to electricity—the user can simply request information and
computations and have them delivered to him or her without necessity to
care where the data he or she requires reside or which computer is process-
ing his or her request. From the technical perspective, grid computing means
the virtualization and sharing of available computing and data resources
among different organizational and physical domains. By means of virtual-
ization and support for sharing of resources, scattered computing resources
are abstracted from the physical location and their specific features and pro-
vided to the users as a single resource that is automatically allocated to their
computing needs and processes. Almost every organization has significant

242 Guide to Cloud Computing for Business and Technology Managers

unused computing capacity, widely distributed among a tribal arrangement
of PCs, midrange platforms, mainframes, and supercomputers. For exam-
ple, if a company has 5000 PCs, at an average computing power of 333 MIPS,
this equates to an aggregate 1.5 tera (1012) floating-point operations per
second (TFLOPS) of potential computing power. As another example, in the
United States, there are an estimated 300 million computers. At an average
computing power of 333 MIPS, this equates to a raw computing power of
100,000 TFLOPS. Mainframes are generally idle 40% of the time; Unix serv-
ers are actually serving something less than 10% of the time; most PCs do
nothing for 95% of a typical day. This is an inefficient situation for custom-
ers. TFLOPS speeds that are possible with grid computing enable scientists
to address some of the most computationally intensive scientific tasks, from
problems in protein analysis that will form the basis for new drug designs
to climate modeling and deducing the content and behavior of the cosmos
from astronomical data.

Prior to the deployment of grid computing, a typical business applica-
tion had a dedicated platform of servers and an anchored storage device
assigned to each individual server. Applications developed for such plat-
forms were not able to share resources, and, from an individual server’s
perspective, it was not possible, in general, to predict, even statistically,
what the processing load would be at different times. Consequently, each
instance of an application needed to have its own excess capacity to handle
peak usage loads. This predicament typically resulted in higher overall
costs than would otherwise need to be the case. To address these lacunae,
grid computing aims at exploiting the opportunities afforded by the syn-
ergies, the economies of scale, and the load smoothing that result from the
ability to share and aggregate distributed computational capabilities and
deliver these hardware-based capabilities as a transparent service to the
end user.

At the core of grid computing, therefore, are virtualization and virtual
centralization as well as availability of heterogeneous and distributed
resources based on collaboration among and sharing of existing infra-
structures from different organizational domains that together build
the computing grid. The key concept is the ability to negotiate resource-
sharing arrangements among a set of participating parties (providers and
consumers) and then to use the resulting resource pool for some purpose.
The sharing that we are concerned with is not primarily file exchange
but rather direct access to computers, software, data, and other resources,
as is required by a range of collaborative problem-solving and resource-
brokering strategies emerging in industry, science, and engineering. This
sharing is, necessarily, highly controlled, with resource providers and con-
sumers defining clearly and carefully just what is shared, who is allowed to
share, and the conditions under which sharing occurs. A set of individuals
and/or institutions defined by such sharing rules form what we call a vir-
tual organization (VO).

243Grid Computing

The benefits gained from grid computing can translate into competitive
advantages in the marketplace. Grids enable the following:

• Enable resource sharing
• Provide transparent access to remote resources
• Make effective use of computing resources, including platforms and

data sets
• Reduce significantly the number of servers needed by (25–75%)
• Allow on-demand aggregation of resources at multiple sites
• Reduce execution time for large-scale data processing applications
• Provide access to remote databases and software
• Provide load smoothing across a set of platforms
• Provide fault tolerance
• Take advantage of time zone and random diversity (in peak hours,

users can access resources in off-peak zones)
• Provide the flexibility to meet unforeseen emergency demands by

renting external resources for a required period instead of owning
them

• Enable the realization of a virtual data center

Grid computing emerged in the early 1990s, when high-performance com-
puters were connected by fast data communication with the aim to support
calculation- and data-intensive scientific applications. Since the mid-1990s,
the concept of grid has evolved. Similar to other infrastructure innovations—
for example, the Internet—the grid was first introduced and adopted in sci-
ence for the support of research in various scientific disciplines that require
high-performance computing (HPC) together with huge amounts of data
stored in dedicated databases. Examples of such sciences are earth science,
astroparticle physics, and computational chemistry. They are summarized
under the term e-science. To support e-science, many national and interna-
tional initiatives have been started by governments in many countries in
order to leverage existing investments in research infrastructure and to
enable sharing and efficient use of available computational resources, data,
and specialized equipment.

Cloud computing is frequently compared to grid computing.
Grid computing also has the same intent of abstracting out
computing resources to enable utility models and was pro-
posed at least a decade earlier than cloud computing, and there

are many aspects of grid computing that have formed the basis of the
requirements placed on a cloud. However, there are also very specific

244 Guide to Cloud Computing for Business and Technology Managers

differences between a grid computing infrastructure and the features
one should expect from a cloud computing infrastructure. All re -
sources constituting a grid computing infrastructure are predefined
and predetermined corresponding to the spare capacity that is avail-
able to promise with the constituents for participating in the grid. In
contrast, cloud computing releases or augments pre-identified and
dedicated resources dynamically, depending on the demand. Grid
computing is somewhat akin to an application service provider (ASP)
environment, but with a much higher level of performance and
assurance.

12.2 Introduction to Grid Computing

The vision of grid computing is to enable computing to be delivered as
a utility. This vision is most often presented with an analogy to electri-
cal power grids, from which it derives the name grid. So grid computing
was meant to be used by individual users who gain access to computing
devices without knowing where the resource is located or what hardware
it is running and so on. In this sense, it is pretty similar to cloud comput-
ing. However, just as electrical power grids can derive power from multiple
power generators and deliver the power as needed by the consumer, the key
emphasis of grid computing was to enable sharing of computing resources
or forming a pool of shared resources that can then be delivered to users.
So most of the initial technological focus of grid computing was limited to
enabling shared use of resources with common protocols for access. Also,
since the key takers of this fascinating vision were educational institutions,
a particular emphasis was given to handle heterogeneous infrastructure,
which was typical of a university data center. From a technical perspective,
a software-only solution was proposed (Globus) and implemented on this
heterogeneous infrastructure to enable use of these resources for higher
computing needs. Once reasonably successful within universities, grid
computing faced a serious issue when it came to sharing resources across
commercial institutions. Establishing trust and security models between
infrastructure resources pooled from two different administrative domains
became even more important.

The first most cited definition of grid computing reflected these origins
and was suggested by Foster and Kesselman (1998): “A computational
grid is a hardware and software infrastructure that provides dependable,
consistent, pervasive, and inexpensive access to high-end computational
capabilities.”

245Grid Computing

The main resources that can be shared in a grid are

• Computing/processing power
• Data storage/networked file systems
• Communications and bandwidth
• Application software
• Scientific instruments

Grid middleware is specific software, which provides the necessary function-
ality required to enable sharing of heterogeneous resources and establish-
ing of virtual organizations. From a market perspective, Grid middleware
provides a special virtualization and sharing layer that is placed among
the heterogeneous infrastructure and the specific user applications using
it. Grid computing is basically the deployed grid middleware or the com-
puting enabled by grid middleware based on flexible, secure, coordinated
resource sharing among a dynamic collection of individuals, institutions,
and resources. Grid computing means on the one hand that heterogeneous
pools of servers, storage systems, and networks are pooled together in a vir-
tualized system that is exposed to the user as a single computing entity. On
the other hand, it means programming that considers grid infrastructure and
applications that are adjusted to it. Grid infrastructure refers to the combina-
tion of hardware and grid middleware that transforms single pieces of hard-
ware and data resources into an integrated virtualized infrastructure that
is exposed to the user as a single computer despite of heterogeneity of the
underlying infrastructure. Utility computing is the provision of grid comput-
ing and applications as a service either as an open grid utility or as a hosting
solution for one organization or VO. Utility computing is based on pay-per-
use business models.

Thus, grid computing is a new computing paradigm based on IT resource
sharing and on provisioning of IT resources and computing in a way similar
to how electricity is consumed today. It is enabled by specific grid middle-
ware provided on the market either as packaged or open-source software
or in the form of utility computing. The major potential advantages of grid
 computing for an improved management of IT in companies can be sum-
marized as follows:

• Grids harness heterogeneous systems together into a single large
computer and, hence, can apply greater computational power to a
task and enable greater utilization of available infrastructure. In par-
ticular, with grid computing existing, underutilized resources can
be exploited better.

• Grid computing enables greater scalability of infrastructure by
removing limitation inherent in the artificial IT boundaries existing
between separate groups or departments.

246 Guide to Cloud Computing for Business and Technology Managers

• Grid computing results in improved efficiency of computing, data,
and storage resources due to parallel CPU capacity, load balancing,
and access to additional resources. As computing and resources can
be balanced on demand, grid computing results also in increased
robustness and reliability—failing resources can be replaced easier
and faster with other resources available in the grid.

• Grid computing furthermore enables a more efficient management
of distributed IT resources of companies. With the help of virtual-
ization, physically distributed and heterogeneous resources can be
better and uniformly managed. This makes possible to centrally set
priorities and assign distributed resources to tasks.

• Grid computing, in combination with utility computing, enables
the transformation of capital expenditure for IT infrastructure into
operational expenditure and provides the opportunity for increased
scalability and flexibility. However, the usage of utility computing
results in comparatively higher security and privacy risks.

• Grid computing enables cost savings in the IT departments of com-
panies due to reduced total cost of ownership (TCO). Instead of
investing in new resources, greater demand can be met by higher
utilization of existing resources or by taking advantage of utility
computing.

12.2.1 Virtualization

Grid computing also differs from virtualization. Resource virtualization is
the abstraction of server, storage, and network resources in order to make
them available dynamically for sharing, both inside and outside an organi-
zation. The universal problem that virtualization is solving in a data center is
that of dedicated resources. While this approach does address performance,
this method lacks fine granularity. Typically, IT managers take an educated
guess as to how many dedicated servers they will need to handle peaks, pur-
chase extra servers, and then later find out that a significant number of these
servers are significantly underutilized. A typical data center has a large
amount of idle infrastructure, bought and set up online to handle peak traf-
fic for different applications; virtualization offers a way of moving resources
from one application to another dynamically. Three representative products
are HP’s Utility Data Center, EMC’s VMware, and Platform Computing’s
Platform LFS. With virtualization, the logical functions of the server, stor-
age, and network elements are separated from their physical functions (e.g.,
processor, memory, I/O, controllers, disks and switches). In other words, all
servers, storage, and network devices can be aggregated into independent
pools of resources. Some elements may even be further subdivided (server
partitions, storage LUNs) to provide an even more granular level of control.
Elements from these pools can then be allocated, provisioned, and managed,

247Grid Computing

manually or automatically, to meet the changing needs and priorities of one’s
business.

Virtualization has somewhat more of an emphasis on local resources,
whereas grid computing has more of an emphasis on geographically distrib-
uted interorganizational resources. Virtualization is a step along the way on
the road to utility computing (grid computing).

12.2.2 Cluster

The distinction between clusters and grids relates to the way resources are
managed. In the case of clusters (aggregations of processors in parallel-
based configurations), the resource allocation is performed by a centralized
resource manager and scheduling system. Also, nodes cooperatively work
together as a single unified resource. In the case of grids, each node has its
own resource manager and does not aim at providing a single system view.
A cluster is comprised of multiple interconnected independent nodes that
cooperatively work together as a single unified resource. This means all
users of clusters have to go through a centralized system that manages the
allocation of resources to application jobs. Unlike grids, cluster resources are
almost always owned by a single organization. These cluster management
systems have centralized control, complete knowledge of system state and
user requests, and complete control over individual components.

Actually, many grids are constructed using clusters or traditional parallel
systems as their nodes, although this is not a requirement.

12.2.3 Web Services

Grid computing also differs from basic Web Services, although it now
makes use of these services. Whereas the Web is mainly focused on com-
munication, grid computing enables resource sharing and collaborative
resource interplay toward common business goals. Web Services provide
standard infrastructure for data exchange between two different distrib-
uted applications, whereas grids provide an infrastructure for aggregation
of high-end resources for solving large-scale problems in science, engi-
neering, and commerce. While most Web Services involve static process-
ing and moveable data, many grid computing mechanisms involve static
data (on large databases) and moveable processing. These Web Services
will play a key constituent role in the standardized definition of grid
computing, since Web Services have emerged in the past few years as a
standard-based approach for accessing network applications. The recent
trend is to implement grid solutions using Web Services technologies, for
example, the Globus Toolkit 3.0 middleware. In this context, low-level grid
services are instances of Web Services (a grid service is a Web Service that
conforms to a set of conventions that provide for controlled, fault-resilient,
and secure management of services).

248 Guide to Cloud Computing for Business and Technology Managers

12.2.4 P2P Network

Both peer-to-peer computing and grid computing are concerned with the
same general problem, namely, the organization of resource sharing within
VOs. As is the case with Peer-to-Peer (P2P) environments, grid computing
allows users to share files, but unlike P2P, grid computing allows many-to-
many sharing. Furthermore, with grid computing, the sharing is not only
in reference to files but other resources as well. The grid community gener-
ally focuses on aggregating distributed high-end machines such as clusters,
whereas the P2P community concentrates on sharing low-end systems such
as PCs connected to the Internet.

12.3 Comparison with Other Approaches

There is no single or unique solution to a given computing problem; grid
computing is one of a number of available solutions in support of opti-
mized distributed computing. Corporate IT professionals will have to
perform appropriate functional, economic, business-case, and strategic
analyses to determine which computing approach ultimately is best for
their respective organizations. Furthermore, it should be noted that grid
computing is an evolving field and, so, there is not always one canonical,
normative, universally accepted, or axiomatically derivable view of doing
it with the grid.

Like virtualization technologies, grid computing enables the virtualiza-
tion of IT resources. But, unlike virtualization technologies, which virtualize
a single system, grid computing enables the virtualization of broad-scale and
disparate IT resources. Similarly, like clusters and distributed computing,
grids bring computing resources together. But, unlike clusters and distrib-
uted computing, which need physical proximity and operational homogene-
ity, grids can be geographically distributed and heterogeneous.

12.4 Characteristics of a Grid

In 2002, Ian Foster from Argonne National Laboratories proposed a three-
point checklist for determining whether a system is a grid or not. Ian Foster
along with Steve Tucker in the popular article “Anatomy of Grid” defined
grid computing as “coordinated resource sharing and problem solving in
dynamic, multi-institutional virtual organizations.”

249Grid Computing

So the key concept emphasized was the ability to negotiate resource sharing
agreements among a set of participating parties—where sharing did not really
mean exchange but direct access to computing resources either in a collabora-
tive resource sharing or negotiated resource-brokering strategies. Further,
this sharing was highly controlled with resource providers and consumers
grouped into virtual organizations primarily based on sharing conditions.

The following is the precise simple checklist that was proposed: a grid is a
system that functions as follows:

 1. Coordinates resources that are not subject to centralized control: The first
criterion states that a grid should integrate computing resources
from different control domains (say servers from computer cen-
ters of different universities, each center having a different system
administrator in each university). Technologically, this requirement
addresses the issues of cross-domain security, policy management,
and membership.

 2. Uses standard, open, general-purpose protocols and interfaces: The use of
a common standard for authentication, authorization, resource dis-
covery, and resource access becomes a necessity in such cases and
hence the second criterion.

 3. Delivers nontrivial quality of service: Finally, in an effort toward com-
mercializing the usage of shared resources, it is important to sup-
port various quality-of-service parameters such as response time,
throughput, availability, or even co-allocation of resources to meet
user demands.

12.5 Types of Grids

Broadly speaking, there are three types of grid: computational grids, data
grids, and service grids. A computational grid is a distributed set of resources
that are dedicated to aggregate computational capacity. Compu tational grids
are highly suitable for task farming or high-throughput computing appli-
cations where there is typically one data set and a huge parameter space
through which the scientist wishes to search. A data grid is a collection of dis-
tributed resources that are specifically set up for processing and transferring
large amounts of data. A service grid is a collection of distributed resources
that provides a service that cannot possibly be achieved through one single
computer. In this example, therefore, the grid will typically consist of several
different resources, each providing a specific function that needs to be aggre-
gated in order to collectively perform the desired services. For example,
you could have a service that obtained its functionality by integrating and

250 Guide to Cloud Computing for Business and Technology Managers

connecting databases from two separate VOs (representing two data streams
from physics sensors/detectors) in order to output their correlation. Such
a service could not be provided by one organization or the other since the
output relies on the combination of both.

The term computational grid comes from an analogy with the electric power
utility grid. A computational grid is focused on setting aside resources spe-
cifically for computing power and uses networks of computers as a single,
unified computing resource. It is possible to cluster or couple a wide variety
of resources including supercomputers, storage systems, data sources, and
special classes of devices distributed geographically and use them as a single
unified resource. Such pooling requires significant hardware infrastructure
to achieve the necessary interconnections and software infrastructure to
monitor and control the resulting ensemble. The majority of the computa-
tional grids are centered on major scientific experiments and collaborative
environments. Computational grid applications exhibit several functional
computational requirements. These include the ability to manage a variety
of computing resources, select computing resources capable of running a
user’s job, predict loads on grid resources, and decide about resource avail-
ability, dynamic resource configuration, and provisioning. Other useful
mechanisms for the management of resources include failure detection,
failover, and security mechanisms.

A data grid is responsible for housing and providing access to data across
multiple organizations and makes them available for sharing and collabora-
tion purposes. These data sources can be databases, file systems, and storage
devices. The requirement for managing large data sets is a core underpin-
ning of any grid computing environment. Data grids can also be used to
create a single, virtual view of a collection of data sources for large-scale
collaboration. This process is called data federation. In data grids, the focus is
on the management of data that are being held in a variety of data storage
facilities in geographically dispersed locations. For example, medical data
grids are designed to make large data sets, such as patient records contain-
ing clinical information and associated digital x-rays, medication history,
doctor reports, symptoms history, genetic information, and so on, available
to many processing sites. By coupling the availability of these massive data
sets with the large processing capability of grid computing, scientists can
create applications to analyze the aggregated information. Searching the
information for patterns or signatures enables scientists to potentially reach
new insights regarding the environmental or genetic causes of diseases.
Data grid systems must be capable of providing data virtualization services
to provide the ability to discover data, transparency for data access, integra-
tion, and processing as well as the ability to support flexible data access and
data filtering mechanisms. In addition, the provision of security and privacy
mechanisms for all respective data in a grid system is an essential require-
ment for data grids.

251Grid Computing

12.6 Grid Technologies

First of all, grid computing defines a notion of a virtual organizations to enable
flexible, coordinated, secure resource sharing among participating entities. A
virtual organizations (VO) is basically a dynamic collection of individuals
or institutions from multiple administrative domains. A VO forms a basic
unit for enabling access to shared resources with specific resource-sharing
policies applicable for users from a particular VO. The key technical problem
addressed by grid technologies is to enable resource sharing among mutu-
ally distrustful participants of a VO who may have varying degrees of prior
relationship (perhaps none at all) and enable them to solve a common task.

The five layers of grid computing are interrelated and depend on each
other. Each subsequent layer uses the interfaces of the underlying layer.
Together, they create the grid middleware and provide a comprehensive
set of functionalities necessary for enabling secure, reliable, and efficient
sharing of resources (computers, data) among independent entities. This
functionality includes low-level services such as security, information,
directory, resource management (resource trading, resource allocation,
quality of service), and high-level services/tools for application develop-
ment, resource management, and scheduling. In addition, there is a need
to provide the functionality for brokerage of resources and accounting and
billing purposes.

The main functionalities of a grid middleware are

• Virtualization and integration of heterogeneous autonomous
resources

• Provision of information about resources and their availability
• Flexible and dynamic resource allocation and management
• Brokerage of resources either based on company policies
• Security and trust (Security includes authentication [assertion and

confirmation of the identity of a user] and authorization [check
of rights to access certain services or data] of users as well as
accountability.)

• Management of licenses
• Billing and payment
• Delivery of nontrivial Quality of Service (QoS)

An extensible and open grid architecture shown in Figure 12.1 was defined
by Ian Forster in The Anatomy of the Grid in which protocols, services, appli-
cation programming interfaces (APIs), and system development kits (SDKs)
are categorized according to their roles in enabling resource sharing.

252 Guide to Cloud Computing for Business and Technology Managers

 a. The grid fabric layer provides the resources to which shared
access is mediated by grid protocols. These can be computational
resources, storage systems, catalogs, network resources, or even a
logical entity, such as a distributed file system, computer cluster, or
distributed computer pool. A well-known toolkit for the fabric layer
is the Globus Toolkit that provides local resource-specific opera-
tions on existing computing elements.

 b. The connectivity layer includes the core protocols for communication
and authentication for internode communication. The key aspects
of these protocols include single sign-on, delegation, user-based
trust relationships, and integration with local security solutions.
One important protocol whose reference implementation is avail-
able in Globus is the public key–based GSI protocol (Grid Security
Infrastructure), which extends TLS (Transport Layer Security) to
address these issues.

 c. The resource layer includes APIs and SDKs for secure negotiation,
monitoring, control, accounting, and payment for operations on
a single shared resource. An example protocol at this layer is the
GRAM (Grid Resource Access and Management) protocol used for
allocation, monitoring, and control of computational resources and
the GRIP (Grid Resource Information Protocol) and Grid FTP (File
Transfer Protocol), which are extensions of LDAP and FTP protocols.

 d. The collective layer implements a variety of sharing behaviors with
directory services, brokering services, programming systems com-
munity accounting and authorization services, and even collabora-
tive services. One such service is the GIIS (Grid Information Index
Servers) that supports arbitrary views on resource subsets, which

Application layer

Collective layer

Protocols:
GRAM, GridFTP,
GRIP, GRIS, GIIS
IP, DNS,
grid security infrastructure
Individual computer, condor pools,
file systems, archives, metadata
catalogs, networks, sensors, etc.

Resource services

Connectivity APIs

Fabric layer

FIGURE 12.1
Layered grid architecture.

253Grid Computing

can be used with LDAP and the DUROC library that supports
resource co-allocation.

 e. The application layer involves the user applications that are deployed
on the grid. It is important to note that not any user application can
be deployed on a grid. Only a grid-enabled or gridified application,
that is, an application that is designed or adjusted to run in parallel
and use multiple processors of a grid setting or that can be executed
on different heterogeneous machines, can take advantage of a grid
infrastructure.

12.7 Grid Computing Standards

One of the challenges of any computing technology is getting the various
components to communicate with each other. Nowhere is this more critical
than when trying to get different platforms and environments to interoper-
ate. It should, therefore, be immediately evident that the grid computing par-
adigm requires standard, open, general-purpose protocols and interfaces.
Standards for grid computing are now being defined and are beginning to
be implemented by the vendors. To make the most effective use of the com-
puting resources available, these environments need to utilize common pro-
tocols. We are now indeed entering a new phase of grid computing in which
standards will define grids in a consistent way by enabling grid systems to
become easily built off-the-shelf systems. Standard-based grid systems have
been called by some third-generation grids or 3G grids.

First-generation or 1G grids involved local metacomputers with basic ser-
vices such as distributed file systems and site-wide single sign-on, upon
which early-adopter developers created distributed applications with cus-
tom communication protocols. Test beds extended 1G grids across distances
and attempts to create metacenters explored issues of interorganizational inte-
gration. First-generation grids were totally custom-made proofs of concept.
Second-generation or 2G grid systems began with projects such as Condor,
I-WAY (the origin of Globus), and Legion (origin of Avaki), in which underly-
ing software services and communication protocols could be used as a basis
for developing distributed applications and services. Second-generation
grids offered basic building blocks, but deployment involved significant cus-
tomization and filling in many gaps. Independent deployments of 2G grid
technology today involve enough customized extensions that interoperabil-
ity is problematic and interoperability among 2G grid systems is rather dif-
ficult. This is why the industry needs 3G grids.

By introducing standard technical specifications, 3G grid technology will
have the potential to allow both competition and interoperability not only

254 Guide to Cloud Computing for Business and Technology Managers

among applications and toolkits but also among implementations of key
services. The goal is to mix and match components, but this potential will
only be realized if the grid community continues to work at defining stan-
dards. The Global Grid Forum community is applying lessons learned from
1G and 2G grids and from Web Service technologies and concepts to create
3G architectures.

12.8 Globus

Current implementations of open grid architecture follow a Web Service–
based interface enabling interoperability between different implementa-
tions of the protocols. Since Web Services by definition are stateless, the grid
community (Globus alliance) introduced a set of enhanced specifications
called Web Services Resource Framework (WSRF) that Web Services could
implement to become stateful. Open Grid Services Architecture now defines
a service-oriented grid computing environment, which not only provides
standardized interfaces but also removes the need for layering in the archi-
tecture and defines a concept of virtual domains, allowing dynamic group-
ing of resources as well.

The standard bodies involved in evolving the grid protocols were

 a. The Global Grid Forum (GGF)
 b. Organization for the Advancement of Structured Information

Standards (OASIS)
 c. World Wide Web Consortium (W3C)
 d. Distributed Management Task Force (DMTF)
 e. Web Services Interoperability Organization (WS-I)

A reference implementation of these protocols is available in a popular
open-source software toolkit called Globus Toolkit (GT), which was devel-
oped by the Globus alliance, a community of organizations and individu-
als developing fundamental technologies behind the grid. The nice thing
about this software is that it enables existing resources to easily join a grid
pool by enabling the required protocols locally. To get started on setting up
a grid, one just needs to download and install GT on any of the supported
platforms. To create a resource pool, it is a good idea to install a resource
scheduler such as the Condor cluster scheduler and configure that as a grid
gateway for resource allocation. After some initial security configurations
(obtaining signed certificates and setting up access rights), the grid can be
up and running!

255Grid Computing

12.9 Summary

This chapter presented an overview of grid computing. It described the
grid’s fundamental characteristics, types, and constituent technologies. It
presents the grid computing standards as well as an overview of the Globus
grid computing environment.

Section III

Cloudware

Since cloud services are resultant of a combination of factors like hardware,
software, networks, services, etc., there is need to coin a new word to identify
this newer category of offerings; hence, the new name cloudware.

Chapter 13 introduces the basics of cloud computing, cloud delivery mod-
els such as IaaS, PaaS, and SaaS, as well as deployment models such as pub-
lic, private, and hybrid clouds. Chapter 14 presents the advantages of cloud
computing solutions. While Chapter 15 describes the various cloud comput-
ing technologies, Chapter 16 deals with the commercially available cloud
computing environments. Chapter 17 describes cloudware development par-
adigms and environments including Google MapReduce and the Hadoop
ecosystem. Chapter 18 presents operations and management issues related
to cloud computing solutions, while Chapter 19 provides an overview of
governance, risks, and compliance issues involved. This sections ends with
Chapter 20 that presents details on how companies can successfully prepare
and transition to cloudware environments.

259

13
Cloudware Basics

Many motivating factors have led to the emergence of cloud computing.
Businesses require services that include both infrastructure and applica-
tion workload requests, while meeting defined service levels for capacity,
resource tiering, and availability. IT delivery often necessitates costs and effi-
ciencies that create a perception of IT as a hindrance, not a strategic partner.
Issues include underutilized resources, overprovisioning or underprovi-
sioning of resources, lengthy deployment times, and lack of cost visibility.
Virtualization is the first step toward addressing some of these challenges
by enabling improved utilization through server consolidation, workload
mobility through hardware independence, and efficient management of
hardware resources.

The virtualization system is a key foundation for the cloud computing
system. We stitch together compute resources so as to appear as one large
computer behind which the complexity is hidden. By coordinating, manag-
ing, and scheduling resources such as CPUs, network, storage, and firewalls
in a consistent way across internal and external premises, we create a flex-
ible cloud infrastructure platform. This platform includes security, automa-
tion and management, interoperability and openness, self-service, pooling,
and dynamic resource allocation. In the view of cloud computing we are
advocating, applications can run within an external provider, in internal IT
premises, or in combination as a hybrid system—it matters how they are run,
not where they are run.

Cloud computing builds on virtualization to create a service-oriented
computing model. This is done through the addition of resource abstrac-
tions and controls to create dynamic pools of resources that can be con-
sumed through the network. Benefits include economies of scale, elastic
resources, self-service provisioning, and cost transparency. Consumption of
cloud resources is enforced through resource metering and pricing models
that shape user behavior. Consumers benefit through leveraging allocation
models such as pay-as-you-go to gain greater cost efficiency, lower barrier to
entry, and immediate access to infrastructure resources.

260 Guide to Cloud Computing for Business and Technology Managers

13.1 Cloud Definition

Here is National Institute of Standards and Technology (NIST) working
definition:

Cloud computing is a model for enabling convenient, on-demand network access
to a shared pool of configurable computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned and released with minimal
management effort or service provider interaction. This cloud model promotes avail-
ability and is composed of five essential characteristics, three delivery models, and
four deployment models.

The five essential characteristics are as follows:

 1. On-demand self-service
 2. Broad network access
 3. Resource pooling
 4. Rapid elasticity
 5. Measured service

The three delivery models are as follows:

 1. Infrastructure as a Service (IaaS)
 2. Platform as a Service (PaaS)
 3. Software as a Service (SaaS)

The four deployment models are as follows:

 1. Public cloud
 2. Private cloud
 3. Hybrid cloud
 4. Community cloud

Cloud computing is the IT foundation for cloud services and it consists of
technologies that enable cloud services. The key attributes of cloud comput-
ing are shown in Table 13.1. Key attributes of cloud services are described in
Table 13.2.

13.2 Cloud Characteristics

Large organizations such as IBM, Dell, Microsoft, Google, Amazon, and
Sun have already started to take strong positions with respect to cloud

261Cloudware Basics

computing provision. They are so much behind this latest paradigm that the
success is virtually guaranteed. The essential characteristics of cloud envi-
ronment include the following:

• On-demand self-service that enables users to consume computing
capabilities (e.g., applications, server time and network storage) as
and when required.

• Broad network access: Capabilities are available over the network and
accessed through standard mechanisms that promote use by hetero-
geneous thin or thick client platforms (e.g., mobile phones, tablets,
laptops, and workstations).

TABLE 13.2

Key Attributes of Cloud Services

Attributes Description

Infrastructure systems It includes servers, storage, and networks that can scale as per
user demand.

Application software It provides web-based user interface, Web Services APIs, and
a rich variety of configurations.

Application development
and deployment software

It supports the development and integration of cloud
application software.

System and application
management software

It supports rapid self-service provisioning and configuration
and usage monitoring.

IP networks They connect end users to the cloud and the infrastructure
components.

TABLE 13.1

Key Attributes of Cloud Computing

Attributes Description

Offsite, third-party
provider

In the cloud execution, it is assumed that third party provides services.
There is also a possibility of in-house cloud service delivery.

Accessed via the
Internet

Services are accessed via standard-based, universal network access.
It can also include security and quality-of-service options.

Minimal or no IT
skill required

There is a simplified specification of requirements.

Provisioning It includes self-service requesting, near real-time deployment, and
dynamic and fine-grained scaling.

Pricing Pricing is based on usage-based capability and it is fine grained.
User interface User interface includes browsers for a variety of devices and with rich

capabilities.
System interface System interfaces are based on Web Services APIs providing a standard

framework for accessing and integrating among cloud services.
Shared resources Resources are shared among cloud services users; however, via

configuration options with the service, there is the ability to customize.

262 Guide to Cloud Computing for Business and Technology Managers

• Multitenancy and resource pooling that allows combining hetero-
geneous computing resources (e.g., hardware, software, processing
servers and network bandwidth) to serve multiple consumers—such
resources being dynamically assigned.

• Rapid elasticity and scalability that allows functionalities and
resources to be rapidly, elastically, and automatically scaled out or
in, as demand rises or drops.

• Measured provision to automatically control and optimize resource
allocation and to provide a metering capability to determine the
usage for billing purpose, allowing easy monitoring, controlling,
and reporting.

13.3 Cloud Delivery Models

Cloud computing is not a completely new concept for the development and
operation of Web applications. It allows for the most cost-effective develop-
ment of scalable Web portals on highly available and fail-safe infrastructures.
In the cloud computing system, we have to address different fundamentals
like virtualization, scalability, interoperability, quality of service, failover
mechanism, and the cloud deployment models (private, public, hybrid)
within the context of the taxonomy. The taxonomy of cloud includes the dif-
ferent participants involved in the cloud along with the attributes and tech-
nologies that are coupled to address their needs and the different types of
services like XaaS offerings where X is software, hardware, platform, infra-
structure, data, and business (Figures 13.1 and 13.2).

13.3.1 Infrastructure as a Service (IaaS)

The IaaS model is about providing compute and storage resources as a ser-
vice. According to NIST, IaaS is defined as follows:

The capability provided to the consumer is to provision processing, storage, net-
works, and other fundamental computing resources where the consumer is able to
deploy and run arbitrary software, which can include operating systems and applica-
tions. The consumer does not manage or control the underlying cloud infrastructure
but has control over operating systems, storage, deployed applications, and possibly
limited control of select networking components (e.g., host firewalls).

The user of IaaS has single ownership of the alloted hardware infrastruc-
ture and can use it as if it is his or her own machine on a remote network and
has control over the operating system and software on it. IaaS is illustrated in
Figure 13.1. The IaaS provider has control over the actual hardware, and the

263Cloudware Basics

Pr
es

en
ta

tio
n

m
od

al
ity

Pr
es

en
ta

tio
n

pl
at

fo
rm

So
ftw

ar
e a

s
a s

er
vi

ce

Pl
at

fo
rm

 as
a s

er
vi

ce

In
fra

st
ru

ct
ur

e
as

 a
se

rv
ic

e

A
PI

A
pp

lic
at

io
n

In
te

gr
at

io
n

an
d

m
id

dl
ew

ar
e

In
te

gr
at

io
n

an
d

m
id

dl
ew

ar
e

Co
nn

ec
tiv

ity
 an

d
de

liv
er

y
Co

nn
ec

tiv
ity

 an
d

de
liv

er
y

A
PI

A
PI

D
at

a

U
se

r/
cu

st
om

er
/

de
vi

ce

Cl
ou

d
us

er
Cl

ou
d

ve
nd

or
O

rig
in

al
 cl

ou
d

pr
ov

id
er

Fa
ci

lit
ie

s

Fa
ci

lit
ie

s

H
ar

dw
ar

e

Fa
ci

lit
ie

s

Fa
ci

lit
ie

s

H
ar

dw
ar

e

M
et

ad
at

a
Co

nt
en

t
S e c u r i t y

M i d d l e w a r e

Q o E Q o Sa n d

FI
G

U
R

E
13

.1
T

he
 c

lo
ud

 r
ef

er
en

ce
 m

od
el

.

264 Guide to Cloud Computing for Business and Technology Managers

cloud user can request allocation of virtual resources, which are then allo-
cated by the IaaS provider on the hardware (generally without any manual
intervention). The cloud user can manage the virtual resources as desired,
including installing any desired OS, software, and applications. Therefore,
IaaS is well suited for users who want complete control over the software
stack that they run; for example, the user may be using heterogeneous soft-
ware platforms from different vendors, and they may not like to switch to a
PaaS platform where only selected middleware is available. Well-known IaaS
platforms include Amazon EC2, Rackspace, and RightScale. Additionally,
traditional vendors such as HP, IBM, and Microsoft offer solutions that can
be used to build private IaaS.

SaaS

Interface

Application

Operating system

Hypervisor

Computing service

Storage service

Network

Local infrastructure

Interface

Application

Operating system

Hypervisor

Computing service

Storage service

Network

Local infrastructure

Interface

Application

Operating system

Hypervisor

Computing service

Storage service

Network

Local infrastructure

PaaS IaaS

User responsibility

C
l
o
u
d

u
s
e
r

s
e
r
v
i
c
e

p
r
o
v
i
d
e
r

FIGURE 13.2
Portfolio of services for the three cloud delivery models.

265Cloudware Basics

13.3.2 Platform as a Service (PaaS)

The PaaS model is to provide a system stack or platform for application
deployment as a service. NIST defines PaaS as follows:

The capability provided to the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using programming languages
and tools supported by the provider. The consumer does not manage or control the
underlying cloud infrastructure including network, servers, operating systems, or
storage but has control over the deployed applications and possibly application host-
ing environment configurations.

Figure 13.1 shows a PaaS model diagrammatically. The hardware, as well
as any mapping of hardware to virtual resources, such as virtual servers, is
controlled by the PaaS provider. Additionally, the PaaS provider supports
selected middleware, such as a database and Web application server shown
in the figure. The cloud user can configure and build on top of this middle-
ware, such as define a new database table in a database. The PaaS provider
maps this new table onto their cloud infrastructure. Subsequently, the cloud
user can manage the database as needed and develop applications on top
of this database. PaaS platforms are well suited to those cloud users who
find that the middleware they are using matches the middleware provided
by one of the PaaS vendors. This enables them to focus on the application.
Windows Azure, Google App Engine, and Hadoop are some well-known
PaaS platforms. As in the case of IaaS, traditional vendors such as HP, IBM,
and Microsoft offer solutions that can be used to build private PaaS.

13.3.3 Software as a Service (SaaS)

SaaS is about providing the complete application as a service. SaaS has been
defined by NIST as follows:

The capability provided to the consumer is to use the provider’s applications run-
ning on a cloud infrastructure. The applications are accessible from various client
devices through a thin client interface such as a Web browser (e.g., web-based e-mail).
The consumer does not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or even individual applica-
tion capabilities, with the possible exception of limited user-specific application con-
figuration settings.

Any application that can be accessed using a Web browser can be consid-
ered as SaaS. These points are illustrated in Figure 13.1. The SaaS provider
controls all the layers apart from the application. Users who log in to the
SaaS service can both use the application and configure the application
for their use. For example, users can use Salesforce.com to store their cus-
tomer data. They can also configure the application, for example, request-
ing additional space for storage or adding additional fields to the customer
data that is already being used. When configuration settings are changed,

266 Guide to Cloud Computing for Business and Technology Managers

the SaaS infrastructure performs any management tasks needed (such as
allocation of additional storage) to support the changed configuration. SaaS
platforms are targeted toward users who want to use the application with-
out any software installation (in fact, the motto of Salesforce.com, one of the
prominent SaaS vendors, is “No Software”). However, for advanced usage,
some small amount of programming or scripting may be necessary to cus-
tomize the application for usage by the business (e.g., adding additional
fields to customer data). In fact, SaaS platforms like Salesforce.com allow
many of these customizations to be performed without programming but
by specifying business rules that are simple enough for nonprogrammers
to implement. Prominent SaaS applications include Salesforce.com for
CRM, Google Docs for document sharing, and Web e-mail systems like
Gmail, Hotmail, and Yahoo! Mail. IT vendors such as HP and IBM also sell
systems that can be configured to set up SaaS in a private cloud; SAP, for
example, can be used as an SaaS offering inside an enterprise.

Table 13.3 presents a comparison of the three cloud delivery models.

13.4 Cloud Deployment Models

13.4.1 Private Clouds

A private cloud has an exclusive purpose for a particular organization. The
cloud resources may be located on or off premise and could be owned and
managed by the consuming organization or a third party. This may be an
example of an organization who has decided to adopt the infrastructure
cost-saving potential of a virtualized architecture on top of existing hard-
ware. The organization feels unable to remotely host their data, so they are
looking to the cloud to improve their resource utilization and automate the
management of such resources. Alternatively, an organization may wish to
extend its current IT capability by using an exclusive, private cloud that is
remotely accessible and provisioned by a third party. Such an organization
may feel uncomfortable with their data being held alongside a potential com-
petitor’s data in the multitenancy model.

13.4.2 Public Clouds

A public cloud, as its name implies, is available to the general public and
is managed by an organization. The organization may be a business (such
as Google), academic, or a governmental department. The cloud computing
provider owns and manages the cloud infrastructure. The existence of many
different consumers within one cloud architecture is referred to as a mult-
itenancy model.

267Cloudware Basics

13.4.3 Hybrid Clouds

Hybrid clouds are formed when more than one type of cloud infrastructure
is utilized for a particular situation. For instance, an organization may utilize
a public cloud for some aspect of its business, yet also have a private cloud
on premise for data that is sensitive. As organizations start to exploit cloud
service models, it is increasingly likely that a hybrid model is adopted as the
specific characteristics of each of the different service models are harnessed.
The key enabler here is the open standards by which data and applications
are implemented, since if portability does not exist, then vendor lock-in to a
particular cloud computing provider becomes likely. Lack of data and appli-
cation portability has been a major hindrance for the widespread uptake of

TABLE 13.3

Comparison of Cloud Delivery Models

Service Type IaaS PaaS SaaS

Service category VM rental; online
storage

Online operating
environment, online
database, online
message queue

Application and
software rental

Service
customization

Server template Logic resource
template

Application
template

Service
provisioning

Automation Automation Automation

Service accessing
and using

Remote console,
Web 2.0

Online development
and debugging,
integration of offline
development tools
and cloud

Web 2.0

Service monitoring Physical resource
monitoring

Logic resource
monitoring

Application
monitoring

Service level
management

Dynamic orchestration
of physical resources

Dynamic
orchestration of
logic resources

Dynamic
orchestration of
application

Service resource
optimization

Network
virtualization, server
visualization, storage
visualization

Large-scale
distributed file
system. Database,
middleware, etc.

Multitenancy

Service
measurement

Physical resource
metering

Logic resource usage
metering

Business resource
usage metering

Service integration
and combination

Load balance SOA SOA, mashup

Service security Storage encryption
and isolation, VM
isolation, VLAN;
SSL/SSH

Data isolation,
operating
environment
isolation, SSL

Data isolation,
operating
environment
isolation, SSL; Web
authentication and
authorization

268 Guide to Cloud Computing for Business and Technology Managers

grid computing, and this is one aspect of cloud computing that can facilitate
much more flexible, abstract architectures.

13.4.4 Community Clouds

Community clouds are a model of cloud computing where the resources
exist for a number of parties who have a shared interest or cause. This model
is very similar to the single-purpose grids that collaborating research and
academic organizations have created to conduct large-scale scientific experi-
ments (e-science). The cloud is owned and managed by one or more of the
collaborators in the community, and it may exist either on or off premise.

13.5 Cloud Benefits

Cloud computing is an attractive paradigm that promises numerous ben-
efits, inherent in the characteristics, as mentioned earlier. These include

• Optimization of a company’s capital investment by reducing costs of
purchasing hardware and software, resulting in a much lower total
cost of ownership and, ultimately, a whole new way of looking at the
economics of scale and operational IT

• Simplicity and agility of operations and use, requiring minimal time
and effort to provision additional resources

• Enabling an enterprise to tap into a talent pool, as and when needed,
for a fraction of the cost of hiring staff or retaining the existing staff
and, thus, enabling the key personnel in the organizations to focus
more on producing value and innovation for the business

• Enabling small organizations to access the IT services and resources
that would otherwise be out of their reach, thus placing large orga-
nizations and small businesses on a level playing field

• Providing novel and complex computing architectures and innova-
tion potential

• Providing mechanism for disaster recovery and business continuity
through a variety of fully outsourced ICT services and resources

Cloud computing can be massively scalable, and there are built-in benefits
of efficiency, availability, and high utilization that, in turn, result in reduced
capital expenditure and reduced operational costs. It permits seamless shar-
ing and collaboration through virtualization. In general, cloud comput-
ing promises cost savings, agility, innovation, flexibility, and simplicity.
The offerings from vendors, in terms of services of the application, platform,

269Cloudware Basics

and infrastructure nature, are continuing to mature, and the cost savings
are becoming particularly attractive in the current competitive economic cli-
mate. Another broader aim of cloud technology is to make supercomputing
available to the enterprises, in particular, and the public, in general.

Table 13.4 presents a comparison of cloud benefits for Small and Medium
enterprises (SMEs) and Large enterprises.

The major benefits of the cloud paradigm can be distilled to its inherent
flexibility and resiliency, the potential for reducing costs, availability of very
large amounts of centralized data storage, means to rapidly deploy comput-
ing resources, and scalability.

13.5.1 Flexibility and Resiliency

A major benefit of cloud computing is the flexibility, though cloud provid-
ers cannot provide infinite configuration and provisioning flexibility and
will seek to offer structured alternatives. They might offer a choice among
a number of computing and storage resource configurations at different
capabilities and costs, and the cloud customer will have to adjust his or her
requirements to fit one of those models.

The flexibility offered by cloud computing can be in terms of

• Automated provisioning of new services and technologies
• Acquiring increased resources on an as-needed basis
• Ability to focus on innovation instead of maintenance details
• Device independence
• Freedom from having to install software patches
• Freedom from concerns about updating servers

Resiliency is achieved through the availability of multiple redundant
resources and locations. As autonomic computing becomes more mature,
self-management and self-healing mechanisms can ensure the increased
reliability and robustness of cloud resources. Also, disaster recovery and
business continuity planning are inherent in using the provider’s cloud com-
puting platforms.

13.5.2 Reduced Costs

Cloud computing offers reductions in system administration, provisioning
expenses, energy costs, software licensing fees, and hardware costs. The
cloud paradigm, in general, is a basis for cost savings because capability and
resources can be paid for incrementally without the need for large invest-
ments in computing infrastructure. This model is especially true for add-
ing storage costs for large database applications. Therefore, capital costs are
reduced and replaced by manageable, scalable operating expenses.

270 Guide to Cloud Computing for Business and Technology Managers

TA
B

LE
 1

3.
4

C
om

pa
ri

so
n

of
 C

lo
ud

 B
en

efi
ts

 fo
r

Sm
al

l a
nd

 M
ed

iu
m

 E
nt

er
pr

is
es

 (S
M

E
s)

 a
nd

 L
ar

ge
 E

nt
er

pr
is

es

E
co

n
om

ic

B
en

efi
ts

S

m
al

l a
n

d
 M

ed
iu

m
 E

n
te

rp
ri

se
s

(S
M

E
s)

L

ar
ge

 E
n

te
rp

ri
se

s

St
ra

te
gi

c
fl

ex
ib

ili
ty

C
ri

ti
ca

l i
n

ge
tt

in
g

qu
ic

kl
y

to
 m

ar
ke

t.
C

lo
ud

 s
er

vi
ce

s
al

lo
w

 s
ta

rt
-u

ps
 to

ra

pi
d

ly
 d

ev
el

op
 a

nd
 d

ep
lo

y
th

ei
r

pr
od

uc
ts

 a
s

lo
ng

 a
s

th
ey

 c
an

 u
se

 th
e

op
en

 s
ou

rc
e

or
 p

ro
pr

ie
ta

ry

d
ev

el
op

m
en

t p
la

tf
or

m
s

of
 th

e
cl

ou
d

pr

ov
id

er
s.

 A
s

th
e

cl
ou

d
 m

ar
ke

t
of

fe
ri

ng
s

m
at

ur
e,

 th
er

e
w

ill
 b

e
m

an
y

m
or

e
pl

at
fo

rm
 o

pt
io

ns
 a

va
ila

bl
e.

C
lo

ud
 s

er
vi

ce
s

ca
n

pr
ov

id
e

la
rg

e
en

te
rp

ri
se

s
th

e
sa

m
e

st
ra

te
gi

c
be

ne
fi

ts
 a

s
st

ar
t-

up
s

fo
r

ne
w

 in
it

ia
ti

ve
s

as
 lo

ng
 a

s
le

ga
cy

 s
of

tw
ar

e
in

te
gr

at
io

n
an

d
 d

at
a

is
su

es
 a

re
 n

ot

si
gn

ifi
ca

nt
. W

it
h

ap
pr

op
ri

at
e

so
ft

w
ar

e
d

ev
el

op
m

en
t t

al
en

t,
op

er
at

in
g

un
it

s
ca

n
ra

pi
d

ly
 d

ev
el

op
 a

nd
 m

ar
ke

t t
es

t n
ew

 in
no

va
ti

on
s

w
it

ho
ut

 p
ut

ti
ng

 a
d

d
it

io
na

l s
tr

ai
n

on
 IT

 b
ud

ge
ts

, s
ta

ff
, o

r
ha

rd
w

ar
e.

 L
on

g-
st

an
d

in
g

in
te

rn
al

 IT
 m

an
ag

em
en

t p
ol

ic
ie

s
an

d
 s

ta
nd

ar
d

s
m

ay
 h

av
e

to
 b

e
re

ex
am

in
ed

 a
nd

 m
od

ifi
ed

 to
 a

llo
w

 th
is

 to
 h

ap
pe

n.

C
os

t r
ed

uc
ti

on
Pa

y-
as

-y
ou

-g
o

pr
ic

in
g

m
ay

 b
e

cr
it

ic
al

 if

op
er

at
in

g
ca

pi
ta

l o
r

ve
nt

ur
e

ca
pi

ta
l

fu
nd

in
g

is
 n

ot
 a

va
ila

bl
e.

 W
it

h
cl

ou
d

se

rv
ic

es
, g

ro
w

th
 c

an
 m

or
e

ea
si

ly
 b

e
fu

nd
ed

 th
ro

ug
h

op
er

at
in

g
re

ve
nu

es

an
d

 th
er

e
m

ay
 b

e
ta

x
ad

va
nt

ag
es

 to

co
nv

er
ti

ng
 w

ha
t w

ou
ld

 h
av

e
be

en

lo
ng

er
-t

er
m

 d
ep

re
ci

at
io

n
ex

pe
ns

es
 to

fu

lly
 lo

ad
ed

 c
ur

re
nt

 e
xp

en
se

s.

C
lo

ud
 s

er
vi

ce
s

pr
ov

id
e

th
e

sa
m

e
co

st
–b

en
efi

ts
 fo

r
is

ol
at

ed
 a

nd
 e

xp
lo

ra
to

ry
 in

it
ia

ti
ve

s.

In
st

an
t a

va
ila

bi
lit

y
an

d
 lo

w
 s

et
up

 c
os

ts
 fo

r
ne

w
 d

ev
el

op
m

en
t a

nd
 d

ep
lo

ym
en

t
en

vi
ro

nm
en

ts
 a

llo
w

 o
pe

ra
ti

ng
 u

ni
ts

 to
 e

xp
lo

re
 n

ew
 in

it
ia

ti
ve

s
qu

ic
kl

y
at

 lo
w

 c
os

t
w

it
ho

ut
 in

cr
ea

si
ng

 in
te

rn
al

 IT
 h

ar
d

w
ar

e
or

 s
ta

ff
 o

ve
rh

ea
d

s.
 F

or
 h

ig
h

d
at

a
tr

af
fi

c
vo

lu
m

es
, i

t m
ay

 b
ec

om
e

m
or

e
ec

on
om

ic
al

 to
 b

ri
ng

 th
e

op
er

at
io

ns
 in

-h
ou

se
. B

ec
au

se

m
ai

nt
ai

ni
ng

 le
ga

cy
 h

ar
d

w
ar

e
an

d
 s

of
tw

ar
e

ab
so

rb
s

th
e

m
aj

or
it

y
of

 IT
 c

os
ts

, l
ar

ge

co
rp

or
at

io
ns

 m
ay

 s
ee

 s
ig

ni
fic

an
t c

os
ts

 s
av

in
gs

 b
y

se
le

ct
iv

el
y

m
ov

in
g

no
nc

ri
ti

ca
l

ap
pl

ic
at

io
ns

 a
nd

 p
ro

ce
ss

es
 to

 e
xt

er
na

l c
lo

ud
s.

So
ft

w
ar

e
av

ai
la

bi
lit

y
So

ft
w

ar
e

as
 a

 s
er

vi
ce

 (S
aa

S)
 a

nd

pl
at

fo
rm

 a
s

a
se

rv
ic

e
(P

aa
S)

 p
ro

vi
d

e
ne

ce
ss

ar
y

so
ft

w
ar

e
an

d
 in

fr
as

tr
uc

tu
re

at

 lo
w

 e
nt

ry
 c

os
t.

L
im

it
ed

 o
nl

in
e

ve
rs

io
n

fu
nc

ti
on

al
it

y
m

ay
 b

e
m

or
e

th
an

 o
ff

se
t b

y
d

ra
m

at
ic

 c
os

t s
av

in
gs

.

E
xi

st
in

g
vo

lu
m

e
lic

en
si

ng
 o

f l
eg

ac
y

d
es

kt
op

 a
nd

 p
ro

ce
ss

-i
nt

eg
ra

te
d

 e
nt

er
p

ri
se

so

ft
w

ar
e

m
ay

 m
ak

e
th

e
st

at
u

s
qu

o
m

or
e

at
tr

ac
ti

ve
 if

 e
nd

-u
se

r
re

tr
ai

ni
ng

, p
ro

ce
ss

m

od
ifi

ca
ti

on
s,

 a
nd

 o
th

er
 c

ha
ng

e
co

st
s

ar
e

hi
gh

. L
eg

ac
y

d
es

kt
op

 s
of

tw
ar

e
m

ay
 h

av
e

m
or

e
fe

at
u

re
s

an
d

 fu
nc

ti
on

al
it

y
th

an
 is

 c
u

rr
en

tl
y

av
ai

la
bl

e
in

 S
aa

S
ve

rs
io

ns
. B

u
t t

he

le
ga

cy
 s

of
tw

ar
e

lic
en

si
ng

 c
os

ts
 m

ay
 d

ra
m

at
ic

al
ly

 in
cr

ea
se

 if
 it

 is
 h

os
te

d
 in

 a
 p

ri
va

te

cl
ou

d
 e

nv
ir

on
m

en
t.

271Cloudware Basics
Sc

al
ab

ili
ty

O
ne

 o
f t

he
 m

os
t d

ra
m

at
ic

 b
en

efi
ts

 fo
r

SM
E

s
an

d
 s

ta
rt

-u
ps

. I
f s

uc
ce

ss
fu

l,
ap

pl
ic

at
io

ns
 d

es
ig

ne
d

 to
 a

ut
os

ca
le

 c
an

sc

al
e

en
d

le
ss

ly
 in

 a
 c

lo
ud

 e
nv

ir
on

m
en

t
to

 m
ee

t t
he

 g
ro

w
in

g
d

em
an

d
.

L
ar

ge
 e

nt
er

p
ri

se
s

w
it

h
si

gn
ifi

ca
nt

 h
ar

d
w

ar
e,

 le
ga

cy
 s

of
tw

ar
e,

 a
nd

 s
ta

ff
 r

es
ou

rc
es

 c
an

be

ne
fi

t f
ro

m
 c

lo
u

d
 s

ca
la

bi
lit

y
by

 id
en

ti
fy

in
g

C
P

U
-i

nt
en

si
ve

 p
ro

ce
ss

es
 s

u
ch

 a
s

im
ag

e
p

ro
ce

ss
in

g,
 P

D
F

co
nv

er
si

on
, a

nd
 v

id
eo

 e
nc

od
in

g
th

at
 w

ou
ld

 b
en

efi
t f

ro
m

 th
e

m
as

si
ve

ly
 s

ca
la

bl
e

p
ar

al
le

l p
ro

ce
ss

in
g

av
ai

la
bl

e
in

 c
lo

u
d

s.
 W

hi
le

 th
is

 m
ay

 r
eq

u
ir

e
m

od
if

yi
ng

 le
ga

cy
 a

p
p

lic
at

io
ns

, t
he

 s
p

ee
d

 b
en

efi
ts

 a
nd

 r
ed

u
ce

d
 lo

ca
l h

ar
d

w
ar

e
re

qu
ir

em
en

ts
 m

ay
 fa

r
ou

tw
ei

gh
 th

e
so

ft
w

ar
e

m
od

ifi
ca

ti
on

 c
os

ts
.

Sk
ill

s
an

d
 s

ta
ffi

ng
W

hi
le

 th
e

pr
op

er
 d

es
ig

n
of

 c
lo

ud

ap
pl

ic
at

io
ns

 r
eq

ui
re

s
hi

gh
-l

ev
el

so

ft
w

ar
e

d
ev

el
op

m
en

t s
ki

lls
, t

he
ir

m

ai
nt

en
an

ce
 a

nd
 s

up
po

rt
 is

 v
as

tl
y

si
m

pl
ifi

ed
 in

 th
e

cl
ou

d
 e

nv
ir

on
m

en
t.

C
lo

ud
 p

ro
vi

d
er

s
ha

nd
le

 a
ll

m
ai

nt
en

an
ce

 a
nd

 s
up

po
rt

 is
su

es
 fo

r
bo

th
 h

ar
d

w
ar

e
an

d
 p

la
tf

or
m

 s
of

tw
ar

e
at

 c
os

ts
 th

at
 a

re
 e

it
he

r
bu

nd
le

d
 in

to
 th

e
us

ag
e

fe
es

 o
r

av
ai

la
bl

e
in

 v
ar

io
us

co

nfi
gu

ra
ti

on
s

as
 p

re
m

iu
m

 s
er

vi
ce

s.

T
hi

s
al

lo
w

s
si

gn
ifi

ca
nt

 c
os

t s
av

in
gs

th

ro
ug

h
re

d
uc

ed
 s

ta
ff

 o
ve

rh
ea

d
s.

B
ec

au
se

 th
e

m
aj

or
it

y
of

 e
nt

er
p

ri
se

 IT
 c

os
ts

 g
oe

s
to

 s
u

p
p

or
t l

eg
ac

y
ap

p
lic

at
io

ns
 a

nd

ha
rd

w
ar

e,
 th

e
gr

ea
te

st
 s

ta
ffi

ng
 b

en
efi

ts
 w

ill
 b

e
se

en
 in

 n
ew

 c
lo

u
d

 in
it

ia
ti

ve
s

th
at

 d
o

no
t a

d
d

 to
 th

e
st

af
fi

ng
 b

u
rd

en
. L

on
ge

r-
te

rm
, a

s
th

e
en

te
rp

ri
se

 b
eg

in
s

to
 a

na
ly

ze

cl
ou

d
 te

ch
no

lo
gy

 p
ot

en
ti

al
 fo

r
it

s
le

ga
cy

 o
p

er
at

io
ns

, r
et

ra
in

in
g

of
 e

xi
st

in
g

st
af

f o
r

br
in

gi
ng

 in
 n

ew
 s

ta
ff

 w
it

h
cl

ou
d

 te
ch

no
lo

gy
 s

ki
lls

 w
ill

 b
e

ne
ce

ss
ar

y
to

 ta
ke

ad

va
nt

ag
e

of
 th

e
ne

w
 p

ar
ad

ig
m

. T
hu

s,
 s

om
e

in
ve

st
m

en
t w

ill
 h

av
e

to
 b

e
m

ad
e

be
fo

re

la
rg

e-
sc

al
e

or
 lo

ng
-t

er
m

 b
en

efi
ts

 w
ill

 b
e

se
en

. T
he

 s
ta

ffi
ng

 in
ve

st
m

en
t m

ay
 b

e
si

gn
ifi

ca
nt

 if
 th

e
en

te
rp

ri
se

 is
 a

tt
em

p
ti

ng
 to

 c
re

at
e

a
p

ri
va

te
 c

lo
u

d
 to

 h
an

d
le

 d
yn

am
ic

re

so
u

rc
e

al
lo

ca
ti

on
 a

nd
 s

ca
la

bi
lit

y
ac

ro
ss

 it
s

op
er

at
in

g
u

ni
ts

. I
n

th
is

 c
as

e,
 it

 m
ay

 fa
ce

si

gn
ifi

ca
nt

 s
ta

ff
 in

ve
st

m
en

t a
s

w
el

l a
s

th
e

re
qu

ir
ed

 h
ar

d
w

ar
e,

 s
of

tw
ar

e,
 a

nd
 n

et
w

or
k

in
ve

st
m

en
t t

o
im

p
le

m
en

t a
nd

 m
ai

nt
ai

n
th

ei
r

p
ri

va
te

 c
lo

u
d

.

E
ne

rg
y

ef
fic

ie
nc

y
B

ec
au

se
 S

M
E

s
ca

n
d

ra
m

at
ic

al
ly

 r
ed

uc
e

or
 e

lim
in

at
e

lo
ca

l s
er

ve
rs

, c
lo

ud

co
m

pu
ti

ng
 p

ro
vi

d
es

 d
ir

ec
t u

ti
lit

y
co

st

sa
vi

ng
s

as
 w

el
l a

s
en

vi
ro

nm
en

ta
l

be
ne

fit
s.

E
ve

n
ve

ry
 la

rg
e

en
te

rp
ri

se
 IT

 d
at

a
ce

nt
er

s
ca

nn
ot

 a
ch

ie
ve

 th
e

en
er

gy
 e

ffi
ci

en
ci

es
 fo

un
d

in

 th
e

m
as

si
ve

 fa
ci

lit
ie

s
of

 p
ub

lic
 c

lo
ud

 p
ro

vi
d

er
s

ev
en

 w
it

h
ag

gr
es

si
ve

 h
ig

h-
d

en
si

ty

se
rv

er
 a

nd
 v

ir
tu

al
iz

at
io

n
st

ra
te

gi
es

. I
n

pe
ri

od
s

of
 e

co
no

m
ic

 d
ow

nt
ur

ns
, g

re
en

in

it
ia

ti
ve

s
ty

pi
ca

lly
 c

an
no

t c
om

pe
te

 fo
r

sc
ar

ce
 c

ap
it

al
 fu

nd
s.

 B
y

em
pl

oy
in

g
a

m
ix

ed

st
ra

te
gy

 th
at

 o
ff

-l
oa

d
s

ap
pl

ic
at

io
ns

 a
nd

 p
ro

ce
ss

in
g

to
 e

xt
er

na
l c

lo
ud

s
w

he
n

fe
as

ib
le

,
IT

 m
an

ag
er

s
ar

e
ab

le
 to

 m
in

im
iz

e
th

ei
r

en
er

gy
 c

os
ts

 a
nd

 c
ar

bo
n

fo
ot

pr
in

t.
Sy

st
em

re

d
un

d
an

cy
 a

nd

d
at

a
ba

ck
up

T
hi

s
is

 a
 la

rg
e

be
ne

fit
 fo

r
SM

E
s,

 th
e

m
aj

or
it

y
of

 w
hi

ch
 a

re
 p

oo
rl

y
pr

ep
ar

ed

fo
r

ha
rd

w
ar

e
fa

ilu
re

s
an

d
 d

is
as

te
r

re
co

ve
ry

. C
lo

ud
 s

to
ra

ge
 c

an
 r

ed
uc

e
d

ow
ns

id
e

ri
sk

s
at

 lo
w

 c
os

t.

B
ec

au
se

 c
lo

ud
 te

ch
no

lo
gi

es
 d

is
tr

ib
ut

e
bo

th
 d

at
a

st
or

ag
e

an
d

 d
at

a
pr

oc
es

si
ng

 a
cr

os
s

po
te

nt
ia

lly
 la

rg
e

nu
m

be
r

of
 s

er
ve

rs
, t

he
 li

ke
lih

oo
d

 o
f d

at
a

lo
ss

 d
ue

 to
 h

ar
d

w
ar

e
fa

ilu
re

 is
 m

uc
h

lo
w

er
 th

an
 in

 m
os

t l
ar

ge
 p

ri
va

te
 d

at
a

ce
nt

er
s.

 T
he

 c
lo

ud
 d

at
a

st
or

ag
e

ca
n

pr
ov

id
e

a
co

st
-e

ff
ec

ti
ve

 s
up

pl
em

en
ta

l b
ac

ku
p

st
ra

te
gy

.

272 Guide to Cloud Computing for Business and Technology Managers

There might be some instances, particularly for long-term, sta-
ble computing configuration usage, where cloud computation
might not have a cost advantage over using one’s internal
resources or directly leasing equipment. For example, if the vol-

ume of data storage and computational resources required are essen-
tially constant and there is no need for rapid provisioning and
flexibility, an organization’s local computational capabilities might be
more cost effective than using a cloud.

Resources are used more efficiently in cloud computing, resulting in sub-
stantial support and energy cost savings. The need for highly trained and
expensive IT personnel is also reduced; client organizational support and
maintenance costs are reduced dramatically because these expenses are
transferred to the cloud provider, including 24/7 support that in turn is
spread onto a much larger base of multiple tenants or clients.

Another reason for migrating to the cloud is the drastic reduction in the
cost of power and energy consumption.

13.5.3 Centralized Data Storage

Many data centers are an ensemble of legacy applications, operating sys-
tems, hardware, and software and are a support and maintenance night-
mare. This situation requires more specialized maintenance personnel,
increased costs because of lack of standardization, and a higher risk of
crashes. The cloud not only offers a larger amounts of data storage resources
than are normally available in local, corporate computing systems, it also
enables decrease or increase in the resources used per requirements—with
the corresponding adjustments in operating cost. This centralization of
storage infrastructure results in cost efficiencies in utilities, real estate, and
trained personnel. Also, data protections mechanisms are much easier to
implement and monitor in a centralized system than on large numbers of
computing platforms that might be widely distributed geographically in
different parts of an organization.

13.5.4 Reduced Time to Deployment

In a competitive environment where rapid evaluation, development, and
deployment of new approaches, processes, solutions, or offerings are criti-
cal, the cloud offers the means to use powerful computational or large
storage resources on short notice within a short period of time frame,
without requiring sizeable initial investments of finances, efforts, or time
(in hardware, software, and personnel). Thus, this rapid provisioning of

273Cloudware Basics

latest technologically upgraded and enhanced resources can be accom-
plished at relatively small cost (with minimal cost of replacing discontin-
ued resources) and offers the client access to advanced technologies that
are constantly being acquired by the cloud provider. Improved delivery of
services obtained by rapid cloud provisioning improves time to market and,
hence, market growth.

13.5.5 Scalability

Cloud computing provides the means, within limits, for a client to rap-
idly provision computational resources to meet increases or decreases in
demand. Cloud scalability provides for optimal resources so that computing
resources are provisioned per requirements seamlessly ensuring maximum
cost-benefit to the clients. Since the cloud provider operates on a multitenancy
utility model, the client organization has to pay only for the resources it is
using at any particular time.

SCALABILITY OF COMPLEX SYSTEMS LIKE THE
INTERNET

Complex systems exhibit different patterns of behavior than tra-
ditional systems and require new design principles based on a

deeper understanding of the physical properties of their components
and of the manner in which they interact with one another, and with the
environment. The behavior of any system cannot be explained without
precise knowledge of the interactions among its components, hence,
such an effort is undertaken whenever we need to make progress in
our understanding of the behavior of the physical world surrounding
us or a system that we engineer. Predicting all possible interactions
among the components of a system during the design process is an
even more daunting task.

The topology of a network used to model the interactions in complex
biological, social, economic, and computing systems is described by
means of graphs in which vertices represent the entities and edges rep-
resent their interactions. The number of edges incident upon a vertex
is called the degree of the vertex. Systems interconnected by scale-free
networks have the property that we can limit the number of interac-
tion paths among its components without limiting the number of com-
ponents of this network system. Because the degrees of nodes obey a
power-law distribution, while the vast majority of components have
one or very few connections, the number of highly connected compo-
nents is very small. This ensures and assures the scalability of scale-
free networks like the Internet.

274 Guide to Cloud Computing for Business and Technology Managers

13.6 Cloud Challenges

There are multiple technical challenges that any cloud platform or applica-
tion needs to address in order to truly provide a utility-like computing infra-
structure. The three key challenges are described in the following:

 1. Scalability: Ability to scale to millions of clients simultaneously
accessing the cloud service

 2. Multitenancy: Ability to provide the isolation as well as good perfor-
mance to multiple tenants using the cloud infrastructure

 3. Availability: Ability that ensures that the infrastructure and applica-
tions are highly available regardless of hardware and software faults

13.6.1 Scalability

On-demand scaling (and descaling) of computation is one of the critical
needs of any cloud computing platform. Compute scaling can be either
done at the infrastructure level or platform level. At the infrastructure
level, it is about increasing the capacity of the compute power, while at
the platform level, the techniques are mainly to intelligently manage the
different client requests in a manner that best utilizes the compute infra-
structure without requiring the clients to do anything special during
peaks in demand:

 1. Scale-up or vertical scaling is about adding more resources to a
single node or a single system to improve performance—such as
addition of CPUs, use of multicore systems instead of single-core,
or adding additional memory. In order to support on-demand
scaling of the cloud infrastructure, the system should be able to
increase its compute power dynamically without impacting the
platform or application executing over it. Unless a system is vir-
tualized, it is generally not possible to increase the capacity of a
compute system dynamically without bringing down the system.
The more powerful compute resource can now be effectively used
by a virtualization layer to support more processes or more virtual
machines—enabling scaling to many more clients. The advantage
of scale-up systems is that the programming paradigm is simpler,
since it does not involve distributed programming, unlike scale-out
systems.

 2. Scale out or horizontal scaling, on the other hand, is about expanding
the compute resources by adding a new computer system or node
to a distributed application. A Web server (like Apache) is a typical
example for such a system. In fact, given that most cloud applications

275Cloudware Basics

are service-enabled, they need to be developed to expand on demand
using scaling-out techniques. The advantage of scale-out systems is
that commodity hardware, such as disk and memory, can be used for
delivering high performance. A scale-out system such as intercon-
nected compute nodes forming a cluster can be more powerful than
a traditional supercomputer, especially with faster interconnect tech-
nologies. Scale-out systems will essentially be distributed systems
with a shared high-performance disk storage used for common data.
Unlike scale-up systems, in order to leverage full power of scale-out
systems, there should be an effort from the programmer to design
applications differently. Many design patterns exist for applications
designed for scale-out systems like MapReduce.

Scale-out solutions have much better performance and price/performance
over scale-up systems. This is because a search application essentially
consists of independent parallel searches, which can easily be deployed on
multiple processors. Scale-out techniques can be employed at application
level as well. For example, a typical Web search service is scalable where two
client query requests can be processed completely as parallel threads. The
challenge in scale-out systems, however, is the complex management of the
infrastructure, especially when the infrastructure caters to dynamic scaling
of resources. Additionally, as noted, applications that do not consist of inde-
pendent computations are difficult to scale out.

13.6.2 Multitenancy

This deals with implementation of multitenancy with fine-grained resource
sharing while ensuring security and isolation between customers and also
allowing customers to customize the database:

 1. Ad hoc/custom instances: In this lowest level, each customer has their
own custom version of the software. This represents the situation
currently in most enterprise data centers where there are multiple
instances and versions of the software. It was also typical of the ear-
lier ASP model that represented the first attempt to offer software for
rent over the Internet (see Chapter 11, “Application Service Providers
(ASPs))”. The ASP model was similar to the SaaS model in that ASP
customers (normally businesses), upon logging in to the ASP portal,
would be able to rent the use of a software application like CRM.
However, each customer would typically have their own instance of
the software being supported. This would imply that each customer
would have their own binaries, as well as their own dedicated pro-
cesses for implementation of the application. This makes manage-
ment extremely difficult, since each customer would need their own
management support.

276 Guide to Cloud Computing for Business and Technology Managers

 2. Configurable instances: In this level, all customers share the same ver-
sion of the program. However, customization is possible through
configuration and other options. Customization could include the
ability to put the customer’s logo on the screen and tailoring of
workflows to the customer’s processes. In this level, there are sig-
nificant manageability savings over the previous level, since there
is only one copy of the software that needs to be maintained and
administered. For instance, upgrades are seamless and simple.

 3. Configurable, multitenant efficient instances: Cloud systems at this level
in addition to sharing the same version of the program also have
only one instance of the program running that is shared among all
the customers. This leads to additional efficiency since there is only
one running instance of the program.

 4. Scalable, configurable, multitenant efficient instances: In addition to
the attributes of the previous level, the software is also hosted on
a cluster of computers, allowing the capacity of the system to scale
almost limitlessly. Thus, the number of customers can scale from a
small number to a very large number, and the capacity used by each
customer can range from being small to very large. Performance
bottlenecks and capacity limitations that may have been present
in the earlier level are eliminated. For instance, in a cloud e-mail
service like Gmail or Yahoo Mail, multiple users share the same
physical e-mail server as well as the same e-mail server processes.
Additionally, the e-mails from different users are stored in the same
set of storage devices and perhaps the same set of files. This results in
management efficiencies; as a contrary example, if each user had to
have a dedicated set of disks for storing e-mail, the space allocation
for each user would have to be managed separately. However, the
drawback of shared storage devices is that security requirements are
greater; if the e-mail server has vulnerabilities and can be hacked, it
is possible for one user to access the e-mails of another.

13.6.3 Availability

Cloud services also need special techniques to reach high levels of avail-
ability. Mission-critical enterprise services generally have availability in the
99.999% range. This corresponds to a downtime of 5 min in an entire year!
Clearly, sophisticated techniques are needed to reach such high levels of reli-
ability. Even for non-mission-critical applications, downtime implies loss of
revenue. It is therefore extremely important to ensure high availability for
both mission-critical as well as non-mission-critical cloud services. There
are basically two approaches to ensuring availability. The first approach is
to ensure high availability for the underlying application upon which the
cloud service is built. This generally involves one of the three techniques:

277Cloudware Basics

infrastructure availability ensuring redundancy in infrastructure, such as
servers, so that new servers are always ready to replace failed servers; mid-
dleware availability achieved with middleware redundancy; and application
availability achieved via application redundancy.

To the 9s (measures of application availability): Service-level
agreements (SLAs) on availability are often measured in 9s. This
describes the target percent of unplanned availability to be
achieved, typically on a monthly or annual basis. Each 9 corre-

sponds to a 10-fold decrease in the amount of downtime. For an impor-
tant application, such as e-mail or a CRM system, three 9s might be a
reasonable target, whereas critical services such as public utilities
would tend to target five 9s.

The following table describes the amount of acceptable downtime
per year for the corresponding level of availability:

of 9s SLA Target (%) Maximum Downtime per Year

2 99 3 days, 15 h, and 40 min
3 99.9 8 h and 46 min
4 99.99 52 min and 36 s
5 99.999 5 min and 16 s
6 99.9999 31.56 s

The other approach is to build support for high availability into the cloud
infrastructure, which is of two types:

 1. Failure detection, where the cloud infrastructure detects failed appli-
cation instances and avoids routing requests to such instances

 2. Application recovery, where failed instances of application are
restarted

13.6.3.1 Failure Detection

Many cloud providers, such as Amazon Web Services’ Elastic Beanstalk,
detect when an application instance fails and avoid sending new requests to
the failed instance. In order to detect failures, one needs to monitor for failures.

13.6.3.1.1 Failure Monitoring

There are two techniques of failure monitoring. The first method is heart-
beats, where each application instance periodically sends a signal (called
a heartbeat) to a monitoring service in the cloud. If the monitoring service

278 Guide to Cloud Computing for Business and Technology Managers

does not receive a specified number of consecutive heartbeats, it may declare
the application instance as failed. The second is the method of probes. Here,
the monitoring service periodically sends a probe, which is a lightweight ser-
vice request, to the application instance. If the instance does not respond to a
specified number of probes, it may be considered failed. There is a trade-off
between speed and accuracy of detecting failures. To detect failures rapidly,
it may be desirable to set a low value for the number of missed heartbeats or
probes. However, this could lead to an increase in the number of false fail-
ures. An application instance may not respond due to a momentary overload
or some other transient condition. Since the consequences of falsely declar-
ing an application instance failed are severe, generally a high threshold is
set for the number of missed heartbeats or probes to virtually eliminate the
likelihood of falsely declaring an instance failed.

13.6.3.1.2 Redirection

After identifying failed instances, it is necessary to avoid routing new requests
to these instances. A common mechanism used for this in HTTP-based
protocols is HTTP redirection.

13.6.3.2 Application Recovery

In addition to directing new requests to a server that is up, it is necessary to
recover old requests. An application-independent method of doing this is
checkpoint/restart. Here, the cloud infrastructure periodically saves the state of
the application. If the application is determined to have failed, the most recent
checkpoint can be activated, and the application can resume from that state.

13.6.3.2.1 Checkpoint/Restart Paradigm

Checkpoint/restart can give rise to a number of complexities. First, the infra-
structure should checkpoint all resources, such as system memory, other-
wise the memory of the restarted application may not be consistent with
the rest of the restarted application. Checkpointing storage will normally
require support from the storage or file system, since any updates that were
performed have to be rolled back. This could be complex in a distributed
application, since updates by a failed instance could be intermingled with
updates from running instances. Also, it is difficult to capture and reproduce
activity on the network between distributed processes.

In a distributed checkpoint/restart, all processes of distributed appli-
cation instances are checkpointed, and all instances are restarted from a
common checkpoint if any instance fails. This has obvious scalability limi-
tations and also suffers from correctness issues if any interprocess com-
munication data is in-transit at the time of failure. For instance, Ubuntu
Linux has support for checkpoint/restart of distributed programs. Even
sequential applications can be transparently checkpointed if linked with

279Cloudware Basics

the right libraries, using the Berkeley lab checkpoint/restart library. It can
also invoke application-specific code (which may send out a message to the
users or write something in a log file, etc.) during checkpointing and restart.

13.6.3.2.2 Transactional Paradigm

When an application instance fails, some signal (e.g., closing of network con-
nections) is sent to the other instances, which abort all work in progress for
the failed instance. When the failed instance restarts, it restarts all trans-
actions in progress. Additionally, other instances restart any requests they
made to the failed instance.

13.7 Summary

This chapter introduced the concept of cloud computing. It describes its
definition, presents the cloud delivery and deployment models, and high-
lights its benefits for enterprises. In the last part of the chapter, we discussed
the primary challenges faced while provisioning of cloud services, namely,
scalability, multitenancy, and availability. This prepares the background for
understanding the economics of cloud computing solutions, which we take
up in the next chapter.

281

14
Cloudware Economics

14.1 Drivers for Cloud Computing in Enterprises

As the technology has been maturing, greater management emphasis is
being placed on the need to realize business benefits from cloud investment.
With the pace of technology maturity, there will be a shift in how vendors
supply their cloud technology and solutions and how cloud consumers build
on new business models through the technology enhancements offered
by cloud. Investment in cloud computing should be more than a business
enabler and cost reduction exercise; it should be an exercise in capability
building leveraged to drive the business, with increased adaptability, agility,
flexibility, scalability, and mobility across the enterprise system landscape.

Some of the key business drivers that are linked to creating value beyond
cost efficiencies and business scalability are as follows:

• Cloud computing enables business agility by enabling the business
to respond faster to the demanding needs of the market; by facilitat-
ing access, prototyping, and rapid provisioning, organizations can
adjust processes and services to meet the changing needs of the mar-
kets. Faster, and easier, prototyping and experimentation can also
serve as a platform for innovation. This allows shorter development
cycles and faster time to products and value.

• Virtualization offers a tangible benefit of abstracting away the oper-
ational system complexity, resulting in better user experience and
productivity. This, in turn, can significantly reduce maintenance and
upgrade costs, while providing flexibility for innovative enhance-
ments and developments in the background.

• Expanded computing power and capacity allows cloud comput-
ing to offer simple, yet context-driven, variability. It can improve
user experience and increase product relevance by allowing a more
enhanced, and subtle customization of products and services, and
personalized experience.

282 Guide to Cloud Computing for Business and Technology Managers

Developing a robust business case that demonstrates the return on invest-
ment of cloud can benefit all parties in a cloud venture. The cloud customers
and consumers can justify the investment in terms of costs and benefits of the
key technology features and the new operating models. This exercise needs
to identify any interdependencies and trade-offs. The output of this exer-
cise will also serve as a key ingredient of the strategic planning process. It
will also serve as a good performance benchmark tool and metric to monitor
the investment effectiveness and determine if the cloud provision is deliver-
ing both the business and technology promises, while also identifying any
potential scope for fine-tuning and improvement.

In this chapter, we discuss some of the pertinent financial and accounting
techniques that form an important aspect of measuring or appraising invest-
ment decisions. It is important, however, to emphasize that no investment
decision should be based purely on financial metrics. Organizations need to
consider both financial and nonfinancial indicators to determine the value of
cloud. Some contributing factors to this value will be qualitative and chal-
lenging to express in monetary value.

However, as technology and business models mature, IT will continue on
its path to commoditization. Most approaches build a business case for cloud
that is predominantly viewed through operational efficiencies, focusing on
cost optimizations that are evaluated using cost-based calculations linked to
resource utilization. The metrics often used (especially by SMEs) are linked
to cost efficiencies achieved as a result of a perceived shift from CapEx (capi-
tal expenditure) to OpEx (operating expenditure), TCO (total cost of own-
ership), and at best, looking at ROI (return on investment) and NPV (net
present value) of cloud investment.

For traditional IT, the organizations invest in infrastructure assets such
as hardware and software code, which requires capital expenditure. Capital
expenditure poses some risks:

• Capital is limited, especially in the case of public sector or SMEs.
• CapEx raises the barrier for entry by making it difficult to access the

latest technology, especially in the case of SMEs.
• Precious capital will be tied down in physical assets that rapidly

depreciate, and there is the associated cost of maintenance and
upgrade. This poses an opportunity cost as part of this capital that
could be invested elsewhere to drive innovation.

• Large investment in physical IT hardware and software, especially
in the case of large enterprises, risks vendor lock-in that reduces
business flexibility and agility.

• For growth or scaling, in addition to the need for modernizing old
technology, substantial investment in the infrastructure, architec-
ture, and integration is needed.

283Cloudware Economics

One value proposition offered by cloud providers is the opportunity to reduce
the IT capital expenditure and address the issues earlier. Instead, such larger
capital investment is made by the providers themselves who require cloud
computing platforms or private cloud users. In their case, they benefit from
economies of scale through shared service models. Some other implications
of using OpEx are as follows:

• There will be much faster rate of cost reduction using cloud.
• Cost of ownership will be transformed.
• Removal of up-front capital and release funds.
• Shift from balance sheet to operating statement.
• Cash flow implications where revenue generation and expenditure

will be based on service usage.
• There will be a fresh focus on productivity and revenue generation

while keeping capital costs down through greater efficiencies of
working capital.

• Minimizing up-front investment to drive improved asset usage
ratios, average revenue per unit, average margin per user, and cost
of asset recovery.

• Maximizing the use of capital by moving funding toward optimiz-
ing capital investment leverage and risk management of sources of
funding.

When the cost of capital is high, shifting CapEx to OpEx may more easily be
justified. For OpEx to be beneficial is that there should be a reliable mecha-
nism to measure and predict usage and tie this to business performance met-
rics or opt for a monthly or annual baseline fixed rate. A business may still
choose to invest in CapEx for differentiated business processes yet adopt a
usage-based model to improve financial efficiency.

14.1.1 Total Cost of Ownership (TCO)

TCO is an accounting metric that takes all direct and indirect costs of tech-
nology acquisition and operation into account over the IT project life cycle.
The costs include everything from initial investment in hardware and
software acquisition to installation, administration, training, maintenance
and upgrades, service and support, security and disaster recovery, power,
and any other associated costs. The typical cost components are broadly
categorized as acquisition costs versus operational costs, each incurring
administrative and management costs. A simple allocation of these costs is
illustrated in Table 14.1.

284 Guide to Cloud Computing for Business and Technology Managers

Moving from traditional on-premise IT to on-demand cloud service
requires examination of the assumptions underlying TCO. The cloud envi-
ronment tends to abstract asset virtualization, obfuscate labor, and deliver IT
services at a contracted rate. In comparison, cloud services are supplied and
metered on the resources consumed, and the cloud provider will typically
have clear pricing models that cover the cost of the consumed resources.
Hence, in cloud TCO calculations, there is an opportunity to consolidate and
simplify some of the cost components, as the main infrastructure and up-
front costs are displaced by service subscription and reassigned as opera-
tional costs.

While calculating TCO, it is common to evaluate multiple scenarios by
carrying out a sensitivity analysis to understand how various patterns
of usage influence cost derivers and overall TCO. It is then important to
have a baseline cost advantage target (in %) to be able to benchmark the
cloud deployment costs against it. Depending on their level of maturity,
organizations engage differently with cloud technology. In the case of
many SMEs, reactive response to incident management, undocumented or
unrepeatable processes, and unplanned implementations tend to increase
the complexity and cost of any IT service regardless of the delivery
mechanism.

Organizations need to study the fully loaded costs in the light of the busi-
ness benefits gained and the opportunity costs of not moving to the cloud.
Often, it might be a case of paying a premium for much improved, opti-
mized, or secure IT provision. Hence, it is imperative to benchmark costs
beyond an equivalent amount of internal server capability.

Baseline TCO can be calculated as follows:

 1. Identify all different cost streams both business and technical. Some
common sources of cost include amount of compute capacity, net-
work traffic, and storage. Certain services may be on a pay-for-use
basis but some costs such as static IP address for certain applica-
tions; in the same, there are some service support and management

TABLE 14.1

IT Cost Components

Direct Costs Indirect Costs Overheads

Server Network Facilities
Storage Storage Power
Software (application) Software (infrastructure) labor (operational) Bandwidth
Implementation Maintenance and upgrades Labor (admin)

Support
Training

285Cloudware Economics

costs, as well as cost of skills upgrade (offset by perhaps a leaner IT
team), that need also be accounted for. By definition, cloud implies a
dynamic service that assures optimal utilization. This, on the other
hand, means that fluctuations in service use could become challeng-
ing, unlike the static resources in a traditional IT environment that
can be accounted for more easily.

 2. Incorporate hidden cost. Whereas in-house provisioning incurs hid-
den costs such as additional administrative headcount, additional
property and facilities requirements, inevitable overprovisioning
costs, and additional costs for ensuring redundancy, the cloud pro-
vision’s hidden costs could come from potential costs such as ser-
vice interruptions, inappropriate service scaling, mismanagement
or a denial of service attack, extra security, and contingency disaster
preparedness and recovery plan costs, as well as the initial cost of
cloud readiness including costs associated with setup, interfacing
and integrating with discrete local infrastructure or resources, and
administrating the whole new operating system.

 3. Evaluate the application profiles and service mix. Applications uti-
lize computing resources at varying rates. Some are more compute
intensive, whereas others do a small amount of processing across an
enormous amount of data. This exercise helps to create a clearer TCO
picture by assigning costs to the different cloud services, according
to application profile.

 4. Calculate the TCO under a number of different application topolo-
gies to understand costs under different loads. Identify and cost
the required compute instances according to application load
variations. Technically speaking, study the horizontal and vertical
scaling patterns of the applications. If the load on an application
varies significantly, it will most likely require a larger deploy-
ment of multiple compute instances to reduce the application
bottlenecks.

 5. Evaluate the role of load variation. It is important to identify the
periods and patterns of application requiring larger loads or expe-
rience load variation. A static pattern assumption is hardly useful
to calculate cloud TCO. Carrying out a statistical (e.g., Monte Carlo)
and scenario analysis to explicitly assess TCO under different load
patterns can assist with more accurate estimation of TCO.

In practice to derive value from TCO analysis, it should be included in the
calculation of other measures such as return on investment (ROI), net present
value (NPV), internal rate of return (IRR), or Economic Value Added (EVA).
That way, value planning for cloud is not one-dimensionally cost focused,
but it will take into account the quantified business benefits as well.

286 Guide to Cloud Computing for Business and Technology Managers

14.1.1.1 Payback Method

The payback method calculates the number of years it will take before the ini-
tial investment of the project is paid back. The shorter the payback time, the
more attractive a project is as it reduces the risk of longer-term payouts. The
method is quite popular due to its simplicity; the weakness of the method is
it ignores the time value of money:

Number of years to pay back Original investment
Annual net

=
ccash flow

Although a popular investment appraisal method, payback period only
qualifies as a first screening technique to initially appraise a project. Its scope
is limited to the period the investment is recovered; hence, it ignores poten-
tial benefits as a result of investment gains or shortfalls thereafter.

14.1.1.2 Accounting Rate of Return on Investment (ROI)

This method calculates the return on investment (ROI) by calculating the
resulting cash inflows (produced by the investment) for depreciation. The
investment inflows are totaled and the investment costs are subtracted to
derive the profit. The profit is divided by the number of years invested, then
by the investment cost, to estimate the annual rate of return.

An ROI analysis calculates the difference between the stream of benefits
and the stream of costs over the lifetime of the system discounted by the
applicable interest rate. In order to find the ROI, the average net benefit has
to be calculated:

Net benefits Total benefits total costs depreciation
Useful

=
−–

 life

leading to

ROI Net benefits
Initial investment

=

14.1.1.3 Net Present Value (NPV)

The Net Present Value (NPV) approach calculates the amount of money that
an investment is worth, taking into account its costs, earnings, and time
value of money (inflation). Thus, it compares the economic value of a proj-
ect today with the value of the same project in future, taking inflation and
returns into account. If NPV of a prospective project is positive, it should
be accepted. If the NPV is negative, the project should probably be rejected
because the resulting cash flows will also be negative.

287Cloudware Economics

First, the present value is calculated as

Payment 1 1 interest
Interest

n

=
− +()−

leading to

Net Present Value NPV

Present Value of Expected Cash Valu

()

= ee Initial Investment Costs−

14.1.1.4 Cost–Benefit Ratio

This calculation method views the total benefits of an investment over the
costs consumed to deliver these benefits:

Cost benefit ratio Total benefits
Total costs

− =

14.1.1.5 Profitability Index

The profitability index attempts to identify the relationship between the
costs and benefits of the project through the ration calculated as

Profitability index Present value of cash flows
Investment

=

The lowest acceptable value of profitability index is 1.0; any value lower
than 1.0 would indicate that the project’s present value is less than the initial
investment. As values of the profitability index increase, so does the finan-
cial attractiveness of the proposed project.

14.1.1.6 Internal Rate of Return (IRR)

The IRR calculates the rate of return that an investment is expected to earn,
taking into consideration the time value of money. The higher is the project’s
IRR, the more desirable is it to carry out the project.

Internal rate of return (IRR) is a capital investment measure that indi-
cates how efficient an investment is (yield), using a compounded return
rate. If the cost of capital used to discount future cash flows is increased,
the NPV of the project will fall. As the cost of capital continues to increase,
the net present value will become zero before it becomes negative. The IRR
is the cost of the capital (or a required rate of return) that produces an NPV
of zero.

288 Guide to Cloud Computing for Business and Technology Managers

For the NPV method, we assume that the generated cash flows
over the life of the project can be invested elsewhere, at a rate
equal to the cost of capital, as the cost of capital represents an
opportunity cost. The IRR, on the other hand, assumes that gen-

erated cash flows can be reinvested elsewhere at the internal rate of
return. The larger the IRR in relation to the cost of capital, the less likely
that the alternative returns can be realized; hence, the underlying
investment assumption in the IRR method is a doubtful one, whereas
for NPV, the reinvestment assumption seems more realistic. In the same
way, NPV can accommodate conventional cash flows, whereas in com-
parison, we may get multiple results through the IRR method.

If a company has several competing cloud computing projects, the IRR can
be used in selecting which project to prioritize.

14.1.1.7 Economic Value Added (EVA)

Economic Value Added (EVA™), also known as economic profit, is a measure
used to determine the company’s financial performance based on the residual
wealth created. It depicts the investor or shareholder value creation above
the required return or the opportunity cost of the capital. It measures the eco-
nomic profit created when the return on the capital employed exceeds the cost
of the capital. Reducing costs increases profits and economic value added.
Unlike ROI, EVA takes into account the residual values for an investment.

14.2 Capital Budgeting Models

The business case of the cloud computing project should contain the cost–
benefit analysis. The evaluation point is to justify that the benefits have
outweighed the costs. In this section, six capital budgeting models will be
examined briefly. These models are

• The payback method
• The accounting rate of Return on Investment (ROI)
• The Net Present Value (NPV)
• The cost–benefit ratio
• The profitability index
• The Internal Rate of Return (IRR)
• The Economic Value Added (EVA)

289Cloudware Economics

14.3 Provisioning Configurations

14.3.1 Traditional Internal IT

In the traditional internal IT model, or zero-outsource model, all aspects that
constitute an IT application or service are purchased and managed using
internal resources. The most common form is office IT infrastructure. In
many offices, an Internet connection is provisioned from an ISP and con-
nected to the internal network via a router. This internal network is then
provisioned with firewalls, switches, central file and print servers, desktop
computers, and perhaps a wireless network and laptops. Internal IT pur-
chases, installs, and operates all this equipment as well as general office soft-
ware. IT for more specialized business applications can be handled in the
same manner, with custom or packaged applications that are loaded onto
hardware provisioned for that purpose.

You can also deploy applications for external audiences, such as a corporate
website in a traditional IT model. Depending on the scale of such an applica-
tion, it can either share the network connection (typically on a separate VLAN
to isolate it from internal traffic for security reasons) or be provisioned with
its own dedicated Internet connectivity and an isolated network.

14.3.2 Colocation

Another possible model for deploying an application is within a third-
party data center, otherwise known as a colocation facility. In this model,
the company is still responsible for purchasing the server hardware and
developing or purchasing the required software for running the applica-
tion. The colocation facility provides that third party with power, cooling,
rack space, and network connectivity for their hardware. The collocation
facility typically also provides redundant network connectivity, backup
power, and physical security.

Colocation services are typically purchased as annual contracts with an
initial service fee and monthly charges based on the amount of rack space
(usually bundled with a specified allocation of power) and committed band-
width. For hardware housed in facilities that are not in close proximity to a
company’s IT resources, you can purchase what some call remote-hands capa-
bility in case a manual intervention is required on your behalf.

14.3.3 Managed Service

In the managed-service model, in addition to outsourcing the core infra-
structure, such as power and network connectivity, the company no longer
purchases server and networking hardware. The managed-service provider
rents these to the company and also takes on the responsibility of managing
the hardware systems and base operating system software. In some cases,

290 Guide to Cloud Computing for Business and Technology Managers

the provider also rents standard software such as databases and rudimentary
database management services as part of their service offering.

Similar to the colocation scenario, contracting with a managed-service
provider typically involves at minimum an annual commit, with an initial
setup fee followed by a recurring monthly charge based on the configura-
tion of hardware and software being rented. In this model, bandwidth is not
typically charged for separately; instead, you get a standard allotment based
on the number of servers for which you contracted. You can also contract
for ancillary services, such as backups. Typically, the charge is based on the
amount of storage required on a monthly basis (Tables 14.2 through 14.4).

14.3.4 IaaS Cloud Model

Finally, we get to the cloud model. In this model, as in the managed-service
model, the company outsources the infrastructure and hardware, but in an
entirely different way. Instead of dedicated hardware resources, the company
utilizes virtualized resources that are dynamically allocated only at the time of need.

We can think of this as the analog of just-in-time manufacturing, which
brought tremendous efficiencies to the production of goods. Instead of stock-
piling large inventories, manufacturers can reduce their carrying costs by
having inventory delivered just as it is needed in manufacturing. Similarly,
the dynamic allocation of resources in a cloud service allows a customer to
use computing resources only when necessary. Servers do not have to sit idle
during slack periods.

The billing model for cloud services is aligned with this sort of usage pro-
file, with service provisioning often requiring no up-front cost and monthly
billing based on the actual amount of resources consumed that month. This
may translate into significant cost advantages over traditional deployment
models.

14.4 Quality of Service (QoS)

QoS refers to the ability of the cloud service to respond to expected invo-
cations and to perform them at the level commensurate with the mutual
expectations of both its provider and its customers. Several quality factors
that reflect customer expectations, such as constant service availability, con-
nectivity, and high responsiveness, become key to keeping a business com-
petitive and viable as they can have a serious impact upon service provision.
QoS thus becomes an important criterion that determines the service usabil-
ity and utility, both of which influence the popularity of a particular cloud
service, and an important selling and differentiating point between cloud
services providers.

291Cloudware Economics
TA

B
LE

 1
4.

2

E
co

no
m

ic
 C

os
ts

 o
f C

lo
ud

 A
do

pt
io

n

E
co

n
om

ic
 C

os
ts

S

m
al

l a
n

d
 M

ed
iu

m
 E

n
te

rp
ri

se
s

(S
M

E
s)

L

ar
ge

 E
n

te
rp

ri
se

s

D
at

a
se

cu
ri

ty
SM

E
s

ar
e

be
tt

er
 a

bl
e

to
 u

se
 th

ir
d

-p
ar

ty

se
rv

ic
es

 s
uc

h
as

 p
ay

m
en

t p
ro

ce
ss

in
g

to

ha
nd

le
 s

ec
ur

e
tr

an
sa

ct
io

ns
.

D
at

a
ar

e
an

 e
nt

er
pr

is
e’

s
m

os
t i

m
po

rt
an

t I
T

 a
nd

 o
pe

ra
ti

ng
 a

ss
et

. C
ur

re
nt

un

ce
rt

ai
nt

y
re

ga
rd

in
g

th
e

se
cu

ri
ty

 o
f t

he
 d

at
a

as
se

ts
 s

to
re

d
 in

 p
ub

lic
 c

lo
ud

s
is

on

e
of

 th
e

m
os

t s
ig

ni
fic

an
t b

ar
ri

er
s

in
 c

lo
ud

 a
d

op
ti

on
. L

ar
ge

 e
nt

er
pr

is
es

 m
ay

no

t w
an

t t
he

ir
 d

at
a

st
or

ed
 in

 c
ou

nt
ri

es
 w

he
re

 in
te

lle
ct

ua
l p

ro
pe

rt
y

pi
ra

cy
 is

pr

ev
al

en
t.

So
m

e
co

m
pa

ni
es

 m
ay

 n
ot

 w
an

t t
he

ir
 d

at
a

st
or

ed
 o

n
eq

ui
pm

en
t

us
ed

 b
y

th
ei

r
co

m
pe

ti
to

rs
.

D
at

a
co

nfi
d

en
ti

al
it

y
SM

E
s

fa
ce

 th
e

sa
m

e
d

at
a

co
nfi

d
en

ti
al

it
y

is
su

es
 a

s
la

rg
e

en
te

rp
ri

se
s.

O
ne

 o
f t

he
 a

d
va

nt
ag

es
 o

f c
lo

ud
 c

om
pu

ti
ng

 a
nd

 s
to

ra
ge

 fo
r

co
nfi

d
en

ti
al

it
y

is

th
at

 th
e

d
at

a
tr

an
sf

er
 a

nd
 s

to
ra

ge
 a

lg
or

it
hm

s
en

cr
yp

t t
he

 d
at

a
in

to
 u

ni
ts

 th
at

ar

e
d

if
fic

ul
t t

o
re

co
ns

tr
uc

t w
it

ho
ut

 th
e

sp
ec

ia
liz

ed
 a

lg
or

it
hm

s/
ke

ys
 if

 th
e

d
at

a
ar

e
in

te
rc

ep
te

d
 in

 tr
an

sf
er

 o
r

th
e

cl
ou

d
 s

ec
ur

it
y

is
 c

om
pr

om
is

ed
.

D
at

a
re

gu
la

ti
on

s
SM

E
s

fa
ce

 th
e

sa
m

e
re

gu
la

to
ry

 d
at

a
lo

ca
ti

on
 is

su
es

 a
s

la
rg

e
en

te
rp

ri
se

s.
D

ep
en

d
in

g
on

 th
e

co
m

pa
ny

’s
 in

d
us

tr
y,

 th
er

e
m

ay
 b

e
si

gn
ifi

ca
nt

 r
eg

ul
at

or
y

is
su

es
 r

eg
ar

d
in

g
d

at
a

lo
ca

ti
on

. D
at

a
th

at
 id

en
ti

fy
 th

e
in

d
iv

id
ua

l i
n

ce
rt

ai
n

he
al

th
 a

nd
 fi

na
nc

ia
l c

on
te

xt
s

ar
e

su
bj

ec
t t

o
L

IS
 r

eg
ul

at
io

ns
. S

im
ila

rl
y,

 th
e

E
U

ha

s
la

w
s

th
at

 r
es

tr
ic

t t
he

 tr
an

sf
er

 o
f c

er
ta

in
 d

at
a

ou
ts

id
e

of
 it

s
bo

rd
er

s.
D

at
a

in
te

gr
it

y
T

he
 d

at
a

in
te

gr
it

y
an

d
 r

el
ia

bi
lit

y
of

 c
lo

ud

su
pp

lie
rs

 m
ay

 b
e

hi
gh

er
 th

an
 th

at

pr
ov

id
ed

 b
y

th
e

ex
is

ti
ng

 in
te

rn
al

 s
ys

te
m

s.

C
lo

ud
 te

ch
no

lo
gi

es
 a

re
 r

el
at

iv
el

y
ne

w
 a

nd
 s

to
ra

ge
 a

nd
 d

at
a

tr
an

sf
er

al

go
ri

th
m

s
sl

ic
e

th
e

d
at

a
in

to
 s

m
al

l u
ni

ts
, w

hi
ch

 a
re

 s
to

re
d

 a
nd

 tr
an

sf
er

re
d

d

yn
am

ic
al

ly
 w

it
hi

n
th

e
st

or
ag

e
re

gi
on

. E
st

im
at

in
g

an
d

 fa
ct

or
in

g
th

e
ri

sk
s

of

po
te

nt
ia

l d
at

a
co

rr
up

ti
on

 o
f m

is
si

on
-c

ri
ti

ca
l d

at
a

at
 th

is
 e

ar
ly

 s
ta

ge
 o

f c
lo

ud

im
pl

em
en

ta
ti

on
 m

ay
 b

e
d

if
fic

ul
t l

ea
d

in
g

to
 n

on
ad

op
ti

on
, e

sp
ec

ia
lly

 if
 th

e
ex

is
ti

ng
 in

te
rn

al
 s

ys
te

m
s,

 p
ro

ce
ss

es
, a

nd
 p

ro
to

co
ls

 a
re

 w
or

ki
ng

.
D

at
a

tr
an

sf
er

 c
os

ts
Fo

r
ne

w
 in

it
ia

ti
ve

s
th

at
 d

o
no

t r
eq

ui
re

 th
e

tr
an

sf
er

 o
f l

eg
ac

y
d

at
a

to
 th

e
cl

ou
d

s,

tr
an

sf
er

 c
os

ts
 a

re
 m

in
im

al
. G

et
ti

ng
 lo

ck
ed

in

to
 a

 p
ar

ti
cu

la
r

cl
ou

d
 s

er
vi

ce
 p

ro
vi

d
er

 is

cu
rr

en
tl

y
a

m
ar

ke
t c

on
ce

rn
 d

ue
 to

 th
e

la
ck

of

 o
pe

n
st

an
d

ar
d

s
am

on
g

th
e

pr
ov

id
er

s.

M
ov

in
g

th
e

ex
is

ti
ng

 d
at

a
se

ts
 to

 c
lo

ud
s

in
qu

ir
es

 d
at

a
in

te
gr

it
y

ch
ec

k
to

 e
ns

ur
e

th
at

 a
ll

of
 th

e
d

at
a

ha
ve

 b
ee

n
tr

an
sf

er
re

d
 fu

lly
 a

nd
 th

at
 th

ey
 h

av
e

no
t b

ee
n

co
rr

up
te

d
. F

or
 v

er
y

la
rg

e
d

at
a

se
ts

, t
hi

s
m

ay
 r

ep
re

se
nt

 s
ig

ni
fi

ca
nt

 s
ta

ff
 c

os
ts

.
C

lo
ud

 v
en

d
or

s
ty

pi
ca

lly
 c

ha
rg

e
d

at
a

tr
an

sf
er

 c
os

ts
. I

f t
he

 d
at

a
se

t i
s

la
rg

e
an

d

th
er

e
is

 s
ig

ni
fic

an
t d

at
a

ch
um

 d
ue

 to
 tr

an
sa

ct
io

n
pr

oc
es

si
ng

, i
t m

ay
 b

e
m

or
e

co
st

 e
ff

ec
ti

ve
 to

 lo
ok

 a
t m

or
e

tr
ad

it
io

na
l h

os
ti

ng
 o

pt
io

ns
.

(C
on

ti
nu

ed
)

292 Guide to Cloud Computing for Business and Technology Managers
TA

B
LE

 1
4.

2
(C

on
ti

nu
ed

)

E
co

no
m

ic
 C

os
ts

 o
f C

lo
ud

 A
do

pt
io

n

E
co

n
om

ic
 C

os
ts

S

m
al

l a
n

d
 M

ed
iu

m
 E

n
te

rp
ri

se
s

(S
M

E
s)

L

ar
ge

 E
n

te
rp

ri
se

s

In
te

gr
at

io
n

co
st

s
an

d

le
ga

cy
 a

pp
lic

at
io

n
re

en
gi

ne
er

in
g

In
 s

ta
rt

-u
ps

 a
nd

 s
m

al
l c

om
pa

ni
es

,
po

te
nt

ia
lly

 li
tt

le
 o

r
no

 in
te

gr
at

io
n

is

re
qu

ir
ed

 b
et

w
ee

n
cl

ou
d

 a
pp

lic
at

io
ns

 a
nd

le

ga
cy

 a
pp

lic
at

io
ns

.

Po
te

nt
ia

lly
 s

ig
ni

fic
an

t c
os

ts
 to

 h
av

e
ne

w
 c

lo
ud

 a
pp

lic
at

io
ns

 in
te

ra
ct

 w
it

h
le

ga
cy

 a
pp

lic
at

io
ns

 o
r

to
 m

od
if

y
le

ga
cy

 a
pp

lic
at

io
ns

 to
 o

ffl
oa

d
 p

ro
ce

ss
in

g
to

cl

ou
d

-b
as

ed
 c

om
po

ne
nt

s.
 C

on
ve

rs
el

y,
 th

er
e

m
ay

 b
e

ad
va

nt
ag

es
 to

re

en
gi

ne
er

in
g

le
ga

cy
 a

pp
lic

at
io

ns
 a

nd
 h

os
ti

ng
 th

em
 in

 a
 p

ub
lic

 c
lo

ud
 w

he
n

in
te

gr
at

in
g

W
eb

 2
.0

 fu
nc

ti
on

al
it

y
w

it
h

le
ga

cy
 a

pp
lic

at
io

ns
.

So
ft

w
ar

e
lic

en
si

ng
C

lo
ud

 s
er

vi
ce

s
(S

aa
S

an
d

 P
aa

S)
 p

ro
vi

d
e

si
gn

ifi
ca

nt
 s

of
tw

ar
e

lic
en

si
ng

 c
os

t s
av

in
gs

fo

r
st

ar
t-

up
s

an
d

 s
m

al
l c

om
pa

ni
es

.

M
ig

ra
ti

ng
 la

rg
e

en
te

rp
ri

se
s

to
 c

lo
ud

-b
as

ed
 S

aa
S

m
ay

 n
ot

 b
e

co
st

 e
ff

ec
ti

ve

re
la

ti
ve

 to
 th

e
ex

is
ti

ng
 e

nt
er

pr
is

e
lic

en
si

ng
 a

gr
ee

m
en

ts
. D

ep
en

d
in

g
on

 th
e

lic
en

si
ng

 a
gr

ee
m

en
ts

 fo
r

th
ir

d
-p

ar
ty

 s
of

tw
ar

e,
 e

sp
ec

ia
lly

 if
 li

ce
ns

in
g

fe
es

 a
re

ba

se
d

 o
n

th
e

nu
m

be
r

of
 C

PU
s

us
in

g
th

e
so

ft
w

ar
e,

 h
os

ti
ng

 le
ga

cy
 a

pp
lic

at
io

ns

in
 a

 c
lo

ud
 e

nv
ir

on
m

en
t m

ay
 in

vo
lv

e
si

gn
ifi

ca
nt

ly
 in

cr
ea

se
d

 li
ce

ns
in

g
co

st
s

or

no
nc

om
pl

ia
nc

e
w

it
h

th
e

ag
re

em
en

ts
 if

 th
e

so
ft

w
ar

e
is

 in
st

al
le

d
 o

n
a

m
ac

hi
ne

im

ag
e

us
ed

 fo
r

au
to

sc
al

in
g

as
 th

e
us

er
 d

em
an

d
 in

cr
ea

se
s.

C
lo

ud
 a

va
ila

bi
lit

y—
ro

lli
ng

 b
ro

w
no

ut
s

U
na

va
ila

bi
lit

y
of

 th
e

cl
ou

d
 s

er
vi

ce
s

or
 s

lo
w

pe

rf
or

m
an

ce
 d

ue
 to

 h
ea

vy
 tr

af
fic

 is
 a

se

ri
ou

s
co

nc
er

n
w

he
n

ch
oo

si
ng

 a
 c

lo
ud

ve

nd
or

.

Sa
m

e
as

 w
it

h
SM

E
s.

 C
ur

re
nt

ly
, e

ve
n

la
rg

e
ve

nd
or

s
ha

ve
 e

xp
er

ie
nc

ed
 s

lo
w

pe

rf
or

m
an

ce
 o

r
su

sp
en

d
ed

 s
er

vi
ce

 d
ue

 to
 o

ve
rw

he
lm

in
g

ut
ili

za
ti

on
.

D
at

a
se

cu
ri

ty
SM

E
s

ar
e

be
tt

er
 a

bl
e

to
 u

se
 th

ir
d

-p
ar

ty

se
rv

ic
es

 s
uc

h
as

 p
ay

m
en

t p
ro

ce
ss

in
g

to

ha
nd

le
 s

ec
ur

e
tr

an
sa

ct
io

ns
.

D
at

a
ar

e
an

 e
nt

er
pr

is
e’

s
m

os
t i

m
po

rt
an

t I
T

 a
nd

 o
pe

ra
ti

ng
 a

ss
et

. C
ur

re
nt

un

ce
rt

ai
nt

y
re

ga
rd

in
g

th
e

se
cu

ri
ty

 o
f t

he
 d

at
a

as
se

ts
 s

to
re

d
 in

 p
ub

lic
 c

lo
ud

s
is

on

e
of

 th
e

m
os

t s
ig

ni
fic

an
t b

ar
ri

er
s

in
 c

lo
ud

 a
d

op
ti

on
. L

ar
ge

 e
nt

er
pr

is
es

 m
ay

no

t w
an

t t
he

ir
 d

at
a

st
or

ed
 in

 c
ou

nt
ri

es
 w

he
re

 in
te

lle
ct

ua
l p

ro
pe

rt
y

pi
ra

cy
 is

pr

ev
al

en
t.

So
m

e
co

m
pa

ni
es

 m
ay

 n
ot

 w
an

t t
he

ir
 d

at
a

st
or

ed
 o

n
eq

ui
pm

en
t

us
ed

 b
y

th
ei

r
co

m
pe

ti
to

rs
.

D
at

a
co

nfi
d

en
ti

al
it

y
SM

E
s

fa
ce

 th
e

sa
m

e
d

at
a

co
nfi

d
en

ti
al

it
y

is
su

es
 a

s
la

rg
e

en
te

rp
ri

se
s.

O
ne

 o
f t

he
 a

d
va

nt
ag

es
 o

f c
lo

ud
 c

om
pu

ti
ng

 a
nd

 s
to

ra
ge

 fo
r

co
nfi

d
en

ti
al

it
y

is

th
at

 th
e

d
at

a
tr

an
sf

er
 a

nd
 s

to
ra

ge
 a

lg
or

it
hm

s
en

cr
yp

t t
he

 d
at

a
in

to
 u

ni
ts

 th
at

ar

e
d

if
fic

ul
t t

o
re

co
ns

tr
uc

t w
it

ho
ut

 th
e

sp
ec

ia
liz

ed
 a

lg
or

it
hm

s/
ke

ys
 if

 th
e

d
at

a
ar

e
in

te
rc

ep
te

d
 in

 tr
an

sf
er

 o
r

th
e

cl
ou

d
 s

ec
ur

it
y

is
 c

om
pr

om
is

ed
.

293Cloudware Economics
D

at
a

re
gu

la
ti

on
s

SM
E

s
fa

ce
 th

e
sa

m
e

re
gu

la
to

ry
 d

at
a

lo
ca

ti
on

 is
su

es
 a

s
la

rg
e

en
te

rp
ri

se
s.

D
ep

en
d

in
g

on
 th

e
co

m
pa

ny
’s

 in
d

us
tr

y,
 th

er
e

m
ay

 b
e

si
gn

ifi
ca

nt
 r

eg
ul

at
or

y
is

su
es

 r
eg

ar
d

in
g

d
at

a
lo

ca
ti

on
. D

at
a

th
at

 id
en

ti
fy

 th
e

in
d

iv
id

ua
l i

n
ce

rt
ai

n
he

al
th

 a
nd

 fi
na

nc
ia

l c
on

te
xt

s
ar

e
su

bj
ec

t t
o

U
S

re
gu

la
ti

on
s.

 S
im

ila
rl

y,
 th

e
E

U

ha
s

la
w

s
th

at
 r

es
tr

ic
t t

he
 tr

an
sf

er
 o

f c
er

ta
in

 d
at

a
ou

ts
id

e
of

 it
s

bo
rd

er
s.

D
at

a
in

te
gr

it
y

T
he

 d
at

a
in

te
gr

it
y

an
d

 r
el

ia
bi

lit
y

of
 c

lo
ud

su

pp
lie

rs
 m

ay
 b

e
hi

gh
er

 th
an

 th
at

pr

ov
id

ed
 b

y
th

e
ex

is
ti

ng
 in

te
rn

al
 s

ys
te

m
s.

C
lo

ud
 te

ch
no

lo
gi

es
 a

re
 r

el
at

iv
el

y
ne

w
 a

nd
 s

to
ra

ge
 a

nd
 d

at
a

tr
an

sf
er

al

go
ri

th
m

s
sl

ic
e

th
e

d
at

a
in

to
 s

m
al

l u
ni

ts
, w

hi
ch

 a
re

 s
to

re
d

 a
nd

 tr
an

sf
er

re
d

d

yn
am

ic
al

ly
 w

it
hi

n
th

e
st

or
ag

e
re

gi
on

. E
st

im
at

in
g

an
d

 fa
ct

or
in

g
th

e
ri

sk
s

of

po
te

nt
ia

l d
at

a
co

rr
up

ti
on

 o
f m

is
si

on
-c

ri
ti

ca
l d

at
a

at
 th

is
 e

ar
ly

 s
ta

ge
 o

f c
lo

ud

im
pl

em
en

ta
ti

on
 m

ay
 b

e
d

if
fic

ul
t l

ea
d

in
g

to
 n

on
ad

op
ti

on
, e

sp
ec

ia
lly

 if
 th

e
ex

is
ti

ng
 in

te
rn

al
 s

ys
te

m
s,

 p
ro

ce
ss

es
, a

nd
 p

ro
to

co
ls

 a
re

 w
or

ki
ng

.
D

at
a

tr
an

sf
er

 c
os

ts
Fo

r
ne

w
 in

it
ia

ti
ve

s
th

at
 d

o
no

t r
eq

ui
re

 th
e

tr
an

sf
er

 o
f l

eg
ac

y
d

at
a

to
 th

e
cl

ou
d

s,

tr
an

sf
er

 c
os

ts
 a

re
 m

in
im

al
. G

et
ti

ng
 lo

ck
ed

in

to
 a

 p
ar

ti
cu

la
r

cl
ou

d
 s

er
vi

ce
 p

ro
vi

d
er

 is

cu
rr

en
tl

y
a

m
ar

ke
t c

on
ce

rn
 d

ue
 to

 th
e

la
ck

of

 o
pe

n
st

an
d

ar
d

s
am

on
g

th
e

pr
ov

id
er

s.

M
ov

in
g

th
e

ex
is

ti
ng

 d
at

a
se

ts
 to

 c
lo

ud
s

re
qu

ir
es

 d
at

a
in

te
gr

it
y

ch
ec

k
to

 e
ns

ur
e

th
at

 a
ll

of
 th

e
d

at
a

ha
ve

 b
ee

n
tr

an
sf

er
re

d
 fu

lly
 a

nd
 th

at
 th

ey
 h

av
e

no
t b

ee
n

co
rr

up
te

d
. F

or
 v

er
y

la
rg

e
d

at
a

se
ts

, t
hi

s
m

ay
 r

ep
re

se
nt

 s
ig

ni
fi

ca
nt

 s
ta

ff
 c

os
ts

.
C

lo
ud

 v
en

d
or

s
ty

pi
ca

lly
 c

ha
rg

e
d

at
a

tr
an

sf
er

 c
os

ts
. I

f t
he

 d
at

a
se

t i
s

la
rg

e
an

d

th
er

e
is

 s
ig

ni
fic

an
t d

at
a

ch
um

 d
ue

 to
 tr

an
sa

ct
io

n
pr

oc
es

si
ng

, i
t m

ay
 b

e
m

or
e

co
st

 e
ff

ec
ti

ve
 to

 lo
ok

 a
t m

or
e

tr
ad

it
io

na
l h

os
ti

ng
 o

pt
io

ns
.

In
te

gr
at

io
n

co
st

s
an

d

le
ga

cy
 a

pp
lic

at
io

n
re

en
gi

ne
er

in
g

In
 s

ta
rt

-u
ps

 a
nd

 s
m

al
l c

om
pa

ni
es

,
po

te
nt

ia
lly

 li
tt

le
 o

r
no

 in
te

gr
at

io
n

is

re
qu

ir
ed

 b
et

w
ee

n
cl

ou
d

 a
pp

lic
at

io
ns

 a
nd

le

ga
cy

 a
pp

lic
at

io
ns

.

Po
te

nt
ia

lly
 s

ig
ni

fic
an

t c
os

ts
 to

 h
av

e
ne

w
 c

lo
ud

 a
pp

lic
at

io
ns

 in
te

ra
ct

 w
it

h
le

ga
cy

 a
pp

lic
at

io
ns

 o
r

to
 m

od
if

y
le

ga
cy

 a
pp

lic
at

io
ns

 to
 o

ffl
oa

d
 p

ro
ce

ss
in

g
to

cl

ou
d

-b
as

ed
 c

om
po

ne
nt

s.
 C

on
ve

rs
el

y,
 th

er
e

m
ay

 b
e

ad
va

nt
ag

es
 to

re

en
gi

ne
er

in
g

le
ga

cy
 a

pp
lic

at
io

ns
 a

nd
 h

os
ti

ng
 th

em
 in

 a
 p

ub
lic

 c
lo

ud
 w

he
n

in
te

gr
at

in
g

W
eb

 2
.0

 fu
nc

ti
on

al
it

y
w

it
h

le
ga

cy
 a

pp
lic

at
io

ns
.

So
ft

w
ar

e
lic

en
si

ng
C

lo
ud

 s
er

vi
ce

s
(S

aa
S

an
d

 P
aa

S)
 p

ro
vi

d
e

si
gn

ifi
ca

nt
 s

of
tw

ar
e

lic
en

si
ng

 c
os

t s
av

in
gs

fo

r
st

ar
t-

up
s

an
d

 s
m

al
l c

om
pa

ni
es

.

M
ig

ra
ti

ng
 la

rg
e

en
te

rp
ri

se
s

to
 c

lo
ud

-b
as

ed
 S

aa
S

m
ay

 n
ot

 b
e

co
st

 e
ff

ec
ti

ve

re
la

ti
ve

 to
 th

e
ex

is
ti

ng
 e

nt
er

pr
is

e
lic

en
si

ng
 a

gr
ee

m
en

ts
. D

ep
en

d
in

g
on

 th
e

lic
en

si
ng

 a
gr

ee
m

en
ts

 fo
r

th
ir

d
-p

ar
ty

 s
of

tw
ar

e,
 e

sp
ec

ia
lly

 if
 li

ce
ns

in
g

fe
es

 a
re

ba

se
d

 o
n

th
e

nu
m

be
r

of
 C

PU
s

us
in

g
th

e
so

ft
w

ar
e,

 h
os

ti
ng

 le
ga

cy
 a

pp
lic

at
io

ns

in
 a

 c
lo

ud
 e

nv
ir

on
m

en
t m

ay
 in

vo
lv

e
si

gn
ifi

ca
nt

ly
 in

cr
ea

se
d

 li
ce

ns
in

g
co

st
s

or

no
nc

om
pl

ia
nc

e
w

it
h

th
e

ag
re

em
en

ts
 if

 th
e

so
ft

w
ar

e
is

 in
st

al
le

d
 o

n
a

m
ac

hi
ne

im

ag
e

us
ed

 fo
r

au
to

sc
al

in
g

as
 th

e
us

er
 d

em
an

d
 in

cr
ea

se
s.

C
lo

ud
 a

va
ila

bi
lit

y—
ro

lli
ng

 b
ro

w
no

ut
s

U
na

va
ila

bi
lit

y
of

 th
e

cl
ou

d
 s

er
vi

ce
s

or
 s

lo
w

pe

rf
or

m
an

ce
 d

ue
 to

 h
ea

vy
 tr

af
fic

 is
 a

se

ri
ou

s
co

nc
er

n
w

he
n

ch
oo

si
ng

 a
 c

lo
ud

ve

nd
or

.

Sa
m

e
as

 w
it

h
SM

E
s.

 C
ur

re
nt

ly
, e

ve
n

la
rg

e
ve

nd
or

s
ha

ve
 e

xp
er

ie
nc

ed
 s

lo
w

pe

rf
or

m
an

ce
 o

r
su

sp
en

d
ed

 s
er

vi
ce

 d
ue

 to
 o

ve
rw

he
lm

in
g

ut
ili

za
ti

on
.

294 Guide to Cloud Computing for Business and Technology Managers

A significant requirement for a cloud-based application is to operate in
such a way that it functions reliably and delivers a consistent service at a
variety of levels. This requires not only focusing on the functional proper-
ties of services but also concentrating on describing the environment host-
ing the cloud service, that is, describing the nonfunctional capabilities of
services. Each service hosting environment may offer various choices of
QoS based on technical requirements regarding demands for around-the-
clock levels of service availability, performance and scalability, security and

TABLE 14.3

Value Comparison on Colocation, Managed Services, and IaaS for Providers

 Colocation
Managed
Services IaaS with Cloud Computing

Profit margin Low; intense
competition

Low; intense
competition

High; cost saving by resource sharing

Value add service Very few Few Rich, such as IT service management
and software renting

Operation Manual
operation;
complex

Manual
operation;
complex

Automatic and integrated operation;
end-to-end request management

Response to
customer request

Manual
action; slow

Manual
action; slow

Automatic process; fast

Power
consumption

Normal Normal Reduce power by server consolidation
and sharing; scheduled power off

TABLE 14.4

Value Comparison on Colocation, Managed Services, and IaaS for Users

 Colocation Managed Services IaaS Using Cloud

Performance Depends on
hardware

Depends on
hardware

Guaranteed performance

Price Server investment
plus bandwidth
and space fee

Bandwidth and
server renting fee

CPU, memory, storage,
bandwidth fee; pay per use

Availability Depends on single
hardware

Depends on single
hardware

Highly available by hardware
failover

Scalability Manual scale out Manual scale out Automated scale out
System
management

Manual hardware
setup and
configuration;
complex

Manual hardware
setup and
configuration;
complex

Automated OS and software
installation; remote
monitoring and control;
simple

Staff High labor cost and
skill requirement

High labor cost and
skill requirement

Low labor cost and skill
requirement

Usability Need on site
operation

Need on site
operation

All work done through Web
UI; quick action

295Cloudware Economics

privacy policies, and so on, all of which must be described. It is thus obvious
that the QoS offered by a cloud service is becoming the highest priority for
service providers and their customers.

Delivering QoS on the Internet is a critical and significant chal-
lenge because of its dynamic and unpredictable nature.
Applications with very different characteristics and require-
ments compete for all kinds of network resources. Changes in

traffic patterns, securing mission-critical business transactions, and
the effects of infrastructure failures, low performance of Web proto-
cols, and reliability issues over the Web create a need for Internet QoS
standards. Often, unresolved QoS issues cause critical transactional
applications to suffer from unacceptable levels of performance
degradation.

Traditionally, QoS is measured by the degree to which applications, sys-
tems, networks, and all other elements of the IT infrastructure support
availability of services at a required level of performance under all access
and load conditions. While traditional QoS metrics apply, the character-
istics of cloud services environments bring both greater availability of
applications and increased complexity in terms of accessing and managing
services and thus impose specific and intense demands on organizations,
which QoS must address. In the cloud services’ context, QoS can be viewed
as providing assurance on a set of quantitative characteristics. These can
be defined on the basis of important functional and nonfunctional service
quality properties that include implementation and deployment issues as
well as other important service characteristics such as service metering
and cost, performance metrics (e.g., response time), security requirements,
(transactional) integrity, reliability, scalability, and availability. These char-
acteristics are necessary requirements to understand the overall behavior
of a service so that other applications and services can bind to it and exe-
cute it as part of a business process.

The key elements for supporting QoS in a cloud services environment are
summarized in the following:

 1. Availability: Availability is the absence of service downtimes.
Availability represents the probability that a service is available.
Larger values mean that the service is always ready to use while
smaller values indicate unpredictability over whether the service
will be available at a particular time. Also associated with availabil-
ity is time to repair (TTR). TTR represents the time it takes to repair
a service that has failed. Ideally, smaller values of TTR are desirable.

296 Guide to Cloud Computing for Business and Technology Managers

 2. Accessibility: Accessibility represents the degree with which a cloud
service request is served. It may be expressed as a probability mea-
sure denoting the success rate or chance of a successful service
instantiation at a point in time. A high degree of accessibility means
that a service is available for a large number of clients and that cli-
ents can use the service relatively easily.

 3. Conformance to standards: This describes the compliance of a cloud
service with standards. Strict adherence to correct versions of stan-
dards by service providers is necessary for proper invocation of
cloud services by service requestors. In addition, service providers
must stick to the standards outlined in service-level agreements
(SLAs) between service requestors and providers.

 4. Integrity: This describes the degree with which a cloud service per-
forms its tasks according to its Web Service’s WSDL description as
well as conformance with Service-Level Agreement (SLA). A higher
degree of integrity means that the functionality of a service is closer
to its Web Service’s WSDL description or SLA.

 5. Performance: Performance is measured in terms of two factors—
throughput and latency. Throughput represents the number of
cloud service requests served at a given time period. Latency rep-
resents the length of time between sending a request and receiving
the response. Higher throughput and lower latency values represent
good performance of a cloud service. When measuring the transac-
tion/request volumes handled by a cloud service, it is important to
consider whether these come in a steady flow or burst around par-
ticular events like the open or close of the business day or seasonal
rushes.

 6. Reliability: Reliability represents the ability of a service to function
correctly and consistently and provides the same service quality
despite system or network failures. The reliability of a cloud service
is usually expressed in terms of the number of transactional failures
per month or year.

 7. Scalability: Scalability refers to the ability to consistently serve the
requests despite variations in the volume of requests. High acces-
sibility of cloud services can be achieved by building highly scalable
systems.

 8. Security: Security involves aspects such as authentication, authori-
zation, message integrity, and confidentiality. Security has added
importance because cloud service invocation occurs over the
Internet. The amount of security that a particular cloud service
requires is described in its accompanying SLA, and service provid-
ers must maintain this level of security.

297Cloudware Economics

 9. Transactionality: There are several cases where cloud services require
transactional behavior and context propagation. The fact that a par-
ticular cloud service requires transactional behavior is described in
its accompanying SLA, and service providers must maintain this
property.

14.4.1 Service-Level Agreement (SLA)

As organizations depend on business units, partners, and external service
providers to furnish them with services, they rely on the use of SLAs to
ensure that the chosen service provider delivers a guaranteed level of ser-
vice quality. An SLA is a formal agreement (contract) between a provider and
client, formalizing the details of a Web Service (contents, price, delivery pro-
cess, acceptance and quality criteria, penalties, and so on, usually in measur-
able terms) in a way that meets the mutual understandings and expectations
of both the service provider and the service requestor.

An SLA is basically a QoS guarantee typically backed up by chargeback
and other mechanisms designed to compensate users of services and to
influence organizations to fulfill SLA commitments. Understanding busi-
ness requirements, expected usage patterns, and system capabilities can go a
long way toward ensuring successful deployments. An SLA is an important
and widely used instrument in the maintenance of service provision rela-
tionships as both service providers and clients alike utilize it.

An SLA may contain the following parts:

• Purpose: This field describes the reasons behind the creation of the SLA.
• Parties: This field describes the parties involved in the SLA and their

respective roles, for example, service provider and service consumer
(client).

• Validity period: This field defines the period of time that the SLA will
cover. This is delimited by start time and end time of the agreement
term.

• Scope: This field defines the services covered in the agreement.
• Restrictions: This field defines the necessary steps to be taken in

order for the requested service levels to be provided.
• Service-level objectives: This field defines the levels of service that both

the service customers and the service providers agree on and usu-
ally includes a set of service-level indicators, like availability, perfor-
mance, and reliability. Each of these aspects of the service level will
have a target level to achieve.

• Penalties: This field defines what sanctions should apply in case the
service provider underperforms and is unable to meet the objectives
specified in the SLA.

298 Guide to Cloud Computing for Business and Technology Managers

• Optional services: This field specifies any services that are not nor-
mally required by the user but might be required in case of an
exception.

• Exclusion terms: These specify what is not covered in the SLA.
• Administration: This field describes the processes and the measur-

able objectives in an SLA and defines the organizational authority
for overseeing them.

SLAs can be either static or dynamic in nature. A static SLA is an SLA that
generally remains unchanged for multiple service time intervals. Service
time intervals may be calendar months for a business process that is subject
to an SLA or may be a transaction or any other measurable and relevant
period of time for other processes. They are used for assessment of the QoS
and are agreed between a service provider and service client. A dynamic
SLA is an SLA that generally changes from service period to service period,
to accommodate changes in provision of service.

14.5 Summary

The chapter started with the discussion of the drivers of cloud computing.
This was followed with the presentation of the concept of total cost of owner-
ship (TCO) and capital budgeting models. Costs for various models of cloud
service provisioning, namely, traditional internal IT, colocation, managed
services, and IaaS are considered for producing a comparison for assess-
ment. In the last part, we discuss aspects related to the Quality of Service
(QoS) and Service Level Agreement (SLA) for provisioning of cloud services.

299

15
Cloudware Technologies

Virtualization is widely used to deliver customizable computing environ-
ments on demand. Virtualization technology is one of the fundamental com-
ponents of cloud computing. Virtualization allows the creation of a secure,
customizable, and isolated execution environment for running applications
without affecting other users’ applications. The basis of this technology
is the ability of a computer program—or a combination of software and
hardware—to emulate an executing environment separate from the one that
hosts such programs. For instance, we can run Windows OS on top of a vir-
tual machine, which itself is running on Linux OS. Virtualization provides
a great opportunity to build elastically scalable systems that can provision
additional capability with minimum costs.

15.1 Virtualization

Resource virtualization is at the heart of most cloud architectures. The
concept of virtualization allows an abstract, logical view on the physi-
cal resources and includes servers, data stores, networks, and software.
The basic idea is to pool physical resources and manage them as a whole.
Individual requests can then be served as required from these resource
pools. For instance, it is possible to dynamically generate a certain platform
for a specific application at the very moment when it is needed—instead of a
real machine, a virtual machine is instituted.

Resource management grows increasingly complex as the scale of a sys-
tem as well as the number of users and the diversity of applications using
the system increase. Resource management for a community of users with
a wide range of applications running under different operating systems is a
very difficult problem. Resource management becomes even more complex
when resources are oversubscribed and users are uncooperative. In addi-
tion to external factors, resource management is affected by internal factors,
such as the heterogeneity of the hardware and software systems, the ability
to approximate the global state of the system and to redistribute the load,
and the failure rates of different components. The traditional solution for
these in a data center is to install standard operating systems on individual
systems and rely on conventional OS techniques to ensure resource sharing,

300 Guide to Cloud Computing for Business and Technology Managers

application protection, and performance isolation. System administration,
accounting, security, and resource management are very challenging for the
providers of service in this setup; application development and performance
optimization are equally challenging for the users.

The alternative is resource virtualization, a technique analyzed in this
chapter. Virtualization is a basic tenet of cloud computing—which simpli-
fies some of the resource management tasks. For instance, the state of a vir-
tual machine (VM) running under a virtual machine monitor (VMM) can
be saved and migrated to another server to balance the load. At the same
time, virtualization allows users to operate in environments with which they
are familiar rather than forcing them to work in idiosyncratic environments.
Resource sharing in a virtual machine environment requires not only ample
hardware support and, in particular, powerful processors but also architec-
tural support for multilevel control. Indeed, resources such as CPU cycles,
memory, secondary storage, and I/O and communication bandwidth are
shared among several virtual machines; for each VM, resources must be
shared among multiple instances of an application. There are two distinct
approaches for virtualization, namely, the full virtualization and the para-
virtualization. Full virtualization is feasible when the hardware abstraction
provided by the VMM is an exact replica of the physical hardware. In this
case, any operating system running on the hardware will run without modi-
fications under the VMM. In contrast, paravirtualization requires some mod-
ifications of the guest operating systems because the hardware abstraction
provided by the VMM does not support all the functions the hardware does.

One of the primary reasons that companies have implemented virtualiza-
tion is to improve the performance and efficiency of processing of a diverse
mix of workloads. Rather than assigning a dedicated set of physical resources
to each set of tasks, a pooled set of virtual resources can be quickly allocated
as needed across all workloads. Reliance on the pool of virtual resources
allows companies to improve latency. This increase in service delivery speed
and efficiency is a function of the distributed nature of virtualized environ-
ments and helps to improve overall time-to-realize value. Using a distrib-
uted set of physical resources, such as servers, in a more flexible and efficient
way delivers significant benefits in terms of cost savings and improvements
in productivity. First, virtualization of physical resources (such as servers,
storage, and networks) enables substantial improvement in the utilization
of these resources. Second, virtualization enables improved control over
the usage and performance of the IT resources. Third, virtualization pro-
vides a level of automation and standardization to optimize your comput-
ing environment. Fourth, consequently, virtualization provides a foundation
for cloud computing. Virtualization increases the efficiency of the cloud that
makes many complex systems easier to optimize. As a result, organizations
have been able to achieve the performance and optimization to be able to
access data that were previously either unavailable or very hard to collect.
Big data platforms are increasingly used as sources of enormous amounts of

301Cloudware Technologies

data about customer preferences, sentiment, and behaviors (see Chapter 21,
Section 21.1.1 “What Is Big Data?”). Companies can integrate this informa-
tion with internal sales and product data to gain insight into customer pref-
erences to make more targeted and personalized offers.

15.1.1 Characteristics of Virtualized Environment

In a virtualized environment, there are three major components: guest, host,
and virtualization layer. The guest represents the system component that
interacts with the virtualization layer rather than with the host, as would
normally happen. The host represents the original environment where the
guest is supposed to be managed. The virtualization layer is responsible for
recreating the same or a different environment where the guest will operate.

Virtualization has three characteristics that support the scalability and
operating efficiency required for big data environments:

 1. Partitioning: In virtualization, many applications and operating sys-
tems are supported in a single physical system by partitioning (sepa-
rating) the available resources.

 2. Isolation: Each virtual machine is isolated from its host physical sys-
tem and other virtualized machines. Because of this isolation, if one
virtual instance crashes, the other virtual machines and the host
system are not affected. In addition, data are not shared between
one virtual instance and another.

 3. Encapsulation: A virtual machines can be represented (and even
stored) as a single file, so you can identify it easily based on the ser-
vices it provides. For example, the file containing the encapsulated
process could be a complete business service. This encapsulated
virtual machine could be presented to an application as a complete
entity. Thus, encapsulation could protect each application so that it
does not interfere with another application.

Virtualization abstracts the underlying resources and simplifies their use,
isolates users from one another, and supports replication, which, in turn,
increases the elasticity of the system. Virtualization is a critical aspect of
cloud computing, equally important to the providers and consumers of
cloud services, and plays an important role in

• System security because it allows isolation of services running on
the same hardware

• Portable performance and reliability because it allows applications
to migrate from one platform to another

• Development and management of services offered by a provider
• Performance isolation

302 Guide to Cloud Computing for Business and Technology Managers

Virtualization—the process of using computer resources to imi-
tate other resources—is valued for its capability to increase IT
resource utilization, efficiency, and scalability. One obvious
application of virtualization is server virtualization, which helps

organizations to increase the utilization of physical servers and poten-
tially save on infrastructure costs; companies are increasingly finding
that virtualization is not limited only to servers but is valid and appli-
cable across the entire IT infrastructure, including networks, storage,
and software. For instance, one of the most important requirements for
success with big data is having the right level of performance to sup-
port the analysis of large volumes and varied types of data. If a com-
pany only virtualizes the servers, they may experience bottlenecks
from other infrastructure elements such as storage and networks; fur-
thermore, they are less likely to achieve the latency and efficiency that
they need and more likely to expose the company to higher costs and
increased security risks. As a result, a company’s entire IT environment
needs to be optimized at every layer from the network to the databases,
storage, and servers—virtualization adds efficiency at every layer of
the IT infrastructure.

For a provider of IT services, the use of virtualization techniques has
a number of advantages:

 1. Resource usage: Physical servers rarely work to capacity because
their operators usually allow for sufficient computing resources
to cover peak usage. If virtual machines are used, any load
requirement can be satisfied from the resource pool. In case the
demand increases, it is possible to delay or even avoid the pur-
chase of new capacities.

 2. Management: It is possible to automate resource pool manage-
ment. Virtual machines can be created and configured auto-
matically as required.

 3. Consolidation: Different application classes can be consolidated
to run on a smaller number of physical components. Besides
server or storage consolidation, it is also possible to include
entire system landscapes, data and databases, networks, and
desktops. Consolidation leads to increased efficiency and thus
to cost reduction.

 4. Energy consumption: Supplying large data centers with electric
power has become increasingly difficult, and seen over its life-
time, the cost of energy required to operate a server is higher
than its purchase price. Consolidation reduces the number of
physical components. This, in turn, reduces the expenses for
energy supply.

303Cloudware Technologies

 5. Less space required: Each and every square yard of data center
space is scarce and expensive. With consolidation, the same per-
formance can be obtained on a smaller footprint and the costly
expansion of an existing data center might possibly be avoided.

 6. Emergency planning: It is possible to move virtual machines from
one resource pool to another. This ensures better availability of
the services and makes it easier to comply with service-level
agreements. Hardware maintenance windows are inherently
no longer required.

Since the providers of cloud services tend to build very large resource
centers, virtualization leads not only to a size advantage but also to a
more favorable cost situation. This results in the following benefits for
the customer:

 1. Dynamic behavior: Any request can be satisfied just in time and
without any delays. In case of bottlenecks, a virtual machine
can draw on additional resources (such as storage space and
I/O capabilities).

 2. Availability: Services are highly available and can be used day
and night without stop. In the event of technology upgrades,
it is possible to hot-migrate applications because virtual
machines can easily be moved to an up-to-date system.

 3. Access: The virtualization layer isolates each virtual machine
from the others and from the physical infrastructure. This way,
virtual systems feature multitenant capabilities and, using a
roles concept, it is possible to safely delegate management func-
tionality to the customer. Customers can purchase IT capabili-
ties from a self-service portal (customer emancipation).

The most direct benefit from virtualization is to ensure that
MapReduce engines work better. Virtualization will result in
better scale and performance for MapReduce. Each one of the
map and reduce tasks needs to be executed independently. If the

MapReduce engine is parallelized and configured to run in a virtual
environment, you can reduce management overhead and allow for
expansions and contractions in the task workloads. MapReduce itself is
inherently parallel and distributed. By encapsulating the MapReduce
engine in a virtual container, you can run what you need whenever you
need it. With virtualization, you can increase your utilization of the
assets you have already paid for by turning them into generic pools of
resources (see Chapter 17, Section 17.2 “Google MapReduce”).

304 Guide to Cloud Computing for Business and Technology Managers

There are side effects of virtualization, notably the performance penalty
and the hardware costs. All privileged operations of a VM must be trapped
and validated by the VMM, which ultimately controls system behavior; the
increased overhead has a negative impact on performance. The cost of the
hardware for a VM is higher than the cost for a system running a traditional
operating system because the physical hardware is shared among a set of
guest operating systems and it is typically configured with faster and/or
multicore processors, more memory, larger disks, and additional network
interfaces compared with a system running a traditional operating system.

A drawback of virtualization is the fact that the operation of the abstraction
layer itself requires resources. Modern virtualization techniques, however,
are so sophisticated that this overhead is not too significant: due to the partic-
ularly effective interaction of current multicore systems with virtualization
technology, this performance loss plays only a minor role in today’s systems.
In view of possible savings and the quality benefits perceived by the custom-
ers, the use of virtualization pays off in nearly all cases.

15.1.2 Layering and Virtualization

A common approach to managing system complexity is to identify a set of
layers with well-defined interfaces among them. The interfaces separate dif-
ferent levels of abstraction. Layering minimizes the interactions among the
subsystems and simplifies the description of the subsystems. Each subsys-
tem is abstracted through its interfaces with the other subsystems. Thus, we
are able to design, implement, and modify the individual subsystems inde-
pendently. The instruction set architecture (ISA) defines a processor’s set of
instructions. For example, the Intel architecture is represented by the ×86–32
and ×86–64 instruction sets for systems supporting 32-bit addressing and
64-bit addressing, respectively. The hardware supports two execution modes,
a privileged, or kernel, mode and a user mode. The instruction set consists
of two sets of instructions, privileged instructions that can only be executed
in kernel mode and nonprivileged instructions that can be executed in user
mode. There are also sensitive instructions that can be executed in kernel and
in user mode but that behave differently.

Modern computing systems can be expressed in terms of the reference
model described in Figure 15.1. The highest level of abstraction is repre-
sented by the application programming interface (API), which interfaces
applications to libraries and/or the underlying operating system. The appli-
cation binary interface (ABI) separates the operating system layer from the
applications and libraries, which are managed by the OS. ABI covers details
such as low-level data types, alignment, and call conventions and defines
a format for executable programs. System calls are defined at this level.
This interface allows portability of applications and libraries across operat-
ing systems that implement the same ABI. At the bottom layer, the model

305Cloudware Technologies

for the hardware is expressed in terms of the Instruction Set Architecture
(ISA), which defines the instruction set for the processor, registers, memory,
and interrupts management. ISA is the interface between hardware and
software, and it is important to the operating system (OS) developer (sys-
tem ISA) and developers of applications that directly manage the underly-
ing hardware (user ISA).

The API defines the set of instructions the hardware was designed to
execute and gives the application access to the ISA. It includes high-level
languages (HLL) library calls, which often invoke system calls. A process
is the abstraction for the code of an application at execution time; a thread
is a lightweight process. The API is the projection of the system from the
perspective of the HLL program and the ABI is the projection of the com-
puter system seen by the process. Consequently, the binaries created by a
compiler for a specific ISA and a specific operating system are not portable.
Such code cannot run on a computer with a different ISA or on computers
with the same ISA but different operating systems. However, it is possible
to compile an HLL program for a VM environment, where portable code
is produced and distributed and then converted dynamically by binary
translators to the ISA of the host system. A dynamic binary translation
converts blocks of guest instructions from the portable code to the host
instruction and leads to a significant performance improvement as such
blocks are cached and reused.

For any operation to be performed in the application level API, ABI and ISA
are responsible for making it happen. The high-level abstraction is converted
into machine-level instructions to perform the actual operations supported
by the processor. The machine-level resources, such as processor regis-
ters and main memory capacities, are used to perform the operation at the
hardware level of the central processing unit (CPU). This layered approach
simplifies the development and implementation of computing systems

API API calls
Applications Applications

Libraries Libraries

Operative system Operative system

System calls

Hardware Hardware

ABI

ISA ISA

User
ISA

User
ISA

FIGURE 15.1
Layering and interfaces between layers of a computer system.

306 Guide to Cloud Computing for Business and Technology Managers

and simplifies the implementation of multitasking and the coexistence of
multiple executing environments. In fact, such a model not only requires
limited knowledge of the entire computing stack, but it also provides ways
to implement a minimal security model for managing and accessing shared
resources. For this purpose, the instruction set exposed by the hardware
has been divided into different security classes that define who can operate
them, namely, privileged and nonprivileged instructions.

Privileged instructions are those that are executed under specific
restrictions and are mostly used for sensitive operations, which expose
(behavior-sensitive) or modify (control-sensitive) the privileged state. For
instance, behavior-sensitive instructions are those that operate on the I/O,
whereas control-sensitive instructions alter the state of the CPU registers.
Nonprivileged instructions are those instructions that can be used without
interfering with other tasks because they do not access shared resources.
For instance, this category contains all the floating, fixed-point, and arith-
metic instructions.

All the current systems support at least two different execution modes:
supervisor mode and user mode. The first mode denotes an execution mode
in which all the instructions (privileged and nonprivileged) can be executed
without any restriction. This mode, also called master mode or kernel mode,
is generally used by the operating system (or the hypervisor) to perform
sensitive operations on hardware-level resources. In user mode, there are
restrictions to control the machine-level resources. If code running in user
mode invokes the privileged instructions, hardware interrupts occur and
trap the potentially harmful execution of the instruction.

15.1.3 Virtual Machines

A virtual machine (VM) is an isolated environment that appears to be a
whole computer but actually only has access to a portion of the computer
resources. Each VM appears to be running on the bare hardware, giving
the appearance of multiple instances of the same computer, though all are
supported by a single physical system. Virtual machines have been around
since the early 1970s, when IBM released its VM/370 operating system. There
are two types of VM: process and system VMs. A process VM is a virtual
platform created for an individual process and destroyed once the process
terminates. Virtually, all operating systems provide a process VM for each
one of the applications running, but the more interesting process VMs are
those that support binaries compiled on a different instruction set. A system
VM supports an operating system together with many user processes. When
the VM runs under the control of a normal OS and provides a platform-inde-
pendent host for a single application, we have an application virtual machine
(e.g., Java Virtual Machine [JVM]).

A system virtual machine provides a complete system; each VM can run
its own OS, which in turn can run multiple applications. Systems such as

307Cloudware Technologies

Linux-VServer, OpenVZ (Open VirtualiZation), FreeBSD Jails, and Solaris
Zones, based on Linux, FreeBSD, and Solaris, respectively, implement
operating system-level virtualization technologies. Operating system-level
virtualization allows a physical server to run multiple isolated operating
system instances, subject to several constraints; the instances are known as
containers, virtual private servers (VPSs), or virtual environments (VEs).
For instance, OpenVZ requires both the host and the guest OS to be Linux
distributions. These systems claim performance advantages over the sys-
tems based on a VMM such as Xen or VMware (there is only a 1%–3%
performance penalty for OpenVZ compared to a stand-alone Linux server).

15.1.3.1 Virtual Machine Monitor (VMM)

A virtual machine monitor (VMM), also called a hypervisor, is the software
that securely partitions the resources of a computer system into one or more
virtual machines. A guest operating system is an operating system that runs
under the control of a VMM rather than directly on the hardware: the VMM
runs in kernel mode, whereas a guest OS runs in user mode. VMMs allow
several operating systems to run concurrently on a single hardware plat-
form; at the same time, VMMs enforce isolation among these systems, thus
enhancing security. A VMM controls how the guest operating system uses
the hardware resources. The events occurring in one VM do not affect any
other VM running under the same VMM.

Thus, the VMM enables

• Multiple services to share the same platform
• The movement of a server from one platform to another, the so-called

live migration
• System modification while maintaining backward compatibility

with the original system

When a guest OS attempts to execute a privileged instruction, the VMM
traps the operation and enforces the correctness and safety of the opera-
tion. The VMM guarantees the isolation of the individual VMs and thus
ensures security and encapsulation, a major concern in cloud computing.
At the same time, the VMM monitors system performance and takes cor-
rective action to avoid performance degradation; for instance, the VMM
may swap out a VM (copies all pages of that VM from real memory to disk
and makes the real memory frames available for paging by other VMs) to
avoid thrashing.

A VMM virtualizes the CPU and memory. For instance, the VMM traps
interrupts and dispatches them to the individual guest operating systems.
If a guest OS disables interrupts, the VMM buffers such interrupts until the
guest OS enables them. The VMM maintains a shadow page table for each
guest OS and replicates any modification made by the guest OS in its own

308 Guide to Cloud Computing for Business and Technology Managers

shadow page table. This shadow page table points to the actual page frame
and is used by the hardware component called the memory management
unit (MMU) for dynamic address translation. Memory virtualization has
important implications on performance. VMMs use a range of optimization
techniques; for example, VMware systems avoid page duplication among
different virtual machines; they maintain only one copy of a shared page
and use copy-on-write policies, whereas Xen imposes total isolation of the
VM and does not allow page sharing. VMMs control the virtual memory
management and decide what pages to swap out; for example, when the ESX
VMware server wants to swap out pages, it uses a balloon process inside a
guest OS and requests it to allocate more pages to itself, thus swapping out
pages of some of the processes running under that VM. Then it forces the
balloon process to relinquish control of the free page frames.

There are two major types of hypervisors:

• Type I hypervisors run directly on top of the hardware. Therefore,
they take the role of an operating system and interact directly with
the ISA interface exposed by the underlying hardware, and they
emulate this interface in order to allow the management of guest
operating systems. These types of hypervisors are also called native
virtual machines since they run natively on hardware.

• Type II hypervisors require the support of an operating system to
provide virtualization services. This means that they are programs
managed by the operating system, which interact with it through
the ABI and emulate the ISA of virtual hardware for guest operating
systems. These types of hypervisors are also called hosted virtual
machines since they are hosted within an operating system.

15.1.3.2 VMM Solutions

A number of VMM solutions exist that are the basis of many utility or cloud
computing environments.

 a. VMWare ESXi: ESXi is a VMM from VMWare. VMware is a pio-
neer in the virtualization market. Its ecosystem of tools ranges from
server and desktop virtualization to high-level management tools.
It is a bare-metal hypervisor, meaning that it installs directly on the
physical server, whereas others may require a host operating sys-
tem. It provides advanced virtualization techniques of processor,
memory, and I/O. Especially, through memory ballooning and page
sharing, it can overcommit memory, thus increasing the density of
VMs inside a single physical server.

 b. Xen: Xen hypervisor started as an open-source project and has
served as a base to other virtualization products, both commercial

309Cloudware Technologies

and open source. It has pioneered the paravirtualization concept, on
which the guest operating system, by means of a specialized kernel,
can interact with the hypervisor, thus significantly improving per-
formance. In addition to an open-source distribution, Xen currently
forms the base of commercial hypervisors of a number of vendors
including Citrix XenServer and Oracle VM.

 c. KVM: The kernel-based virtual machine (KVM) is a Linux virtu-
alization subsystem. It has been part of the mainline Linux kernel
since version 2.6.20, thus being natively supported by several dis-
tributions. In addition, activities such as memory management and
scheduling are carried out by existing kernel features, thus making
KVM simpler and smaller than hypervisors, which take control of
the entire machine. KVM leverages hardware-assisted virtualiza-
tion, which improves performance and allows it to support unmodi-
fied guest operating systems; currently, it supports several versions
of Windows, Linux, and UNIX.

15.2 Types of Virtualization

15.2.1 Operating System Virtualization

The use of operating system virtualization or partitioning (such as IBM
LPARs) in cloud environments may help to solve security and confidenti-
ality problems, which would otherwise impair the acceptance of the cloud
approach. For this type of virtualization, which is also called container or
jails, the host operating system plays a major role. This is a concept where
multiple identical system environments or runtime environments, which are
completely isolated from each other, run under one operating system kernel.
Seen from the outside, virtual environments appear as autonomous systems.
All running applications use the same kernel, but they can only see the pro-
cesses belonging to the same virtual environment.

Mainly, Internet service providers (ISPs), who offer (virtual) root serv-
ers, prefer this kind of virtualization because it is associated with a minor
performance loss and a high degree of security. The drawback of operating
system virtualization is its reduced flexibility: while multiple independent
instances of the same operating system can be used simultaneously, it is
not possible to run different operating systems at the same time. Popular
examples of operating system virtualization are the container technology
from Sun Solaris, OpenVZ for Linux, Linux-VServer, FreeBSD Jails, and
Virtuozzo.

310 Guide to Cloud Computing for Business and Technology Managers

15.2.2 Platform Virtualization

Platform virtualization allows to run any desired operating systems and
applications in virtual environments. There are two different models: full
virtualization and paravirtualization. Both solutions are implemented on
the basis of a virtual machine monitor or hypervisor. The hypervisor is a
minimalistic meta-operating system used for distributing the hardware
resources among the guest systems and for access coordination. A type-1
hypervisor is built directly on top of the hardware; a type-2 hypervisor runs
under a traditional basic operating system.

Full virtualization is based on the simulation of an entire virtual computer
with virtual resources, such as CPU, RAM, drives, and network adapters,
including its own BIOS. Since the access to the most important resources, such
as the processor and the RAM, is passed through, the processing speed of the
guest operating systems nearly equals the speed to be expected if there was no
virtualization. Other components, for example, drives or network adapters, are
emulated. While this decreases the performance, it allows to run unmodified
guest operating systems. Paravirtualization does not provide an emulated
hardware layer to the guest operating systems, but only an application inter-
face. For this purpose, the guest operating systems need to be modified
because any direct access to hardware must be replaced by the corresponding
hypervisor interface call. This is also referred to as hyper calls (just like system
calls), which are used by the applications to call functions in the operating sys-
tem kernel. Since this approach allows the guest system to participate actively
in the virtualization (at least to some extent), a higher throughput than with
full virtualization can be obtained, especially for I/O-intensive applications.
Examples of full virtualization are the VMware products or, specifically for
Linux, the Kernel-based Virtual Machine (KVM). Under Linux, mostly Xen-
based solutions are used for paravirtualization. They play an important role,
particularly in the realization of the Amazon Web Services.

15.2.3 Storage Virtualization

Cloud systems should also offer dynamically scalable storage space as a
service. In this context, storage virtualization boasts a number of advan-
tages. The fundamental idea of storage virtualization is to separate the data
store from the classical file servers and to pool the physical storage systems.
Applications use these pools to dynamically meet their storage require-
ments. For the data transfers, a special storage area network (SAN) or a local
company network (LAN) is used. Data for cloud offerings are mostly avail-
able in the form of Web objects that can be retrieved or manipulated over the
Internet. An additional abstract administration layer is interposed between
the clients and the storage landscape so that the representation of a datum
is decoupled from its physical storage. This has a variety of advantages with
respect to data management and access scalability.

311Cloudware Technologies

Central management also allows to operate the distributed storage
systems at a lower cost. Moreover, different categories of data storage can
be organized in storage hierarchies (tier concept). This makes it possible to
implement an automated lifecycle management for data sets, from tier 0 with
the most stringent availability and bandwidth requirements to lower and
cheaper tier levels with a correspondingly lower quality of service. The data
can be migrated between these levels without affecting the service. By using
snapshots, even large data quantities can be backed up without a special
backup window. A further advantage of storage virtualization is that dis-
tributed mirrors may be created and managed in order to avoid service dis-
ruptions in case of malfunctions. Amazon, for instance, creates up to three
copies in different data centers when storing data.

15.2.4 Network Virtualization

Techniques such as load balancing are essential in cloud environments
because it must be possible to dynamically scale the services offered. The
resources are usually implemented as Web objects. For this reason, it is rec-
ommended to apply the procedures commonly used for Web servers: ser-
vices can be accessed via virtual IP addresses. Through cluster technology,
they realize load balancing as well as automatic failover in case of a failure.
By forwarding DNS requests, it is also possible to integrate cloud resources
into the customer’s Internet namespace.

Network virtualization is also used for virtual local area networks
(VLANs) and virtual switches. In this case, cloud resources appear directly
in the customer’s network. Internal resources can thus be replaced transpar-
ently by external resources. VLAN technology has the following advantages:

• Transparency: Distributed devices can be pooled together in a single
logical network. VLANs are very helpful when designing the IT
infrastructure for geographically disparate locations.

• Security: Certain systems that require particular protection can be
hidden in a separate virtual network.

On the other hand, VLANs involve more overhead for network administra-
tion and for programming active network components (switches, etc.).

15.3 Service-Oriented Architecture (SOA)

SOA introduces a flexible architectural style that provides an integration
framework through which software architects can build applications using a
collection of reusable functional units (services) with well-defined interfaces,

312 Guide to Cloud Computing for Business and Technology Managers

which it combines in a logical flow. Applications are integrated at the inter-
face (contract) and not at the implementation level. This allows greater flex-
ibility since applications are built to work with any implementation of a
contract, rather than take advantage of a feature or idiosyncrasy of a par-
ticular system or implementation. For example, different service providers
(of the same interface) can be dynamically chosen based on policies, such
as price, performance, or other QoS guarantees, current transaction volume,
and so on.

Another important characteristic of an SOA is that it allows many-to-many
integration; that is, a variety of consumers across an enterprise can use and
reuse applications in a variety of ways. This ability can dramatically reduce
the cost/complexity of integrating incompatible applications and increase
the ability of developers to quickly create, reconfigure, and repurpose appli-
cations as business needs arise. Benefits include reduced IT administration
costs, ease of business process integration across organizational departments
and with trading partners, and increased business adaptability.

SOA is a logical way of designing a software system to provide services
to either end-user applications or to other services distributed in a network,
via published and discoverable interfaces. To achieve this, SOA reorganizes
a portfolio of previously siloed software applications and support infra-
structure in an organization into an interconnected collection of services,
each of which is discoverable and accessible through standard interfaces and
messaging protocols. Once all the elements of an SOA are in place, existing
and future applications can access the SOA-based services as necessary. This
architectural approach is particularly applicable when multiple applications
running on varied technologies and platforms need to communicate with
each other.

The essential goal of an SOA is to enable general-purpose interoperability
among existing technologies and extensibility to future purposes and archi-
tectures. SOA lowers interoperability hurdles by converting monolithic and
static systems into modular and flexible components, which it represents as
services that can be requested through an industry standard protocol. Much
of SOA’s power and flexibility derives from its ability to leverage standards-
based functional services, calling them when needed on an individual basis
or aggregating them to create composite applications or multistage business
processes. The building-block services might employ preexisting components
that are reused and can also be updated or replaced without affecting the
functionality or integrity of other independent services. In this latter regard,
the services model offers numerous advantages over large monolithic appli-
cations, in which modifications to some portions of the code can have unin-
tended and unpredictable effects on the rest of the code to which it is tightly
bundled. Simply put, an SOA is an architectural style, inspired by the service-
oriented approach to computing, for enabling extensible interoperability.

SOA as a design philosophy is independent of any specific technology,
for example, Web Services or J2EE. Although the concept of SOA is often

313Cloudware Technologies

discussed in conjunction with Web Services, these two are not synony-
mous. In fact SOA can be implemented without the use of Web Services, for
example, using Java, C#, or J2EE. However, Web Services should be seen as a
primary example of a message delivery model that makes it much easier to
deploy an SOA. Web Services standards are key to enabling interoperability
as well as key issues including quality of system (QoS), system semantics,
security, management, and reliable messaging.

15.3.1 Operations in the SOA

SOA enables three primary operations; these are publication of the service
descriptions, finding the service descriptions, and binding or invocation of
services based on their service description. These three basic operations can
occur singly or iteratively. A logical view of the SOA is given in Figure 15.2.
This figure illustrates the relationship between the SOA operations and
roles. First, the Web Services provider publishes its Web Service(s) with the
discovery agency. Next, the Web Services client searches for desired Web
Services using the registry of the discovery agency. Finally, the Web Services
client, using the information obtained from the discovery agency, invokes
(binds to) the Web Services provided by the Web Services provider.

15.3.1.1 Publish Operation

Publishing a Web Service so that other users or applications can find it actu-
ally consists of two equally important operations. The first operation is
describing the Web Service itself; the other is the actual registration of the
Web Service.

The first requirement for publishing Web Services with the service regis-
try is for a service provider to properly describe them in WSDL. For proper

Service
provider

Service

Service
client

Service
registry

Service
description

Service
description

Publish Bind

Find

FIGURE 15.2
Web Services Operations.

314 Guide to Cloud Computing for Business and Technology Managers

description of a Web Service, three basic categories of information are
necessary:

 1. Business information: information regarding the Web Service pro-
vider or the implementer of the service

 2. Service information: information about the nature of the Web Service
 3. Technical information: information about implementation details and

the invocation methods for the Web Service

Registration deals with storing the three basic categories of descriptive
information about a service in the Web Services registry. For Web Services
requestors to be able to find a Web Service, this service description informa-
tion needs to be published with at least one discovery agency.

15.3.1.2 Find Operation

Finding the desired Web Services consists of first discovering the services
in the registry of the discovery agency and then selecting the desired Web
Service(s) from the search results.

Discovering Web Services involves querying the registry of the discovery
agency for Web Services matching the needs of a Web Services requestor; a
query is executed against the Web Service information in the registry entered
by the Web Services provider. A query consists of search criteria such as type
of service, preferred price range, what products are associated with this ser-
vice, with which categories in company and product taxonomies this Web
Service is associated, as well as other technical service characteristics. The
find operation can be specified statically at design time to retrieve a service’s
interface description for program development or dynamically (at runtime)
to retrieve a service’s binding and location description for invocation.

Selection deals with deciding about which Web Service to invoke from the
set of Web Services the discovery process returned. Two possible methods
of selection exist: manual and automatic selection. Manual selection implies
that the Web Services requestor selects the desired Web Service directly
from the returned set of Web Services after manual inspection. The other
possibility is automatic selection of the best candidate between potentially
matching Web Services. A special client application program provided by
the Web Services registry can achieve this. In this case, the Web Services
requestor has to specify preferences to enable the application to infer which
Web Service the Web Services requestor is most likely to wish to invoke.

15.3.1.3 Bind Operation

The final operation in the Web Services architecture and perhaps the most
important one is the actual invocation of the Web Services. During the bind-
ing operation, the service requestor invokes the Web Service at runtime

315Cloudware Technologies

using the binding details in the service description to locate and contract to
the service in either of these two ways:

 1. Direct invocation of the Web Service by the Web Services requestor
using the technical information included in the description of the
service.

 2. Mediation by the discovery agency for invoking the Web Service. In
this case, all communication between the Web Services requestor
and the Web Services provider goes through the Web Services regis-
try of the discovery agency.

15.3.2 Roles in SOA

Corresponding to the three operations in the SOA, there are three primary
roles, namely, service provider, the service registry, and the service requestor.

15.3.2.1 Web Services Provider

The Web Services provider is responsible for publishing the Web Services
it provides in a service registry hosted by a service discovery agency. This
involves describing the business, service, and technical information of the
Web Service and registering that information with the Web Services registry
in the format prescribed by the discovery agency.

From a business perspective, the Web Services provider is the organization
that owns the Web Service and implements the business logic that underlies
the service. From an architectural perspective, this is the platform that hosts
and controls access to the service.

15.3.2.2 Web Services Registry

Web Services registry is a searchable directory where service descriptions
can be published and searched. Service requestors find service descriptions
in the registry and obtain binding information for services. This informa-
tion is sufficient for the service requestor to contact, or bind to, the service
provider and thus make use of the services it provides.

The Web Services discovery agency is responsible for providing the infra-
structure required to enable the three operations in the Web Services archi-
tecture as described in the previous section: publishing the Web Services by
the Web Services provider, searching for Web Services by the Web Services
requestors, and invoking the Web Services.

15.3.2.3 Web Services Requestor

The next major role in the Web Services architecture is that of the Web
Services requestor (or client). From a business perspective, this is the

316 Guide to Cloud Computing for Business and Technology Managers

enterprise that requires certain functions to be satisfied. From an architec-
tural perspective, this is the application that is looking for, and subsequently
invoking, the service.

The Web Services requestor searches the service registry for the desired
Web Services and using the information in the description to bind to the
service. Two different kinds of Web Services requestors exist. The requestor
role can be played either by another Web Service as part of an application
(i.e., without a user interface) or a browser driven by an end user.

15.3.3 Layers in an SOA

On the basis of their requirements, enterprises may use SOA for the following:

• Implementing end-to-end collaborative business processes: The term end-
to-end business process signifies that a succession of automated busi-
ness processes and information systems in different enterprises
(which are typically involved in intercompany business transactions)
are successfully integrated. The aim is to provide seamless interop-
eration and interactive links between all the relevant members in
an extended enterprise—ranging from product designers, suppliers,
trading partners, and logistics providers to end customers. At this
stage, an organization moves into the highest strategic level of SOA
implementation. Deployment of services becomes ubiquitous, and
federated services collaborate across enterprise boundaries to create
complex products and services. Individual services in this extended
enterprise may originate from many providers, irrespective of
company-specific systems or applications.

• Implementing enterprise service orchestrations: This basic SOA entry
point focuses on a typical implementation within a department
or between a small number of departments and enterprise assets
and comprises two steps: The first step is transforming enterprise
assets and applications into an SOA implementation. This can start
by service enabling existing individual applications or creating
new applications using Web Services technology. This can begin by
specifying a Web Service interface into an individual application or
application element (including legacy systems). The next step after
this basic Web Service implementation is implementing service
orchestrations out of the service-enabled assets or newly created
service applications.

• Service enabling the entire enterprise: The next stage in the SOA
entry point hierarchy is when an enterprise seeks to provide a set
of common services based on SOA components that can be used
across the entire organization. Enterprise-wide service integration is
achieved on the basis of commonly accepted standards. This results

317Cloudware Technologies

in achieving service consistency across departmental boundaries
and is a precursor to integrating an organization with its partners
and suppliers. Consistency is an important factor for this configu-
ration as it provides both a uniform view to the enterprise and its
customers as well as ensuring compliance with statutory or business
policy requirements.

One problem when implementing an SOA at the enterprise level or imple-
menting a cross-enterprise collaborative SOA is how to manage the SOA
model, how to categorize the elements in this model, and how to organize
them in such a way that the different stakeholders reviewing the model can
understand it. Toward this end, it is often convenient to think of the SOA as
comprising a number of distinct layers of abstraction that emphasize service
interfaces, service realizations, and compositions of services into higher-
level business processes. Each of these describes a logical separation of con-
cerns by defining a set of common enterprise elements; each layer uses the
functionality of the layer below it, adding new functionality, to accomplish
its objective. The logical flow employed in the layered SOA development
model may focus on a top-down development approach, which emphasizes
how business processes are decomposed into a collection of business ser-
vices and how these services are implemented in terms of preexisting enter-
prise assets.

SOA can considered to be comprised of the following six distinct layers:

 1. Domains: A business domain is a functional domain comprising a set
of current and future business processes that share common capa-
bilities and functionality and can collaborate with each other to
accomplish a higher-level business objective, such as loans, insur-
ance, banking, finance, manufacturing, marketing, and human
resources.

 2. Business processes: This layer is formed by subdividing a business
domain, such as distribution, into a small number of core business
processes, such as purchasing, order management, and inventory,
which are made entirely standard for use throughout the enterprise;
having a large number of fine-grained processes leads to tremen-
dous overhead and inefficiency, and hence, having a small collection
of coarser-grained processes that are usable in multiple scenarios is
a better option.

 3. Business services: For any process, the right business services is to
subdivide it into increasingly smaller subprocesses until the pro-
cess cannot be divided any further. The resulting subprocesses
then become candidate indivisible (singular) business services for
implementation. Business services automate generic business tasks
that provide value to an enterprise and are part of standard business

318 Guide to Cloud Computing for Business and Technology Managers

process. The more processes that an enterprise decomposes in
this way, the more commonality across these subprocesses can be
achieved. In this way, an enterprise has the chance of building an
appropriate set of reusable business services.

 This layer relies on the orchestration interface of a collection of
business-aligned services to realize reconfigurable end-to-end
business processes. Individual services or collections of services
that exhibit various levels of granularity are combined and orches-
trated to produce new composite services that not only introduce
new levels of reuse but also allow the reconfiguration of business
processes.

 The interfaces get exported as service descriptions in this layer
using a service description language, such as WSDL. The service
description can be implemented by a number of service providers,
each offering various choices of qualities of service based on techni-
cal requirements in the areas of availability, performance, scalability,
and security.

During the exercise of defining business services, it is also
important to take existing utility logic, ingrained in code, and
expose it as services, which themselves become candidate ser-
vices that specify not the overall business process but rather the

mechanism for implementing the process. This exercise should thus
yield two categories of services: business functionality services that are
reusable across multiple processes and a collection of fine-grained util-
ity (or commodity) services, which provide value to and are shared by
business services across the organization. Examples of utility services
include services implementing calculations, algorithms, and directory
management services.

 4. Infrastructure services: Infrastructure services are subdivided into
technical utility services, access services, management and moni-
toring services, and interaction services; these are not specific to
a single line of business but are reusable across multiple lines of
business. They also include mechanisms that seamlessly inter-
link services that span enterprises. This can, for example, include
the policies, constraints, and specific industry messages and inter-
change standards (such as the need to conform to specific industry
message and interchange standards like EDIFACT, SWIFT, xCBL,
ebXML BPSS, or RosettaNet) that an enterprise, say within a par-
ticular vertical marketplace, must conform to in order to work with
other similar processes. Access services are dedicated to transforming

319Cloudware Technologies

data and integrating legacy applications and functions into the SOA
environment. This includes the wrapping and service enablement of
legacy functions.

 5. Service realizations: This layer is the component realization layer
that uses components for implementing services out of preexisting
applications and systems found in the operational systems layer.
Components comprise autonomous units of software that may pro-
vide a useful service or a set of functionality to a client (business
service) and have meaning in isolation from other components with
which they interoperate.

 6. Operational systems: This layer is used by components to implement
business services and processes. Layer 6 is shown to contain exist-
ing enterprise systems or applications, including customer relation-
ship management (CRM) and ERP systems and applications, legacy
applications, database systems and applications, and other packaged
applications. These systems are usually known as enterprise infor-
mation systems.

15.4 Web Services

Web Services are not implemented in a monolithic manner but rather rep-
resent a collection of several related technologies. The minimum infrastruc-
ture required by the Web Services paradigm is purposefully low to help
ensure that Web Services can be implemented on and accessed from any
platform using any technology and programming language. The develop-
ment of open and accepted standards is a key strength of the coalitions that
have been developing the Web Services infrastructure:

 1. Enabling technology standards. Although not specifically tied to
any specific transport protocol, Web Services build on ubiquitous
Internet connectivity and infrastructure to ensure nearly universal
reach and support. For instance, at the transport level, Web Services
take advantage of HTTP, the same connection protocol used by
Web servers and browsers. Web Services use Extensible Markup
Language (XML) as the fundamental building block for nearly every
other layer in the Web Services stack.

 2. Core services standards. The core Web Services standards comprise
the baseline standards SOAP, WSDL, and UDDI:

 a. Simple Object Access Protocol: SOAP is a simple XML-based
messaging protocol on which Web Services rely to exchange

320 Guide to Cloud Computing for Business and Technology Managers

information among themselves. It is based on XML and uses
common Internet transport protocols like HTTP to carry its data.
SOAP implements a request/response model for communication
between interacting Web Services and uses HTTP to penetrate
firewalls, which are usually configured to accept HTTP and FTP
service requests.

 b. Service description: Web Services can be used effectively when a
Web Service and its client rely on standard ways to specify data
and operations, to represent Web Service contracts, and to under-
stand the capabilities that a Web Service provides. To achieve
this, the functional characteristics of a Web Service are first
described by means of a Web Services Description Language.
WSDL defines the XML grammar for describing services as col-
lections of communicating endpoints capable of exchanging
messages.

 c. Service publication: Web Service publication is achieved by UDDI,
which is a public directory that provides publication of online
services and facilitates eventual discovery of Web Services.
Companies can publish WSDL specifications for services they
provide and other enterprises can access those services using
the description in WSDL. In this way, independent applications
can advertise the presence of business processes or tasks that can
be utilized by other remote applications and systems. Links to
WSDL specifications are usually offered in an enterprise’s profile
in the UDDI registry.

 3. Service composition and collaboration standards. These include the fol-
lowing standards:

 a. Service composition: This describes the execution logic of Web
Services-based applications by defining their control flows (such
as conditional, sequential, parallel, and exceptional execution)
and prescribing the rules for consistently managing their unob-
servable business data. In this way, enterprises can describe
complex processes that span multiple organizations—such as
order processing, lead management, and claims handling—
and execute the same business processes in systems from other
vendors. The Business Process Execution Language (BPEL) can
achieve service composition for Web Services.

 b. Service collaboration: This describes cross-enterprise collabo-
rations of Web Service participants by defining their com-
mon observable behavior, where synchronized information
exchanges occur through their shared contact points (when com-
monly defined ordering rules are satisfied). Service collaboration
is materialized by the Web Services Choreography Description

321Cloudware Technologies

Language (WS-CDL), which specifies the common observable
behavior of all participants engaged in business collaboration.
Each participant could be implemented not only by BPEL but
also by other executable business process languages.

 c. Coordination/transaction standards: Solving the problems asso-
ciated with service discovery and service description retrieval is
the key to success of Web Services. Currently, there are attempts
underway toward defining transactional interaction among Web
Services. The WS-Coordination and WS-Transaction initiatives
complement BPEL to provide mechanisms for defining specific
standard protocols for use by transaction processing systems,
workflow systems, or other applications that wish to coordinate
multiple Web Services. These three specifications work in tan-
dem to address the business workflow issues implicated in con-
necting and executing a number of Web Services that may run
on disparate platforms across organizations involved in e-busi-
ness scenarios.

There are several vendors including companies such as IBM,
Microsoft, BEA, and Sun Microsystems that supply products
and services across the realm of Web Services functionality and
implement Web Services technology stack. These vendors are

considered as platform providers and provide both infrastructure, for
example, WebSphere, .NET framework, and WebLogic, for building
and deploying Web Services in the form of application servers and
tools for orchestration and/or composite application development for
utilizing Web Services within business operations.

15.5 Quality of Service (QoS)

The QoS offered by a Web Service is becoming the highest priority for ser-
vice providers and their customers. QoS refers to the ability of the Web
Service to respond to expected invocations and to perform them at the level
commensurate with the mutual expectations of both its provider and its
customers. Several quality factors that reflect customer expectations, such
as constant service availability, connectivity, and high responsiveness,
become key to keeping a business competitive and viable as they can have a
serious impact upon service provision. QoS thus becomes an important cri-
terion that determines the service usability and utility, both of which influ-
ence the popularity of a particular Web Service, and an important selling

322 Guide to Cloud Computing for Business and Technology Managers

and differentiating point between Web Services providers. This requires
not only focusing on the functional properties of services but also concen-
trating on describing the environment hosting the Web Service, that is,
describing the nonfunctional capabilities of services. Each service hosting
environment may offer various choices of QoS based on technical require-
ments regarding demands for around-the-clock levels of service availabil-
ity, performance and scalability, security and privacy policies, and so on, all
of which must be described.

In the Web Services’ context, QoS can be viewed as providing assurance
on a set of quantitative characteristics. These can be defined on the basis
of important functional and nonfunctional service quality properties that
include implementation and deployment issues as well as other important
service characteristics such as service metering and cost, performance met-
rics (e.g., response time), security requirements, (transactional) integrity,
reliability, scalability, and availability. These characteristics are necessary
requirements to understand the overall behavior of a service so that other
applications and services can bind to it and execute it as part of a business
process.

Web Services QoS elements can be grouped under the following three
broad categories:

 1. Performance and capacity: This category considers such issues as
transaction volumes, throughput rates, system sizing, utilization
levels, whether underlying systems have been designed and tested
to meet these peak load requirements, and, finally, how important
are request/response times.

 2. Availability: This category considers such issues as mean time
between failure for all or parts of the system, disaster recovery
mechanisms, mean time to recovery, whether the business can toler-
ate Web Services downtime and how much, and whether there is
adequate redundancy built in so that services can be offered in the
event of a system or network failure.

 3. Security/privacy: This category considers such issues as response to
systematic attempts to break into a system, privacy concerns, and
authentication/authorization mechanisms provided.

15.6 Summary

This chapter presented an overview of technologies on which cloud com-
puting depends: virtualization, service-oriented architectures (SOA), and
Web Services. Virtualization technology is one of the fundamental com-
ponents of cloud computing, Virtualization allows the creation of a secure,

323Cloudware Technologies

customizable, and isolated execution environment for running applications
without affecting other users’ applications. One of the primary reasons
companies implement virtualization is to improve the performance and
efficiency of processing of a diverse mix of workloads. Rather than assign-
ing a dedicated set of physical resources to each set of tasks, a pooled set of
virtual resources can be quickly allocated as needed across all workloads.
Virtualization provides a great opportunity to build elastically scalable sys-
tems that can provision additional capability with minimum costs. SOA is an
architectural style, inspired by the service-oriented approach to computing,
for enabling extensible interoperability. Much of SOA’s power and flexibility
derives from its ability to leverage standards-based functional services, call-
ing them when needed on an individual basis, or aggregating them to create
composite applications or multistage business processes. Although the con-
cept of SOA is often discussed in conjunction with Web Services, these two
are not synonymous. Web Services standards are key to enabling interopera-
bility as well as key issues including quality of service (QoS), system seman-
tics, security, management, and reliable messaging.

325

16
Cloudware Vendor Solutions

Cloud computing is on-demand access to a shared pool of computing
resources. It helps consumers to reduce costs, reduce management responsi-
bilities, and increase business agility. For this reason, it is becoming a popu-
lar paradigm, and increasingly more companies are shifting toward IT cloud
computing solutions. Advantages are many, but being a new paradigm, there
are also challenges and inherent issues. These relate to data governance, ser-
vice management, process monitoring, infrastructure reliability, informa-
tion security, data integrity, and business continuity.

16.1 Infrastructure as a Service (IaaS) Solutions

IaaS provides developers with on-demand infrastructure resources such as
compute, storage, and communication as virtualized services in the cloud.
The provider actually manages the entire infrastructure and operates data
centers large enough to provide seemingly unlimited resources. The client
is responsible for all other aspects of deployment, which can include the
operating system itself, together with programming languages, Web servers,
and applications. IaaS normally employs a pay-as-you-go model with ven-
dors typically charging by the hour. Once connected, the developers work
with the resources as if they owned them. IaaS has been largely facilitated
by the advances in operating system virtualization, which enables a level
of indirection or abstraction with regard to direct hardware usage. The vir-
tual machine (VM) is the most common form for providing computational
resources, and users normally get superuser access to their virtual machines.
Virtualized forms of fundamental resources such as computing power, stor-
age, or network bandwidth are provided and can be composed in order to
construct new cloud software environments or applications. Virtualization
enables the IaaS provider to control and manage the efficient utilization of
the physical resources and allows users unprecedented flexibility in configu-
ration while protecting the physical infrastructure of the data center. The
IaaS model allows for existing applications to be directly migrated from an
organization’s servers to the cloud supplier’s hardware, potentially with
minimal or no changes to the software.

326 Guide to Cloud Computing for Business and Technology Managers

16.1.1 Amazon

In the mid-2000, Amazon introduced Amazon Web Services (AWS), based on
the IaaS delivery model. In this model, the cloud service provider offers an
infrastructure consisting of compute and storage servers interconnected by
high-speed networks that support a set of services to access these resources.
An application developer is responsible for installing applications on a plat-
form of his or her choice and managing the resources provided by Amazon.
Launched in July 2002, AWS provides online services for websites or client-
side applications. Amazon S3 was launched in March 2006, and Amazon
EC2 was built in August 2006 with the Amazon infrastructure and develop-
ers base available worldwide. Since then, AWS became the market leader in
cloud computing, by virtue of its early entry, rapid innovation, and flexible
cloud services. In June 2007, Amazon claimed that more than 330,000 devel-
opers had signed up to use AWS. As a core part of AWS, EC2 provides the
computing facility for organizations and is capable of supporting a variety
of applications. In November 2010, Amazon made the switch of its flagship
retail website itself to EC2 and AWS.

16.1.1.1 Elastic Compute Cloud (EC2)

EC2 is a Web Service with a simple interface for launching instances of an
application under several operating systems, such as several Linux distribu-
tions, Microsoft Windows Server 2003 and 2008, OpenSolaris, FreeBSD, and
NetBSD.

An instance is created either from a predefined Amazon Machine Image
(AMI) digitally signed and stored in S3 or from a user-defined image. The
image includes the operating system, the runtime environment, the librar-
ies, and the application desired by the user. AMIs create an exact copy of the
original image but without configuration-dependent information such as the
hostname or the MAC address.

A user can

 1. Launch an instance from an existing AMI and terminate an instance
 2. Start and stop an instance
 3. Create a new image
 4. Add tags to identify an image
 5. Reboot an instance

EC2 is based on the Xen virtualization strategy discussed in detail in
Section 15.1.3.2. In EC2, each virtual machine or instance functions as a
virtual private server. An instance specifies the maximum amount of
resources available to an application, the interface for that instance, and
the cost per hour.

327Cloudware Vendor Solutions

A user can interact with EC2 using a set of SOAP messages and can list
available AMIs, boot an instance from an image, terminate an image, display
the running instances of a user, display console output, and so on. The user
has root access to each instance in the elastic and secure computing environ-
ment of EC2. The instances can be placed in multiple locations in different
regions and availability zones.

EC2 allows the import of virtual machine images from the user environ-
ment to an instance through a facility called VM import. It also automati-
cally distributes the incoming application traffic among multiple instances
using the elastic load-balancing facility. EC2 associates an elastic IP address
with an account; this mechanism allows a user to mask the failure of an
instance and remap a public IP address to any instance of the account with-
out the need to interact with the software support team.

16.1.1.2 Simple Storage Service (S3)

Simple storage service (S3) is a storage service designed to store large objects.
It supports a minimal set of functions: write, read, and delete. S3 allows an
application to handle an unlimited number of objects ranging in size from
1 byte to 5 TB. An object is stored in a bucket and retrieved via a unique
developer-assigned key. A bucket can be stored in a region selected by the
user. S3 maintains the name, modification time, an access control list, and up
to 4 kB of user-defined metadata for each object. The object names are global.
Authentication mechanisms ensure that data are kept secure; objects can be
made public, and rights can be granted to other users.

S3 supports PUT, GET, and DELETE primitives to manipulate objects but
does not support primitives to copy, rename, or move an object from one
bucket to another. Appending to an object requires a read followed by a
write of the entire object.

16.1.1.3 Elastic Block Store (EBS)

EBS provides persistent block-level storage volumes for use with Amazon EC2
instances. A volume appears to an application as a raw, unformatted, and reli-
able physical disk; the size of the storage volumes ranges from 1 GB to 1 TB.
The volumes are grouped together in availability zones and are automatically
replicated in each zone. An EC2 instance may mount multiple volumes, but a
volume cannot be shared among multiple instances. The EBS supports the cre-
ation of snapshots of the volumes attached to an instance and then uses them
to restart an instance. The storage strategy provided by EBS is suitable for
database applications, file systems, and applications using raw data devices.

It is important to mention that an EBS volume can only be mounted to one
single instance, which, in turn, must be located in the same availability zone.
An EBS volume implements persistent storage, that is, it preserves the data
after termination of the instance.

328 Guide to Cloud Computing for Business and Technology Managers

16.1.1.4 SimpleDB

SimpleDB is a nonrelational data store that allows developers to store and
query data items via Web Service requests. It supports store-and-query
functions traditionally provided only by relational databases. SimpleDB
creates multiple geographically distributed copies of each data item and
supports high-performance Web applications; at the same time, it automat-
ically manages infrastructure provisioning, hardware and software main-
tenance, replication and indexing of data items, and performance tuning.

Amazon SimpleDB is not designed for complex database schemes or
transactional properties but intended to provide simply structured, yet
highly reliable data storage, which is considered to be sufficient for a wide
range of applications. The database administration and optimization tasks
are thus reduced to a minimum. For applications that depend on the per-
formance and the comprehensive functionality of today’s commercial rela-
tional database systems (RDBMS), Amazon RDS is the better choice (see
Section 16.2.1 below).

In line with the limited functionality of SimpleDB, its interface is also
restricted to a few simple Web Service calls. This should ensure both ease of
learning and a user-friendly behavior:

• CreateDomain, ListDomains, DeleteDomain: Create, list, or delete
domains. Domains correspond to the tables existing in relational
databases. Each command can only address one single domain at
a time.

• DomainMetadata: Reads metadata of a domain, such as the current
storage space requirements.

• PutAttributes: Adds or updates a record based on a record identifier
and attribute/value pairs.

• BatchPutAttributes: Simultaneously triggers multiple insert opera-
tions to increase the performance.

• DeleteAttributes: Deletes records, attributes, or values.
• GetAttributes: Reads an identified (partial) record.
• Select: Queries the database using an SQL-like syntax, but without

being applied to multiple domains (as with Join).

16.1.1.5 Simple Queue Service (SQS)

SQS is a hosted message queue. SQS is a system for supporting automated
workflows; it allows multiple Amazon EC2 instances to coordinate their
activities by sending and receiving SQS messages. Any computer connected
to the Internet can add or read messages without any installed software or
special firewall configurations.

329Cloudware Vendor Solutions

Applications using SQS can run independently and asynchronously and
do not need to be developed with the same technologies. A received mes-
sage is locked during processing; if processing fails, the lock expires and the
message is available again. The time-out for locking can be changed dynami-
cally via the ChangeMessageVisibility operation. Developers can access SQS
through standards-based SOAP and query interfaces. Queues can be shared
with other AWS accounts and anonymously; queue sharing can also be
restricted by IP address and time of day.

The SQS interface provides the following services that are not usually
started by a user by entering a command but by corresponding Web Service
calls issued by the associated components:

• CreateQueue creates a queue in the AWS user context.
• ListQueues lists the existing queues.
• DeleteQueue deletes a queue.
• SendMessage places a message in a queue.
• ReceiveMessage reads one (or more) message(s) from a queue.
• ChangeMessageVisibility explicitly sets the visibility of a read message

for other potential readers.
• DeleteMessage deletes a read message.
• SetQueueAttributes sets queue attributes, for example, the interval

between two read operations of the same message.
• GetQueueAttributes reads queue attributes, for example, the number

of messages currently in the queue.
• AddPermission enables shared access to a queue from multiple user

contexts.
• RemovePermission disables the shared access by other user contexts.

The SQS message queue has special importance within the range of AWS
cloud offerings because it can be used effectively to scale applications.
A sender (publisher) can place messages in a queue, which can then be read
out and processed by a registered recipient. To dissociate different compo-
nents in an application, a service-consuming component can place its jobs
as requests in the queue from where they are fetched by service-providing
components. Skillful programming allows to operate critical components
simultaneously on multiple EC2 instances using the path thus defined. This
way, bottlenecks existing with certain components can be eliminated flex-
ibly at runtime, and the system’s overall performance is no longer limited by
the bottleneck. The example in Section 4.1.7 illustrates the resulting system
architecture.

330 Guide to Cloud Computing for Business and Technology Managers

16.1.1.6 CloudWatch

CloudWatch is a monitoring infrastructure used by application developers,
users, and system administrators to collect and track metrics important for
optimizing the performance of applications and for increasing the efficiency
of resource utilization. Without installing any software, a user can monitor
approximately a dozen preselected metrics and then view graphs and statis-
tics for these metrics.

When launching an Amazon Machine Image (AMI), a user can start the
CloudWatch and specify the type of monitoring. Basic Monitoring is free
of charge and collects data at 5 min intervals for up to 10 metrics; Detailed
Monitoring is subject to a charge and collects data at 1 min intervals. This
service can also be used to monitor the latency of access to EBS volumes, the
available storage space for RDS DB instances, the number of messages in
SQS, and other parameters of interest for applications.

16.1.1.7 Auto Scaling

Auto Scaling exploits cloud elasticity and provides automatic scaling of EC2
instances. The service supports grouping of instances, monitoring of the
instances in a group, and defining triggers and pairs of CloudWatch alarms
and policies, which allow the size of the group to be scaled up or down. Typically,
a maximum, a minimum, and a regular size for the group are specified.

An Auto Scaling group consists of a set of instances described in a static
fashion by launch configurations. When the group scales up, new instances
are started using the parameters for the RunInstances EC2 call provided by
the launch configuration. When the group scales down, the instances with
older launch configurations are terminated first. The monitoring function
of the Auto Scaling service carries out health checks to enforce the speci-
fied policies; for example, a user may specify a health check for Elastic Load
Balancing, and then Auto Scaling will terminate an instance exhibiting a low
performance and start a new one. Triggers use CloudWatch alarms to detect
events and then initiate specific actions; for example, a trigger could detect
when the CPU utilization of the instances in the group goes above 90% and
then scale up the group by starting new instances. Typically, triggers to scale
up and down are specified for a group.

16.1.1.8 Elastic Beanstalk

Elastic Beanstalk, a service that interacts with other AWS services, including
EC2, S3, SNS, Elastic Load Balancing, and Auto Scaling, automatically han-
dles the deployment, capacity provisioning, load balancing, Auto Scaling,
and application monitoring functions [356]. The service automatically scales
the resources as required by the application, either up or down, based on the
default Auto Scaling settings.

331Cloudware Vendor Solutions

Some of the management functions provided by the service are

 1. Deployment of a new application version (or rollback to a previous
version)

 2. Access to the results reported by CloudWatch monitoring service
 3. E-mail notifications when application status changes or application

servers are added or removed
 4. Access to server login files without needing to log in to the applica-

tion servers

The Elastic Beanstalk service is available to developers using a Java plat-
form, the PHP server-side description language, or .NET Framework. For
example, a Java developer can create the application using any Integrated
Development Environment (IDE) such as Eclipse and package the code into
a Java Web application archive (a file of type .war) file. The .war file should
then be uploaded to the Elastic Beanstalk using the management console
and then deployed, and in a short time, the application will be accessible
via a URL.

16.1.1.9 Regions and Availability Zones

Today, Amazon offers cloud services through a network of data centers
on several continents. In each region, there are several availability zones
interconnected by high-speed networks; regions communicate through the
Internet and do not share resources. An availability zone is a data center
consisting of a large number of servers. A server may run multiple virtual
machines or instances, started by one or more users; an instance may use
storage services, S3, EBS, and SimpleDB, as well as other services provided
by AWS. A cloud interconnect allows all systems in an availability zone to
communicate with one another and with systems in other availability zones
of the same region.

Storage is automatically replicated within a region; S3 buckets are repli-
cated within an availability zone and between the availability zones of a
region, whereas EBS volumes are replicated only within the same availabil-
ity zone. Critical applications are advised to replicate important information
in multiple regions to be able to function when the servers in one region are
unavailable due to catastrophic events. A user can request virtual servers and
storage located in one of the regions. The user can also request virtual serv-
ers in one of the availability zones of that region. The Elastic Compute Cloud
(EC2) service allows a user to interact and to manage the virtual servers.

The billing rates in each region are determined by the components of the
operating costs, including energy, communication, and maintenance costs.
Thus, the choice of the region is motivated by the desire to minimize costs,
reduce communication latency, and increase reliability and security.

332 Guide to Cloud Computing for Business and Technology Managers

An instance is a virtual server. The user chooses the region and the avail-
ability zone where this virtual server should be placed and selects from a
limited menu of instance types: the one that provides the resources, CPU
cycles, main memory, secondary storage, communication, and I/O band-
width needed by the application. When launched, an instance is provided
with a DNS. This name maps to a private IP address for internal commu-
nication within the internal EC2 communication network and a public IP
address for communication outside the internal Amazon network (e.g., for
communication with the user that launched the instance). Network Address
Translation (NAT) maps external IP addresses to internal ones. The public IP
address is assigned for the lifetime of an instance, and it is returned to the
pool of available public IP addresses when the instance is either stopped or
terminated. An instance can request an elastic IP address rather than a pub-
lic IP address. The elastic IP address is a static public IP address allocated
to an instance from the available pool of the availability zone. An elastic IP
address is not released when the instance is stopped or terminated and must
be released when no longer needed.

16.1.1.10 Charges for Amazon Web Services

Amazon charges a fee for EC2 instances, EBS storage, data transfer, and
several other services. The charges differ from one region to another and
depend on the pricing model (see http://aws.amazon.com/ec2/pricing for
the current pricing structure). EC2 has flexible and multiple price models,
which allow cloud consumers to reduce costs based upon workloads. The
costs are calculated based on factors such as the tenant model, regions, and
computing usage, instance type and operating system of the instances. The
tenant model includes On-Demand, Reserved (Light, Medium, and Heavy
for 1-Year, 3-Year), and Spot.

There are three pricing models for EC2 instances:

 1. The On-Demand Instances model allows consumers to pay for
computing capacity by the hour without long-term commitments.
On-demand instances use a flat hourly rate, and the user is charged
for the time an instance is running; no reservation is required for
this most popular model.

 2. The Reserved Instances model gives consumers the option to make
a low, one-time payment for each instance they reserve and in turn
receive a significant discount on the hourly charge for that instance.
For reserved instances a user pays a one-time fee to lock in a typi-
cally lower hourly rate. This model is advantageous when a user
anticipates that the application will require a substantial number of
CPU cycles and this amount is known in advance. Additional capac-
ity is available at a larger standard rate.

333Cloudware Vendor Solutions

 3. The Spot Instances model enables consumers to bid for Amazon EC2
computing capacity. Spot price, which varies in real time based on
supply and demand. In case of spot instances, users bid on unused
capacity and their instances are launched when the market price
reaches the threshold specified by the user.

There are three pricing models for EC2 instances: on-demand, reserved, and
spot. On-demand instances use a flat hourly rate, and the user is charged
for the time an instance is running; no reservation is required for this most
popular model. For reserved instances, a user pays a one-time fee to lock in
a typically lower hourly rate. This model is advantageous when a user antici-
pates that the application will require a substantial number of CPU cycles,
and this amount is known in advance. Additional capacity is available at the
larger standard rate. In case of spot instances, users bid on unused capacity,
and their instances are launched when the market price reaches a threshold
specified by the user.

16.2 Platform as a Service (PaaS) Solutions

For many businesses, specific rather than general requirements may mean
that a generic SaaS application will not suffice. PaaS creates a managed envi-
ronment in the cloud where complex, tailor-made applications can be con-
structed, tested, and deployed. The provider supplies a hardware platform
together with software environments specifically designed to support cloud
application development. The target users are developers who build, test,
deploy, and tune applications on the cloud platform (for the end user, the
result is still a browser-based application). Automatic scalability, monitoring,
and load balancing are provided so that an increase in demand for a resource
such as a Web application will not result in degradation in performance (of
course, this may mean an increased charge is incurred). PaaS vendors will
also ensure the availability of applications, so, for example, should there be
any problems on the underlying hardware, the application will be automati-
cally redeployed to a working environment, without a detrimental effect on
the end user’s experience. PaaS should accelerate development and deploy-
ment and result in a shorter time to market when compared with traditional
software development using an organization’s own data center.

The developer does not control and has no responsibility for the underlying
cloud infrastructure but does have control over the deployed applications.
The vendor is responsible for all operational and maintenance aspects of the
service and will also provide billing and metering information. The vendor
commonly offers a range of tools and utilities to support the design, integra-
tion, testing, monitoring, and deployment of the application.

334 Guide to Cloud Computing for Business and Technology Managers

Typically, the tool set will include services to support

• Collaboration and team working
• Data management—sometimes referred to as data as a service (DaaS)
• Authentication or identification—sometimes referred to as authenti-

cation as a service (AaaS)
• Performance monitoring and management
• Testing
• Queue services
• E-mail and messaging
• User interface components

Often the supporting tools are configured as RESTful services, which can
readily be composed when building applications. It is important that devel-
opers are able to write applications without needing to know the details
of the underlying technology of the cloud to which they will be deployed.
Standard programming languages are often available, although normally
with some restrictions based on security and scalability concerns. Additional
support for programming and configuration tasks is often available from a
developer community specific to the PaaS offering.

16.2.1 Amazon Relational Database Service

Amazon Relational Database Service (Amazon RDS) is a PaaS that makes it
easy to set up, operate, and scale a relational database in the cloud. Similar
to the EC2 operating model, this service provides elastic capacities and at the
same time handles time-consuming database administration tasks. Thanks
to automated database backups and snapshots, the Amazon RDS is highly
reliable: a database instance can be recovered for any point in time or recov-
ery point that lies within the agreed retention period.

Amazon CloudWatch allows users to monitor the utilization of the com-
puting and storage capacities of their database instances and to scale the
available resources vertically using a simple API call as needed. In connec-
tion with highly demanding applications involving many read operations,
it is possible to scale out by launching the so-called Read Replica instances.
A corresponding high-availability offering allows the provisioning of syn-
chronously replicated database instances without additional costs in mul-
tiple availability regions as a safeguard against failures at a single location.
This way, it is possible to mask maintenance windows as RDS switches the
database services transparently between the locations.

Amazon RDS enables access to all MySQL database functions so that it
is a nobrainer to migrate existing applications while maintaining the pre-
ferred database tools and programming languages. If an existing application
already uses a MySQL database, the data can be exported with mysqldump

335Cloudware Vendor Solutions

and then be piped directly into Amazon RDS. For larger databases of 1 GB
or more, we recommend to create a database schema in RDS first, then con-
vert the data into a flat file, and finally import it into the RDS instance using
the mysqlimport utility. The same method can be used when exporting data
from the database services.

Amazon RDS selects the optimum configuration parameters for database
instances, taking the relevant computing resources and storage capacity
requirements into account. However, it is also possible to change the default
setting through configuration management APIs. Since RDS is implemented
as a PaaS offering, it is not possible to set the database parameters by directly
accessing the servers through the SSH.

For the management of its database services, Amazon not only offers com-
mand line tools and libraries for various programming languages but also a
convenient web-based management console.

16.2.2 Google App Engine (GAE)

Google is also a leader in the Platform-as-a-Service (PaaS) space. App Engine
is a developer platform hosted on the cloud. Initially it supported only
Python, but support for Java was added later, and detailed documentation
for Java is now available. The database for code development can be accessed
with Google Query Language (GQL) with an SQL-like syntax.

Google App Engine is a PaaS that includes a programming environment,
tool support, and an execution environment. This instrumentation can be used
to develop Web applications for the scalable Google infrastructure. Google
App Engine virtually frees Web application designers from any tasks involv-
ing server administration so that they can focus on developing the required
application functionality.

GAE applications are built using three different programming languages:

 1. The Python programming language was the first to appear when
GAE was initially made available to developers. Python System
Development Kit (SDK) is still available and widely used.

 2. Java has been added together with integration with Eclipse. Using
the Eclipse plug-in, developers can run and test their Java appli-
cations locally and deploy to the cloud with a single click. Google
uses the Java virtual machine with the Jetty servlet engine and a
standard WAR file structure. Any programming language that can
run on a JVM-based interpreter, such as JRuby, Groovy, JavaScript
(Rhino) and Scala, can also be run on GAE, although there may be a
little more work in terms of initial configuration. GAE also supports
many of the Java standards and frameworks such as servlets, the
Spring Framework, and Apache Struts.

 3. Go concurrent programming language developed by Google.

336 Guide to Cloud Computing for Business and Technology Managers

Java, Python, and Go runtime environments are provided with APIs (appli-
cation program interface) to interact with Google’s runtime environment.
Google App Engine provides developers with a simulated environment to
build and test applications locally with any operating system that supports a
suitable version of the Python, Java, or Go language environments but with
a number of important restrictions. Recently, a number of projects such as
AppScale have been able to run Python, Java, and Go GAE applications on
EC2 and other cloud vendors.

The GAE platform also allows developers to write code and integrate
custom-designed applications with other Google services. GAE also has a
number of composable supporting services including

• Integrated Web Services
• Authentication using Google Accounts
• Scalable nonrelational, schema-less storage using standard Java

persistence
• models
• Fast in-memory storage using a key-value cache (memcache)
• Task queues and scheduling

Google App Engine not only supports Web application developers by pro-
viding the local runtime environment mentioned earlier and the associ-
ated automation of transfer and deployment on the Google servers. What
is more, many other tools, for example, Google Plugin for Eclipse, are
available for the development of Google Web Toolkit (GWT) applications.
Even when it comes to the App Engine pricing system, Google has the
needs of potential developers in mind: each developer benefits from free
quotas for CPU load, storage use, data transfer, etc., which can be used up
on a daily basis and which are usually sufficient to run developer systems
and basic Web applications. If it is predictable that more resources will be
needed, they can be purchased as an option. Prices for commercial use are
comparable to those for the Amazon Web Services.

16.2.3 Google Cloud Print

Google Cloud Print is another interesting cloud computing concept. This
service allows any application to print to any output device on the Internet.
Especially users of mobile end devices might greatly benefit from this option.
While modern Internet-enabled devices, such as notebooks, touchpads, and
mobile phones, are becoming more and more widespread, it is often difficult
or even impossible to set up a local printer that can be used by these devices.
The lack of suitable printer drivers, the partly insufficient device resources,
and the variety of operating systems in use add to this issue.

337Cloudware Vendor Solutions

With Google Cloud Print, print jobs are sent to a service that directly for-
wards them to a Cloud Print–compatible network printer; for this purpose, a
special authorization or accounting procedure is used. As long as a printer is
connected to the Internet, the service can be set up for worldwide use. If the
printer is incompatible with the Cloud Print technology, it must be connected
to a server where a suitable proxy is installed. In this case, the print job data
are first converted to a compatible printer language. For this purpose, the
required set of printer drivers is made available by the Cloud Print provider.
Then the print job is transmitted to the server that finally forwards the pre-
processed print jobs to the selected printer. Google Cloud Print represents
an unconstrained standard that can be implemented freely by the industry.
Many manufacturers, such as HP, meanwhile offer a number of low-priced,
compatible printers.

This development has the potential to allow a broad range of service offer-
ings to spread around this technology, including services that go far beyond
the simple replacement of centralized print job management in companies
and universities. In the future, university students will have the possibility,
for example, to directly upload their lecture notes from their touchpad to a
print provider’s site to have them printed and bound. Due to economies of
scale, the provider is able to offer this service at a very good price, includ-
ing free delivery. The standardized interface provides the ability to greatly
automate and streamline certain tasks, particularly the cross-company pro-
cessing of bulk mail, quality prints, etc. What is more, a new distribution
model for publishing houses is beginning to materialize: The installation of
machines in the public on which—controlled by a mobile device—electronic
magazines, newspapers, or books can be printed on the spot.

16.2.4 Windows Azure

Windows Azure is Microsoft’s cloud computing platform for the execution
of software in Microsoft’s data centers. Windows Azure is an operating
system, SQL Azure is a cloud-based version of the SQL Server, and Azure
AppFabric (formerly .NET Services) is a collection of services for cloud
applications.

Windows Azure has three core components:

 1. Compute, which provides a computation environment.
 2. Storage for scalable storage.
 3. Fabric controller, which deploys, manages, and monitors applica-

tions; it interconnects nodes consisting of servers, high-speed con-
nections, and switches.

The Windows Azure platform comprises a compute service for running
applications, a storage service for storing data, and an SQL service for pro-
viding highly available relational databases in the cloud. The storage service

338 Guide to Cloud Computing for Business and Technology Managers

can be used to store large objects containing text or binary data. Based on
this service, Windows Azure Drive allows to format a binary data object to
be used as an NTFS volume. A queue service ensures a reliable data exchange
between the components. Finally, the virtual network service constitutes the
basis for a transparent communication between local and remote resources. It
can be used to integrate Windows Azure services into a local Active Directory.
In addition, the platform includes the Windows Azure AppFabric that uses
secure connectivity to bridge traditional IT systems to cloud applications.
With the Azure service platform, software products can be installed as cloud
services on the Internet or alternatively as applications in the in-house data
center. The two methods can also be combined to implement a flexibly scal-
able hybrid cloud. For this purpose, Web and business developers have the
choice of a variety of established tools, such as Microsoft.NET, Visual Studio,
or many other products that are available as commercial or open-source
software. Applications can be developed and tested locally before they are
finally uploaded and published to the Azure cloud.

Scaling, load balancing, memory management, and reliability are ensured
by a fabric controller, a distributed application replicated across a group
of machines that owns all of the resources in its environment—computers,
switches, load balancers—and it is aware of every Windows Azure
application.

The fabric controller decides where new applications should run; it chooses
the physical servers to optimize utilization using configuration information
uploaded with each Windows Azure application. The configuration infor-
mation is an XML-based description of how many Web role instances, how
many worker role instances, and what other resources the application needs.
The fabric controller uses this configuration file to determine how many
VMs to create.

Blobs, tables, queues, and drives are used as scalable storage. A blob con-
tains binary data; a container consists of one or more blobs. Blobs can be
up to a terabyte, and they may have associated metadata (e.g., the informa-
tion about where a JPEG photograph was taken). Blobs allow a Windows
Azure role instance to interact with persistent storage as though it were a
local NTFS6 file system. Queues enable Web role instances to communicate
asynchronously with worker role instances.

The Content Delivery Network (CDN) maintains cache copies of data to
speed up computations. The connect subsystem supports IP connections
between the users and their applications running on Windows Azure. The
API to Windows Azure is built on REST, HTTP, and XML. The platform
includes five services: Live Services, SQL Azure, AppFabric, SharePoint,
and Dynamics CRM. A client library and tools are also provided for devel-
oping cloud applications in Visual Studio.

The computations carried out by an application are implemented as one
or more roles; an application typically runs multiple instances of a role. For
the use of Windows Azure services, three different roles have been defined:

339Cloudware Vendor Solutions

 1. The Web role supports the development and execution of Web appli-
cations with Internet Information Server 7.

 2. The worker role provides supporting services to the Web role, for
example, in multitier applications.

 3. The VM role allows the execution of a virtual machine on Windows
Server 2008 R2. The image is stored on a virtual hard disk in the
Azure storage service. This role further provides functionality for
granting privileges and using remote desktop connections.

The usage-oriented Windows Azure pricing model is based on what is
actually used so that IT solutions can be deployed without up-front invest-
ment in hardware and software and more compute power can be added
later as required. Pricing is in line with Amazon’s or Google’s model
(Table 16.1).

The Microsoft Azure platform currently does not provide or support any
distributed parallel computing frameworks, such as MapReduce, Dryad,
or MPI, other than the support for implementing basic queue-based job
scheduling.

Windows Azure was announced in October 2008 followed by SQLAzure
Relational Data’s announcement in March 2009. In October 2010, full IIS sup-
port was added to Windows Azure.

The general characteristics of Windows Azure are as follows:

• Model: Windows Azure provides both PaaS and IaaS types of cloud
services.

• Compatibility: Several Microsoft products have been integrated with
Windows Azure to help cloud consumers better use and manage
cloud services. For example, consumers can use the Microsoft SQL
Server2 to access and operate their SQL Azure database.

• Deployment and interface: The Windows Azure interface includes a
management portal and powerful command-line tools. The man-
agement portal and command-line tools are easy to use, and help
cloud consumers and end users manage applications and cloud ser-
vices. In addition, several Microsoft products (e.g., Microsoft Visual

TABLE 16.1

Fees for Windows Azure Compute Resources (USD per h)

Instance Type CPU (GHz) Memory Disk (GB) I/O Costs

Extra small 1.0 768 MB 20 Low 0.05
Small 1.6 1.75 GB 225 Moderate 0.12
Medium 2 × 1.6 3.5 GB 490 High 0.24
Large 4 × 1.6 7 GB 1000 High 0.48
Extra large 8 × 1.6 14 GB 2040 High 0.96

340 Guide to Cloud Computing for Business and Technology Managers

Studio and Microsoft WebMatrix) can help deploy and manage user
applications and cloud resources. Windows Azure also has a REST-
based service API for managements and deployments.

• Hypervisor: Microsoft does not provide Windows Azure Hypervisor
as a single product for cloud consumers or end users.

• Reliability: Windows Azure guarantees a 99.95% computing reliabil-
ity and a 99.9% role instance and storage reliability.

• OS Supports: Windows Azure currently supports both Windows and
Linux Operation Systems for Virtual Machines (VMs).

• Scalability: In Windows Azure, computing resources can be separated
from storage to achieve independent scalability of computing and
storage. This mechanism also provides isolation and multitenancy.
In 2012, the Windows Azure team built a new flat network system
that could create Flat Network Storage (FNS) crossing all Windows
Azure data centers. The FNS system resulted in bandwidth improve-
ments of network connectivity to support Windows Azure VMs. The
new networking design better supports high-performance comput-
ing (HPC) applications that require massive communications and
significant bandwidth between computing nodes.

• Cost: Windows Azure does not have upfront costs. The cost for each
component is based on the cloud configuration. Windows Azure
payment plans include pay-as-you-go, 6-month plans, or 12-month
plans. Microsoft provides an official cost calculator2 for Windows
Azure so that users can easily estimate the cost.

Cost is calculated based on computing usage. The cost includes

• Website cost
• Virtual machines cost
• Cloud service cost
• Mobile service cost
• Data management cost

16.3 Software as a Service (SaaS) Solutions

Software as a Service (SaaS) is a hosted application that is available over
the Internet via a Web browser. SaaS, sometimes referred to as on-demand
software, is the most complete of the cloud services. Computing hardware,
software, and the solution are offered by a vendor. The cloud application layer
is the only layer visible to end users who are the target users for this layer.

341Cloudware Vendor Solutions

The end user does not manage or control the underlying infrastructure.
Their only responsibility is for entering and managing their data based on
interactions with the software. The user interacts directly with the hosted
software via the browser. We should note that SaaS existed well before the
concept of cloud computing emerged; nevertheless, it is now an integral part
of the cloud model.

Creating and delivering software via the SaaS layer is an attractive
alternative to the more traditional desktop applications, which must be
installed on the user’s machine. With SaaS, the application is deployed in the
cloud, so the work of testing, maintaining, and upgrading software is greatly
simplified since it can all occur in one place rather than being rolled out to the
desktops of potentially thousands of users. Configuration testing is reduced
in complexity due to centralization and the preset restrictions in the deploy-
ment environment. Developers can also use a simplified strategy when apply-
ing upgrades and fixes. Furthermore, composition, as discussed previously,
becomes a straightforward option as soon as the cloud services are devel-
oped. Last but not least, the providers also benefit from greater protection
to their intellectual property as the application is not deployed locally and
pirated versions of the software will be much harder to obtain and distribute.

A number of typical characteristics of SaaS are listed as follows:

• Software is available globally over the Internet either free or paid for
by subscription based on customer usage.

• Collaborative working is easily provided and generally encouraged.
• Automatic upgrades are handled by the vendor with no required

customer input.
• All users have the same version of the software.
• The software will automatically scale on demand.
• Distribution and maintenance costs are significantly reduced.

There are a huge variety of SaaS applications already available, and their
number appears to be growing at an exponential rate. A small selection of
prominent examples of SaaS is discussed later, which hopefully gives a good
illustration of the SaaS approach. We recommend that you investigate for
yourself by viewing the sites mentioned, even if only briefly.

16.3.1 Google

Services such as Gmail, Google Drive, Google Calendar, Picasa, and Google
Groups are free of charge for individual users and available for a fee for orga-
nizations. These services are running on a cloud and can be invoked from
a broad spectrum of devices, including mobile ones, such as iPhones, iPads,
and Blackberrys; laptops; and tablets. The data for these services are stored
in data centers on the cloud.

342 Guide to Cloud Computing for Business and Technology Managers

The Gmail service hosts e-mails on Google servers and provides a Web
interface to access them and tools for migrating from Lotus Notes and
Microsoft Exchange. Google Docs is a web-based software for building text
documents, spreadsheets, and presentations. It supports features such as
tables, bullet points, basic fonts, and text size; it allows multiple users to edit
and update the same document and view the history of document changes;
and it provides a spell checker. The service allows users to import and export
files in several formats, including Microsoft Office, PDF, text, and OpenOffice
extensions.

Google Calendar is a browser-based scheduler; it supports multiple calen-
dars for a user, the ability to share a calendar with other users, the display of
daily/weekly/monthly views, and the ability to search events and synchro-
nize with the Outlook Calendar. Google Calendar is accessible from mobile
devices. Event reminders can be received via SMS, desktop pop-ups, or
e-mails. It is also possible to share your calendar with other Google Calendar
users. Picasa is a tool to upload, share, and edit images; it provides 1 GB of
disk space per user free of charge. Users can add tags to images and attach
locations to photos using Google Maps. Google Groups allows users to host
discussion forums to create messages online or via e-mail.

16.3.2 Salesforce.com

Salesforce.com is a leading cloud provider for customer relationship man-
agement (CRM) software. In the sense of Chapter 3, Salesforce.com is an SaaS
offering that has been complemented by a PaaS offering where independent
third parties can develop and offer add-on software. The Salesforce.com
portfolio consists of four major parts:

 1. The central part is a CRM SaaS offering called Salesforce. It provides
a web-based solution for sales, marketing, customer service, partner
management, and others. The central component is available in sev-
eral bundles that reflect different capabilities and numbers of users;
it is usually paid for on a monthly or yearly basis. As a classic SaaS
offering, this multitenant application runs on the Salesforce.com
servers and does not have to be installed locally.

 2. Force.com is the name of a PaaS offering that allows customers or
independent software vendors (ISVs) to develop their own web-
based business applications and run them on the salesforce.com
infrastructure. For more technical details on Force.com, see the fol-
lowing discussion.

 3. The business applications developed on Force.com can be obtained
on the AppExchange marketplace: the choice includes free and paid
apps. Via Force.com, the applications are preintegrated with the
Salesforce.com CRM, and their functionality often complements the
latter or is fine-tuned for particular industries.

343Cloudware Vendor Solutions

 4. Both Force.com and Salesforce.com are accompanied by organized
user communities named Developer Force and Salesforce.com
Community, which provide both user networking and professional
consulting services offered by Salesforce.com and their partners.

The Force.com platform includes development tools and a programming
environment suitable, for example, to develop the logic of an application in
Apex, a programming language with a Java-like syntax. Other features are
the support of user interface development with Visualforce, the integration
of software testing procedures, or the connection of external Web Services
through a dedicated API.

For the development of custom Web applications, a programming model
with a highly data-centric approach is used: The development of an applica-
tion usually starts with the creation of an object model that will later hold
the application data. For the data elements, constraints can be defined that
improve the data quality. Just like workflows and acceptance processes, these
two initial steps can be defined directly from within the development envi-
ronment, using the available data. Use of the Apex programming language
is only required if a more complex application logic must be implemented.
The developer tools are not only helpful in the essential steps mentioned
earlier required to meet functional and nonfunctional requirements but also
in the context of the organizational workflows that are necessary to pack
the developed application and deploy it as an offering to potential custom-
ers. Developers who wish to learn how to write programs on Force.com can
obtain comprehensive material in the form of tutorials, manuals, reference
documents, and code samples on the web-based community portals.

16.4 Open Source Cloud Solutions

In addition to commercial cloud services, many open-source cloud com-
puting solutions can be flexibly tailored to build private cloud services for
the specific demands of a user. This chapter introduces four major open-
source cloud computing solutions: Nimbus, OpenNebula, Eucalyptus, and
CloudStack.

16.4.1 Nimbus

Started in 2003 and developed by the Argonne National Laboratory at the
University of Chicago, Nimbus focuses on the computing demands of scien-
tific users. Nimbus has two variations: Nimbus Infrastructure and Nimbus
Platform. Nimbus Infrastructure provides solutions for IaaS and has been
designed to support the needs of data-intensive scientific research projects.

344 Guide to Cloud Computing for Business and Technology Managers

Nimbus Platform is a set of tools that assists consumers to leverage IaaS cloud
computing. The toolset comprises functions for application installation, con-
figuration, monitoring, and repair. Nimbus supports Xen and KVM hyper-
visors (see Section 15.1.3 “Virtual Machines”). Nimbus Platform enables
consumers to create hybrid clouds of Nimbus Infrastructure, Amazon AWS,
and other clouds.

When a consumer is subscribed to Nimbus service, a virtual workspace is
created. The workspace comprises the front end, the workspace service, the
back end, and the VM workspace. The Virtual Machine (VM) workspace is
deployed onto the Virtual Machine Monitor (VMM) node, which is a physi-
cal node. Once the deployment has been done, consumers can access the
cloud service node via the HTTP interface. Cumulus is a crucial component
of Nimbus, serving as the front end to the Nimbus VM image repository.
Any VM image must be loaded into the Cumulus repository before booting.

The general characteristics of Nimbus are as follows:

• Cloud model: Nimbus is a solution for IaaS.
• Compatibility: Cumulus storage extends the Amazon S3 REST API,

and is S3 compatible.
• Deployment and interface: Users directly interact with VMs in the

node pool in almost the same way as interacting with a physical
machine. Nimbus publishes information about the VM such as the
IP address of each VM so that users can know information about
each VM. Users deploy applications to Nimbus clouds by using a
cloudkit configuration that includes a manager service hosting and
an image repository.

• Hypervisors: Nimbus supports KVM and Xen.
• Reliability: To achieve the same level of reliability as S3, the hardware

configuration of Cumulus needs to be at the same level as S3, that is,
the reliability of Nimbus partially depends on the hardware infra-
structure the Cumulus builds on.

• OS support: Nimbus supports various Linux distributions.
• Scalability: The Cumulus Redirection module of Nimbus man-

ages scalability by keeping track of the workload of the service. As
Cumulus is compatible with the Amazon S3 REST API, it can be
configured to run as a set of replicated hosts to support horizontal
scalability.

• Cost: Nimbus is a free, open-source solution.

16.4.2 OpenNebula

OpenNebula was started as a research project in 2005 and the first version
was released in 2008. The latest version of OpenNebula, released in 2013,

345Cloudware Vendor Solutions

is 3.8.3. OpenNebula can use multiple hypervisors such as VMware ESXi,
Xen, and KVM. It is capable of managing private, public, or hybrid IaaS
clouds. It can flexibly adapt cloud interfaces from EC2 Query, OGF’s Open
Cloud Computing Interface (OCCI), and vCloud.

OpenNebula is designed to provide a solution for building enterprise-
level data centers and IaaS clouds. Its modular-based architecture allows
cloud builders to configure and implement a diverse range of cloud ser-
vices while maintaining a high level of stability and quality. OpenNebula
includes a core module, a set of plug-in drivers, and multiple tools. The
core module manages and monitors virtual resources such as VMs, vir-
tual networks, virtual storage, and images. It also handles client requests
and invokes corresponding drivers to perform operations on resources. The
plug-in drivers serve as adapters to interact with middleware. Core func-
tions are exposed to end users through a set of tools and APIs including
REST API (e.g., EC2-Query API), the OpenNebula Cloud API (OCA), and
APIs for native drivers, for example, for connecting to AWS.

The general characteristics of OpenNebula are as follows:

• Cloud model: Designed to support IaaS clouds by leveraging existing
infrastructure; OpenNebula usually does not have specific require-
ments on the infrastructure.

• Compatibility: OpenNebula can be deployed to existing infrastruc-
ture and integrated with various cloud services.

• Deployment and interfaces: Interfaces are available for cloud consum-
ers and providers. Cloud providers can also develop customized
tools with cloud interfaces. Consumers can use either the Command
Line Interface (CLI) or the SunStone Web Portal to perform most
operations, especially the management of resources. In addition, the
latest release provides interfaces to cloud providers such as Amazon.

• Hypervisors: OpenNebula supports three major hypervisors: KVM,
Xen, and VMware. Because the hypervisor driver can be shifted
between different hypervisors, it provides a solution for a multihy-
pervisor platform.

• Reliability: The OpenNebula system has designed a specialized qual-
ity check module, OpenNebula QA, to ensure the quality of every
release.

• OS support: All major Linux and Windows versions are supported.
• Scalability: OpenNebula has been employed in building large-scale

infrastructure as well as highly scalable databases; virtualization
drivers can be adjusted to achieve maximum scalability.

• Cost: While OpenNebula is a completely free solution, its enterprise
version, OpenNebulaPro, is distributed on an annual subscription
basis.

346 Guide to Cloud Computing for Business and Technology Managers

OpenNebula is one of the most popular open-source cloud computing solu-
tions because of its focus on openness, excellence, cooperation, and inno-
vation; cloud providers and consumers especially value the openness that
allows an appreciable degree of customization to applications. OpenNebula
has been widely deployed for enterprise-level private clouds and data cen-
tres including IBM Global Business Services, High Performance Computing
(HPC), science communities such as NASA, and also cloud integrators and
product developers like KPMG.

16.4.3 Eucalyptus

Eucalyptus (Elastic Utility Computing Architecture Linking Your Programs to
Useful Systems) was developed by researchers at the University of California,
Santa Barbara. The first version of the software was released in 2008. The lat-
est version is Eucalyptus 3.2.11 released in February 2013. Eucalyptus sup-
ports enterprise private and hybrid cloud computing. It also supports hybrid
cloud services by integrating Amazon Web Services (AWS) API.

Eucalyptus provides an IaaS solution to build private or hybrid clouds.
By virtualization of physical machines in the data center, cloud providers
can provide virtualized computer hardware resources, including comput-
ing, network, and storage to cloud consumers. Consumers can access the
cloud through command-line tools (like euca2ools) or through a web-based
dashboard. Euca2ools enable interaction with Web services compatible
with Eucalyptus and Amazon cloud services. Eucalyptus also supports
AWS-compatible APIs on top of Eucalyptus for consumers to communicate
with AWS.

The general characteristics of Eucalyptus are as follows:

• Cloud model: Eucalyptus provides access to collections of virtualized
computer hardware resources for computing, network, and storage
to provide IaaS cloud services. Users can assemble their own vir-
tual cluster where they can install, maintain, and execute their own
application stack using Eucalyptus.

• Compatibility: Eucalyptus is compatible with Amazon AWS cloud
services; it provides compatibility with a range of AWS features
including Amazon EC2, AMI, Amazon S3, Amazon IAM, and
Amazon EBS.

• Deployment and interface: Eucalyptus supports the Amazon AWS
APIs for EC2 and S3.

• Hypervisors: Eucalyptus is compatible with Xen, KVM, and VMware
Hypervisors

• Reliability: Eucalyptus 3 can be deployed with high availability as
it has improved the reliability of the IaaS cloud using automatic
failover and failback mechanisms

347Cloudware Vendor Solutions

• OS support: Eucalyptus 3.2 supports Windows Server 2003 and 2008,
Windows 7, and all modern Linux distributions such as RedHat.

• Scalability: Eucalyptus supports scalability starting with Eucalyptus
2.0 at two levels: front-end transactional scalability and back-end
resource scalability

• Cost: Users can choose between the open-source free Eucalyptus
Cloud and the priced Eucalyptus Enterprise Cloud.

IT-savvy organizations across the globe run Eucalyptus clouds for their agil-
ity, elasticity, and scalability required by highly demanding applications;
these include NASA, Cornell University, George Mason University, and so on.

16.4.4 CloudStack

First released in 2010, CloudStack was initially developed by cloud.com,
a start-up supported by venture capital. Citrix acquired cloud.com in
late 2011, and donated CloudStack to the Apache Software Foundation in
2012. Becoming a subproject of Apache Software Foundation dramatically
increased the development speed of CloudStack and solidified its leader-
ship in open-source cloud solutions. Currently, CloudStack is licensed under
Apache License, Version 2. CloudStack can also use multiple hypervisors
such as VMware ESXi, Xen, and KVM. In addition to its own API, it also
implements the Amazon EC2 and S3 APIs to support interoperability with
Amazon cloud services. CloudStack is designed to manage large networks
of Virtual Machines (VMs) for enabling a highly available and scalable IaaS
platform. It includes the entire “stack” of features, which most organizations
expect within an IaaS cloud.

The CloudStack architecture envisions an IaaS platform with comput-
ing, network, and storage resources managed through a shared architec-
ture comprising of at least one hypervisor solution. This model provides a
multitenant mode for supporting tenancy abstraction ranging from depart-
mental to public cloud reseller modes; it encompasses core functions such
as the user interface and image management, and allows cloud providers
to provide advanced services such as high availability and load balancing.
All services are tied together through a series of Web service APIs, which
enable CloudStack to support the unique needs of consumers.

The general characteristics of CloudStack are as follows:

• Cloud model: CloudStack is a solution for IaaS-level cloud platforms.
It pools, manages, and configures network, storage, and computing
nodes to support public, private, and hybrid IaaS clouds.

• Compatibility: In addition to its own APIs, CloudStack is compatible
with Amazon EC2 and S3 APIs as well as the vCloud APIs for hybrid
cloud applications.

348 Guide to Cloud Computing for Business and Technology Managers

• Deployment and interface: Users can manage their clouds with a user-
friendly Web-based interface, command-line tools, or through a
RESTful API. CloudStack provides a feature-rich out-of-the-box user
interface that implements the CloudStack API to manage the infra-
structure; it is an AJAX-based solution compatible with most Web
browsers. A snapshot view of the aggregated storage, IP pools, CPU,
memory, and other resources in use gives users comprehensive sta-
tus information about the cloud.

• Hypervisors: CloudStack is compatible with a variety of hypervisors
including VMware vSphere, KVM, Citrix XenServer, and Xen Cloud
Platform (XCP).

• Reliability: CloudStack is a highly available and scalable IaaS solu-
tion, in that no single component failure can cause cluster or cloud-
wide outage. It enables downtime-free management for server
maintenance and reduces the workload of managing a large-scale
cloud deployment.

• OS support: CloudStack supports Linux for the management server
and for underlying computing nodes. Depending on the employed
hypervisor, CloudStack supports a wide range of guest operating
systems including Windows, Linux, and various versions of Berkeley
Software Distributions (BSDs).

• Scalability: CloudStack is capable of managing large numbers of serv-
ers across geographically distributed data centres through a linearly
scalable and centralized management server. This capability elimi-
nates the need for intermediate cluster-level management servers.
It supports integration with both software and hardware firewalls
and load balancers to provide additional security and scalability to
a user’s cloud environment (such as F5 load balancer and Netscaler).

• Cost: CloudStack itself is a free software licensed under the Apache
License; however, using a commercial hypervisor will incur corre-
sponding costs.

CloudStack is one of the leading open-source cloud solutions with its rich
functionality and user-friendly Web-based graphical user interface. Many
leading telecommunication companies are using Citrix Cloud Platform
powered by Apache CloudStack, including British Telecom (BT), Nippon
Telegraph and Telephone (NTT), Tata Communications, and Korea Telecom.

16.4.5 Apache Hadoop

Hadoop is an open-source software platform that allows to easily process
and analyze very large data sets in a computer cluster. Hadoop can, for
example, be used for Web indexing, data mining, log file analyses, machine

349Cloudware Vendor Solutions

learning, finance analyses, scientific simulations, or research in the bioin-
formatics field.

The general characteristics of the Hadoop system are as follows:

• Scalability: It is possible to process data sets with a volume of several
petabytes (PB) by distributing them to several thousand nodes of a
computer cluster.

• Efficiency: Parallel data processing and a distributed file system
allow to manipulate the data quickly.

• Reliability: Multiple copies of the data can be created and managed.
In case a cluster node fails, the workflow reorganizes itself without
user intervention. Hence, automatic error-correction is possible.

Hadoop has been designed with scalability in mind so that cluster sizes of
up to 10,000 nodes can be realized. The largest Hadoop cluster at Yahoo! cur-
rently comprises 32,000 cores in 4,000 nodes, where 16 PB of data are stored
and processed. It takes about 16 h to analyze and sort a 1 PB data set on this
cluster.

16.4.5.1 MapReduce

Hadoop implements the MapReduce programming model, which is also of
great importance in the Google search engine and applications (see Section
17.3 Hadoop). Even though the model relies on massive parallel processing of
data, it has a functional approach.

In principle, it has two functions:

 1. Map function: Reads key/value pairs to generate intermediate results,
which are then output in the form of new key/value pairs.

 2. Reduce function: Reads all intermediate results, groups them by keys,
and generates aggregated output for each key.

Usually, the procedures generate lists or queues to store the results of the
individual steps. As an example, let is look at how the vocabulary in a text
collection can be acquired: The Map function extracts the individual words
from the text, the Reduce function reads them, counts the number of occur-
rences, and stores the result in a list. In parallel processing, Hadoop distrib-
utes the texts or text fragments to the available nodes of a computer cluster.
The Map nodes process the fragments assigned to them and output the indi-
vidual words. These outputs are available to all nodes via a distributed file
system. The Reduce nodes then read the word lists and count the number of
words. Since counting can only start after all words have been processed by
the Map function, a bottleneck might arise here.

350 Guide to Cloud Computing for Business and Technology Managers

16.5 Summary

This chapter details some of the prominent cloud vendor services. For the IaaS
delivery model, we describe the various cloud services provided by Amazon,
including Elastic Compute Cloud (EC2), Simple Storage System (S3), Elastic
Block Store (EBS), Simple DB, Simple Queue Service (SQS), CloudWatch,
Auto Scaling, and Elastic Beanstalk. For the PaaS delivery model, we discuss
the examples of Amazon Relational Database Service, Google Apps Engine
(GAE), Google Cloud Print, and Windows Azure. For the SaaS delivery
model, we describe cloud services from Google and Salesforce.com. Finally,
we describethe open source cloud solutions, namely, Nimbus, OpenNebula,
Eucalyptus, OpenStack, and, Apache Hadoop.

351

17
Cloudware Application Development

17.1 Reliability Conundrum

The cloud, with its tendency to use commodity hardware and virtualiza-
tion and with the potential for enormous scale, presents many additional
challenges to designing reliable applications. In all engineering disciplines,
reliability is the ability of a system to perform its required functions under
stated conditions for a specified period of time. In software, for application
reliability, this becomes the ability of a software application and all the com-
ponents it depends on (operating system, hypervisor, servers, disks, network
connections, power supplies, etc.) to execute without faults or halts all the
way to completion. But completion is defined by the application designer.
Even with perfectly written software and no detected bugs in all underly-
ing software systems, applications that begin to use thousands of servers
will run into the mean time to failure in some piece of hardware, and some
number of those instances will fail. Therefore, the application depending on
those instances will also fail.

Many design techniques for achieving high reliability depend upon redun-
dant software, hardware, and data. For redundant software components, this
may consist of double- or triple-redundant software components (portions of
your application) running in parallel with common validation checks. One
idea is to have the components developed by different teams based on the
same specifications. This approach costs more, but extreme reliability may
require it. Because each component is designed to perform the same func-
tion, the failures of concurrent identical components are easily discovered
and corrected during quality-assurance testing.

Although redundant software components provide the quality-assurance
process with a clever way to validate service accuracy, certain applications
may want to deploy component redundancy into the production environ-
ment. In such conditions, multiple parallel application processes can provide
validity checks on each other and let the majority rule. Although the redun-
dant software components consume extra resource consumption, the trade-
off between reliability and the cost of extra hardware may be worth it.

352 Guide to Cloud Computing for Business and Technology Managers

Another redundancy-based design technique is the use of services such
as clustering (linking many computers together to act as a single faster com-
puter), load balancing (workloads kept balanced between multiple comput-
ers), data replication (making multiple identical copies of data to be processed
independently and in parallel), and protecting complex operations with
transactions to ensure process integrity. Naturally, when one is using cloud
provider services, many of these services are inbuilt in the base infrastruc-
ture and services.

Redundant hardware is one of the most popular strategies for provid-
ing reliable systems. This includes redundant arrays of independent disks
(RAID) for data storage, redundant network interfaces, and redundant power
supplies. With this kind of hardware infrastructure, individual component
failures can occur without affecting the overall reliability of the applica-
tion. It is important to use standardized commodity hardware to allow easy
installation and replacement.

In 2008, Google had to solve the massive search problem across all content
on the Web, which was bordering on one trillion unique URLs. They ended
up employing loosely coupled distributed computing on a massive scale:
clusters of commodity (cheap) computers working in parallel on large data
sets. Even with individual server with excellent reliability statistics, with
hundreds of thousands of servers, there were still multiple failures per day
as one machine or another reached its mean time to failure. Google had no
choice but to give up on reliability of the hardware and switch things over
to achieve the same with the reliability of the software. The only way to
build a reliable system across a group of large number of unreliable comput-
ers is to employ suitable software to address those failures. MapReduce was
the software framework invented by Google to address this issue; the name
MapReduce was inspired by the map and reduce functions of the functional
programming language Lisp.

Parallel programming on a massive scale has the potential to not only
address the issue of reliability but also deliver a huge boost in performance.
This is opportune because, given the problems with large data sets of the
Web, without massive parallelism, leave aside reliability, the processing itself
may not be achievable.

17.1.1 Functional Programming Paradigm

The functional programming paradigm treats computation as the evaluation
of mathematical functions with zero (or minimal) maintenance of states or
data updates. As opposed to procedural programming in languages such
as C or Java, it emphasizes that the application be written completely as
functions that do not save any state. Such functions are called pure func-
tions. This is the first similarity with MapReduce abstraction. All input and
output values are passed as parameters, and the map and reduce functions
are not expected to save state. However, the values can be input and output

353Cloudware Application Development

from a file system or a database to ensure persistence of the computed data.
Programs written using pure functions eliminate side effects. So the output
of a pure function depends solely on the inputs provided to it. Calling a pure
function twice with the same value for an argument will give the same result
both times. Lisp is one such popular functional programming language
where two powerful recursion schemes—called map and reduce—enable
powerful decomposition and reuse of code.

17.1.1.1 Parallel Architectures and Computing Models

MapReduce provides a parallel execution platform for data parallel applica-
tions. This and the next section describe core concepts involved in under-
standing such systems.

17.1.1.1.1 Flynn’s Classification

Michael J. Flynn in 1966 created a taxonomy of computer architectures that
support parallelism based on the number of concurrent control and data
streams the architecture can handle. This classification is used extensively to
characterize parallel architectures. They are briefly described here:

 1. Single instruction, single data (SISD) stream: This is a sequential com-
puter that exploits no parallelism, like a PC (single core).

 2. Single instruction, multiple data (SIMD) stream: This architecture sup-
ports multiple data streams to be processed simultaneously by rep-
licating the computing hardware. Single instruction means that
all the data streams are processed using the same compute logic.
Examples of parallel architectures that support this model are array
processors or Graphics Processing Unit (GPU).

 3. Multiple instruction, single data (MISD) stream: This architecture oper-
ates on a single data stream but has multiple computing engines
using the same data stream. This is not a very common architecture
and is sometimes used to provide fault tolerance with heterogeneous
systems operating on the same data to provide independent results
that are compared with each other.

 4. Multiple instruction, multiple data (MIMD) stream: This is the most
generic parallel processing architecture where any type of dis-
tributed application can be programmed. Multiple autonomous
processors executing in parallel work on independent streams of
data. The application logic running on these processors can also be
very different. All distributed systems are recognized to be MIMD
architectures.

A variant of SIMD is called single program, multiple data (SPMD) model,
where the same program executes on multiple compute processes.

354 Guide to Cloud Computing for Business and Technology Managers

While SIMD can achieve the same result as SPMD, SIMD systems typically
execute in lock step with a central controlling authority for program exe-
cution. As can be seen, when multiple instances of the map function are
executed in parallel, they work on different data streams using the same
map function. In essence, though the underlying hardware can be a MIMD
machine (a compute cluster), the MapReduce platform follows a SPMD
model to reduce programming effort. Of course, while this holds for simple
use cases, a complex application may involve multiple phases, each of which
is solved with MapReduce—in which case the platform will be a combina-
tion of SPMD and MIMD.

17.1.1.2 Data Parallelism versus Task Parallelism

Data parallelism is a way of performing parallel execution of an applica-
tion on multiple processors. It focuses on distributing data across different
nodes in the parallel execution environment and enabling simultaneous sub-
computations on these distributed data across the different compute nodes.
This is typically achieved in SIMD mode (Single Instruction Multiple Data
mode) and can either have a single controller controlling the parallel data
operations or multiple threads working in the same way on the individual
compute nodes (SPMD). In contrast, task parallelism focuses on distributing
parallel execution threads across parallel computing nodes. These threads
may execute the same or different threads. These threads exchange mes-
sages either through shared memory or explicit communication messages,
as per the parallel algorithm. In the most general case, each of the threads of
a Task Parallel system can be doing completely different tasks but coordinat-
ing to solve a specific problem. In the most simplistic case, all threads can
be executing the same program and differentiating based on their node IDs
to perform any variation in task responsibility. Most common Task Parallel
algorithms follow the master–worker model, where there is a single mas-
ter and multiple workers. The master distributes the computation to differ-
ent workers based on scheduling rules and other task-allocation strategies.
MapReduce falls under the category of data-parallel SPMD architectures.

Due to the functional programming paradigm used, the individual map-
per processes processing the split data are not aware (or dependent) upon
the results of the other mapper processes. Also, since the order of execution
of the mapper function does not matter, one can reorder or parallelize the
execution. Thus, this inherent parallelism enables the mapper function to
scale and execute on multiple nodes in parallel. Along the same lines, the
reduce functions also run in parallel; each instance works on a different
output key. All the values are processed independently, again facilitating
implicit data parallelism. The extent of parallel execution is determined by
the number of map and reduce tasks that are configured at the time of job
submission.

355Cloudware Application Development

17.2 Google MapReduce

The MapReduce architecture and programming model pioneered by Google
is an example of a modern system architecture designed for processing and
analyzing large data sets and is being used successfully by Google in many
applications to process massive amounts of raw Web data. The MapReduce
system runs on top of the Google File System, within which data are loaded
and partitioned into chunks and each chunk is replicated. Data processing
is colocated with data storage: when a file needs to be processed, the job
scheduler consults a storage metadata service to get the host node for each
chunk and then schedules a map process on that node, so that data locality is
exploited efficiently.

Google engineers designed MapReduce to solve a specific prac-
tical problem. Therefore, it was designed as a programming
model combined with the implementation of that model—in
essence, a reference implementation. The reference implementa-

tion was used to demonstrate the practicality and effectiveness of the
concept and to help ensure that this model would be widely adopted by
the computer industry. Over the years, other implementations of
MapReduce have been created and are available as both open source
and commercial products.

The MapReduce architecture allows programmers to use a functional pro-
gramming style to create a map function that processes a key–value pair
associated with the input data to generate a set of intermediate key–value
pairs and a reduce function that merges all intermediate values associated
with the same intermediate key.

Users define a map and a reduce function:

 1. The map function processes a (key, value) pair and returns a list of
intermediate (key, value) pairs:

 map (in _ key,in _ value)— > list(out _ key,
intermediate _ value).

 2. The reduce function merges all intermediate values having the same
intermediate key:

 reduce (out _ key, list(intermediate _ value)) → list
(out _ value).

The former processes an input key–value pair, producing a set of intermedi-
ate pairs. The latter is in charge of combining all of the intermediate values

356 Guide to Cloud Computing for Business and Technology Managers

related to a particular key, outputting a set of merged output values (usually
just one). MapReduce is often explained illustrating a possible solution to the
problem of counting the number of occurrences of each word in a large col-
lection of documents. The following pseudocode refers to the functions that
need to be implemented:

map(String input_key, String input_value):
//input_key: document name
//input_value: document contents
for each word w in input_value:
EmitIntermediate(w, "1");
reduce(String output_key,
Iterator intermediate_values):
//output_key: a word
//output_values: a list of counts
int result = 0;
for each v in intermediate_values:
result + = ParseInt(v);
Emit(AsString(result));

The map function emits in output each word together with an associated
count of occurrences (in this simple example just one). The reduce func-
tion provides the required result by summing all of the counts emitted for
a specific word. MapReduce implementations (e.g., Google App Engine and
Hadoop) then automatically parallelize and execute the program on a large
cluster of commodity machines. The runtime system takes care of the details
of partitioning the input data, scheduling the program’s execution across a
set of machines, handling machine failures, and managing required inter-
machine communication.

The programming model for MapReduce architecture is a simple abstrac-
tion where the computation takes a set of input key–value pairs associated
with the input data and produces a set of output key–value pairs. The overall
model for this process is shown in Figure 17.1. In the map phase, the input
data are partitioned into input splits and assigned to map tasks associated
with processing nodes in the cluster. The map task typically executes on the
same node containing its assigned partition of data in the cluster. These map
tasks perform user-specified computations on each input key–value pair
from the partition of input data assigned to the task and generate a set of
intermediate results for each key. The shuffle and sort phase then takes the
intermediate data generated by each map task, sorts these data with interme-
diate data from other nodes, divides these data into regions to be processed
by the reduce tasks, and distributes these data as needed to nodes where the
reduce tasks will execute. All map tasks must complete prior to the shuffle
and sort and reduce phases. The number of reduce tasks does not need to be
the same as the number of map tasks. The reduce tasks perform additional
user-specified operations on the intermediate data possibly merging values
associated with a key to a smaller set of values to produce the output data.

357Cloudware Application Development

For more complex data processing procedures, multiple MapReduce calls
may be linked together in sequence.

The MapReduce programs can be used to compute derived data from
documents such as inverted indexes, and the processing is automatically
parallelized by the system that executes on large clusters of commodity-
type machines, highly scalable to thousands of machines. Since the sys-
tem automatically takes care of details like partitioning the input data,
scheduling and executing tasks across a processing cluster, and manag-
ing the communications between nodes, programmers with no experience
in parallel programming can easily use a large distributed processing
environment.

17.2.1 Google File System (GFS)

Google File System (GFS) is the storage infrastructure that supports the
execution of distributed applications in Google’s computing cloud. GFS was
designed to be a high-performance, scalable distributed file system for very
large data files and data-intensive applications providing fault tolerance and
running on clusters of commodity hardware. GFS is oriented to very large
files dividing and storing them in fixed-size chunks of 64 Mb by default,
which are managed by nodes in the cluster called chunkservers. Each GFS
consists of a single master node acting as a nameserver and multiple nodes in
the cluster acting as chunkservers using a commodity Linux-based machine
(node in a cluster) running a user-level server process. Chunks are stored in
plain Linux files, which are extended only as needed and replicated on mul-
tiple nodes to provide high availability and improve performance.

Job
configuration

Master

Mapper

Mapper

Mapper

Input data Output data

Final
results

Reducer

Distributed file system

Reducer

Intermediate
results

Data
splits

FIGURE 17.1
Execution phases in a generic MapReduce application.

358 Guide to Cloud Computing for Business and Technology Managers

GFS has been designed with the following assumptions:

• The system is built on top of commodity hardware that often fails.
• The system stores a modest number of large files; multi-GB files are

common and should be treated efficiently, and small files must be
supported, but there is no need to optimize for that.

• The workloads primarily consist of two kinds of reads: large stream-
ing reads and small random reads.

• The workloads also have many large sequential writes that append
data to files.

• High sustained bandwidth is more important than low latency.

The architecture of the file system is organized into a single master, which
contains the metadata of the entire file system, and a collection of chunk
servers, which provide storage space. From a logical point of view, the system
is composed of a collection of software daemons, which implement either the
master server or the chunk server. A file is a collection of chunks for which
the size can be configured at file system level. Chunks are replicated on mul-
tiple nodes in order to tolerate failures. Clients look up the master server and
identify the specific chunk of a file they want to access. Once the chunk is
identified, the interaction happens between the client and the chunk server.
Applications interact through the file system with a specific interface sup-
porting the usual operations for file creation, deletion, read, and write. The
interface also supports snapshots and records append operations that are
frequently performed by applications. GFS has been conceived by consid-
ering that failures in a large distributed infrastructure are common rather
than a rarity; therefore, specific attention has been given to implementing a
highly available, lightweight, and fault-tolerant infrastructure. The potential
single point of failure of the single-master architecture has been addressed
by giving the possibility of replicating the master node on any other node
belonging to the infrastructure.

17.2.2 Google’s BigTable

BigTable is the distributed storage system designed to scale up to petabytes
of data across thousands of servers. BigTable provides storage support for
several Google applications that expose different types of workload: from
throughput-oriented batch-processing jobs to latency-sensitive serving of
data to end users. BigTable’s key design goals are wide applicability, scalabil-
ity, high performance, and high availability. To achieve these goals, BigTable
organizes the data storage in tables of which the rows are distributed over
the distributed file system supporting the middleware, which is the Google
File System. From a logical point of view, a table is a multidimensional sorted
map indexed by a key that is represented by a string of arbitrary length.

359Cloudware Application Development

A table is organized into rows and columns; columns can be grouped in col-
umn family, which allow for specific optimization for better access control,
the storage, and the indexing of data. A simple data access model constitutes
the interface for client applications that can address data at the granularity
level of the single column of a row. Moreover, each column value is stored in
multiple versions that can be automatically time stamped by BigTable or by
the client applications.

Google’s BigTable solution’s objective was to develop a rela-
tively simple storage management system that could provide
fast access to petabytes of data, potentially redundantly distrib-
uted across thousands of machines. Physically, BigTable resem-

bles a B-tree index-organized table in which branch and leaf nodes are
distributed across multiple machines. Like a B-tree, nodes split as
they grow, and—because nodes are distributed—this allows for high
scalability across large numbers of machines. Data elements in
BigTable are identified by a primary key, column name, and, option-
ally, a time stamp. Lookups via primary key are predictable and rela-
tively fast. BigTable provides the data storage mechanism for Google
App Engine.

Data are stored in BigTable as a sparse, distributed, persistent multidimen-
sional sorted map structure, which is indexed by a row key, column key,
and a time stamp. Rows in a BigTable are maintained in order by row key,
and row ranges become the unit of distribution and load balancing called a
tablet. Each cell of data in a BigTable can contain multiple instances indexed
by the time stamp. BigTable uses GFS to store both data and log files. The
API for BigTable is flexible, providing data management functions like
creating and deleting tables and data manipulation functions by row key
including operations to read, write, and modify data. Index information for
BigTables utilizes tablet information stored in structures similar to a B-tree.
MapReduce applications can be used with BigTable to process and transform
data, and Google has implemented many large-scale applications that utilize
BigTable for storage including Google Earth (Tables 17.1 and 17.2).

17.3 Hadoop

Hadoop is an open-source software project sponsored by the Apache
Software Foundation. Following the publication in 2004 of the research
paper describing Google MapReduce, an effort was begun in conjunction

360 Guide to Cloud Computing for Business and Technology Managers

with the existing Nutch project to create an open-source implementation of
the MapReduce architecture. It later became an independent subproject of
Lucene, was embraced by Yahoo! after the lead developer for Hadoop became
an employee, and became an official Apache top-level project in February
of 2006. Hadoop now encompasses multiple subprojects in addition to the
base core, MapReduce, and Hadoop distributed file system (HDFS). These
additional subprojects provide enhanced application processing capabilities

TABLE 17.1

MapReduce Cloud Implementations

Owner Imp Name and Website Start Time Last Release
Distribution

Model

Google Google MapReduce,
http://labs.google.com/
papers/inapreduce.html

2004 — Internal use
by Google

Apache Hadoop, http://hadoop.
apache.org/

2004 Hadoop0.20.0,
April 22, 2009

Open source

GridGain GridGain http://www.
gridgain.com.

2005 GridGain 2.1.1,
February 26, 2009

Open source

Nokia Disco ht, tp://
discoproject.org/

2008 Disco 0.2.3,
September 9, 2009

Open source

Geni.com SkyNet, http://skynet.
rubyforge.org

2007 SkynetO.9.3,
May 31, 2008

Open source

Manjrasoft MapReduce.net (optional
service of Aneka),
http://www.manjrasoft.
com products.html

2008 Aneka 1.0,
March 27, 2009

Commercial

TABLE 17.2

Comparison of MapReduce Implementations

 Google MapReduce Hadoop Disco

Focus Data intensive Data intensive Data intensive
Architecture Master–slave Master–slave Master–slave
Platform Linux Cross-platform Linux, Mac OS X
Storage system GFS HDFS, CloudStore, S3 GlusterFS
Implementation
technology

C++ JAVA Erlang

Programming
environment

JAVA and Python JAVA, shell utilities using
Hadoop streaming, C++
using Hadoop pipes

Python

Deployment Deployed on Google
clusters

Private and public cloud
(EC2)

Private and public
cloud (EC2)

Some users and
applications

Google Baidu, NetSeer, A9.com,
Facebook

Nokia Research
Center

361Cloudware Application Development

to the base Hadoop implementation and currently include Avro, Chukwa,
HBase, Hive, Pig, and ZooKeeper.

The Apache Hadoop project develops open-source software for reliable,
scalable, distributed computing. Hadoop includes these subprojects:

• Hadoop Common: The common utilities that support the other
Hadoop subprojects

• Avro: A data serialization system that provides dynamic integration
with scripting languages

• Cassandra: A scalable multimaster database with no single point of
failure

• Chukwa: A data collection system for managing large distributed
systems

• HBase: A scalable, distributed database that supports structured
data storage for large tables

• HDFS: A distributed file system that provides high-throughput
access to application data

• Hive: A data warehouse infrastructure that provides data summari-
zation and adhoc querying

• MapReduce: A software framework for distributed processing of
large data sets on compute clusters

• Mahout: A scalable machine learning and data mining library
• Pig: A high-level dataflow language and execution framework for

parallel computation
• ZooKeeper: A high-performance coordination service for distributed

applications

The Hadoop MapReduce architecture is functionally similar to the Google
implementation except that the base programming language for Hadoop is
Java instead of C++. The implementation is intended to execute on clusters of
commodity processors utilizing Linux as the operating system environment
but can also be run on a single system as a learning environment. Hadoop
clusters also utilize the shared nothing distributed processing paradigm link-
ing individual systems with local processor, memory, and disk resources
using high-speed communication switching capabilities typically in rack-
mounted configurations. The flexibility of Hadoop configurations allows
small clusters to be created for testing and development using desktop sys-
tems or any system running Unix/Linux providing a JVM environment;
however, production clusters typically use homogeneous rack-mounted pro-
cessors in a data center environment.

The Hadoop MapReduce architecture is similar to the Google implemen-
tation creating fixed-size input splits from the input data and assigning the

362 Guide to Cloud Computing for Business and Technology Managers

splits to map tasks. The local output from the map tasks is copied to reduce
nodes where it is sorted and merged for processing by reduce tasks that pro-
duce the final output.

The Hadoop execution environment supports additional distributed
data processing capabilities that are designed to run using the Hadoop
MapReduce architecture. Several of these have become official Hadoop
subprojects within the Apache Software Foundation. These include a dis-
tributed file system called HDFS, which is analogous to GFS in the Google
MapReduce implementation. HBase is a distributed column-oriented data-
base that provides similar random access read/write capabilities and is mod-
eled after BigTable was implemented by Google. HBase is not relational, and
does not support SQL, but provides a Java API and a command-line shell for
table management. Hive is a data warehouse system built on top of Hadoop
that provides SQL-like query capabilities for data summarization, ad hoc
queries, and analysis of large data sets. Other Apache-sanctioned projects
for Hadoop include Avro, a data serialization system that provides dynamic
integration with scripting languages; Chukwa, a data collection system for
managing large distributed systems; Pig, a high-level dataflow language
and execution framework for parallel computation; and ZooKeeper, a high-
performance coordination service for distributed applications.

17.3.1 Hadoop Distributed File System (HDFS)

HDFS is a highly fault-tolerant, scalable, and distributed file system archi-
tected to run on commodity hardware. The HDFS architecture was designed
to solve two known problems experienced by the early developers of large-
scale data processing. The first problem was the ability to break down the
files across multiple systems and process each piece of the file independent
of the other pieces and finally consolidate all the outputs in a single result
set. The second problem was the fault tolerance both at the file processing
level and the overall system level in the distributed data processing systems.

The three principle goals of HDFS architecture are

 1. Process extremely large files ranging from multiple gigabytes to
petabytes

 2. Streaming data processing to read data at high-throughput rates and
process data on read

 3. Capability to execute on commodity hardware with no special hard-
ware requirements

The HDFS design is based on the following assumptions:

• Redundancy—Hardware will be prone to failure, and processes can
run out of infrastructure resources, but redundancy built into the
design can handle these situations.

363Cloudware Application Development

• Scalability—Linear scalability at a storage layer is needed to utilize
parallel processing at its optimum level. Designing for 100% linear
scalability.

• Fault tolerance—The automatic ability to recover from failure and
complete the processing of data.

• Cross-platform compatibility—The ability to integrate across multiple
architecture platforms.

• Compute and storage in one environment—Data and computation colo-
cated in the same architecture removing redundant I/O and exces-
sive disk access.

HDFS is analogous to GFS in the Google MapReduce implementation.
A block in HDFS is equivalent to a chunk in GFS and is also very large, 64 Mb
by default, but 128 Mb is used in some installations. The large block size is
intended to reduce the number of seeks and improve data transfer times.
Each block is an independent unit stored as a dynamically allocated file in
the Linux local file system in a DataNode directory. If the node has mul-
tiple disk drives, multiple DataNode directories can be specified. An addi-
tional local file per block stores metadata for the block. HDFS also follows a
master–slave architecture, which consists of a single master server that man-
ages the distributed file system namespace and regulates access to files by
clients called the NameNode. In addition, there are multiple DataNodes, one
per node in the cluster, which manage the disk storage attached to the nodes
and assigned to Hadoop. The NameNode determines the mapping of blocks
to DataNodes. The DataNodes are responsible for serving read and write
requests from file system clients such as MapReduce tasks, and they also
perform block creation, deletion, and replication based on commands from
the NameNode.

HDFS is a file system, and like any other file system architecture, it needs
to manage consistency, recoverability, and concurrency for reliable opera-
tions. These requirements have been addressed in the architecture by creat-
ing image, journal, and checkpoint files.

17.3.1.1 HDFS Architecture

 1. NameNode (master node): The NameNode is a single master server
that manages the file system namespace and regulates access to
files by clients. Additionally, the NameNode manages all the
operations like opening, closing, moving, naming, and renaming
of files and directories. It also manages the mapping of blocks to
DataNodes.

 2. DataNodes (slave nodes): DataNodes represent the slaves in the
architecture that manage data and the storage attached to the data.
A typical HDFS cluster can have thousands of DataNodes and tens

364 Guide to Cloud Computing for Business and Technology Managers

of thousands of HDFS clients per cluster since each DataNode may
execute multiple application tasks simultaneously. The DataNodes
are responsible for managing read and write requests from the file
system’s clients, block maintenance, and perform replication as
directed by the NameNode. The block management in HDFS is dif-
ferent from a normal file system. The size of the data file equals the
actual length of the block. This means if a block is half full, it needs
only half of the space of the full block on the local drive, thereby opti-
mizing storage space for compactness, and there is no extra space
consumed on the block unlike a regular file system.

 3. Image: An image represents the metadata of the namespace (inodes
and lists of blocks). On startup, the NameNode pins the entire
namespace image in memory. The in-memory persistence enables
the NameNode to service multiple client requests concurrently.

 4. Journal: The journal represents the modification log of the image in
the local host’s native file system. During normal operations, each
client transaction is recorded in the journal, and the journal file is
flushed and synced before the acknowledgment is sent to the cli-
ent. The NameNode upon startup or from a recovery can replay this
journal.

 5. Checkpoint: To enable recovery, the persistent record of the image is
also stored in the local host’s native files system and is called a check-
point. Once the system starts up, the NameNode never modifies or
updates the checkpoint file. A new checkpoint file can be created
during the next startup, on a restart, or on demand when requested
by the administrator or by the CheckpointNode.

17.3.2 HBase

HBase is an open-source, nonrelational, column-oriented, multidimen-
sional, distributed database developed on Google’s BigTable architecture.
It is designed with high availability and high performance as drivers to
support storage and processing of large data sets on the Hadoop frame-
work. HBase is not a database in the purist definition of a database. It
provides unlimited scalability and performance and supports certain
features of an ACID-compliant database. HBase is classified as a NoSQL
database due to its architecture and design being closely aligned to Base
(Being Available and Same Everywhere). Why do we need HBase when
the data are stored in the HDFS file system, which is the core data stor-
age layer within Hadoop? HBase is very useful for operations other than
MapReduce execution and operations that are not easy to work with in
HDFS and when you need random access to data. First, it provides a
database-style interface to Hadoop, which enables developers to deploy

365Cloudware Application Development

programs that can quickly read or write to specific subsets of data in an
extremely voluminous data set, without having to search and process
through the entire data set.

Second, it provides a transactional platform for running high-scale,
real-time applications as an ACID-compliant database (meeting stan-
dards for atomicity, consistency, isolation, and durability) while handling
the incredible volume, variety, and complexity of data encountered on
the Hadoop platform. HBase supports the following properties of ACID
compliance:

 1. Atomicity: All mutations are atomic within a row. For example, a read
or write operation will either succeed or fail.

 2. Consistency: All rows returned for any execution will consist of a
complete row that existed or exists in the table.

 3. Isolation: The isolation level is called read committed in the traditional
DBMS.

 4. Durability: All visible data in the system are durable data. For exam-
ple, to phrase durability, a read will never return data that have not
been made durable on disk.

17.3.2.1 HBase Architecture

Data are organized in HBase as rows and columns and tables, very similar to
a database; however, here is where the similarity ends.

HBase architecture is described as follows:

 1. Tables
 a. Tables are made of rows and columns.
 b. Table cells are the intersection of row and column coordinates.

Each cell is versioned by default with a time stamp. The contents
of a cell are treated as an uninterpreted array of bytes.

 c. A table row has a sortable row key and an arbitrary number of
columns.

 2. Rows
 a. Table row keys are also byte arrays. In this configuration, any-

thing can serve as the row key as opposed to strongly typed data
types in the traditional database.

 b. Table rows are sorted, byte-ordered, by row key, the table’s pri-
mary key, and all table accesses are via the table’s primary key.

 c. Columns are grouped as families, and a row can have as many
columns as loaded.

366 Guide to Cloud Computing for Business and Technology Managers

 3. Columns and column groups (families)
 a. In HBase, row columns are grouped into column families.
 b. All column family members will mandatorily have a com-

mon prefix, for example, the columns person:name and
person:comments are both members of the person column
family, where as e-mail:identifier belongs to the e-mail family.

 c. A table’s column families must be specified upfront as part of the
table schema definition.

 d. New column family members can be added on demand.

17.3.3 Hive

Apache Hive is a data warehouse infrastructure built on top of Hadoop pro-
vided by Facebook. Similar to Pig, Hive was initially designed as an in-house
solution for large-scale data analysis. As the company expanded, the parallel
RDBMS infrastructure originally deployed at Facebook began to choke at
the amount of data that had to be processed on a daily basis. Following the
decision to switch to Hadoop to overcome these scalability problems in 2008,
the Hive project was developed internally to provide the high-level interface
required for a quick adoption of the new warehouse infrastructure inside
the company. Since 2009, Hive is also available for the general public as an
open-source project under the Apache umbrella. Inside Facebook, Hive runs
thousands of jobs per day on different Hadoop clusters ranging from 300 to
1200 nodes to perform a wide range of tasks including periodical reporting
of click counts, ad hoc analysis, and training machine learning models for ad
optimization. Other companies working with data in the petabyte magni-
tude like Netflix are reportedly using Hive for the analysis of website stream-
ing logs and catalog metadata information.

The fundamental goals of designing Hive were the following:

• Build a system for managing and querying data using structured
techniques on Hadoop

• Use native MapReduce for execution at HDFS and Hadoop layers
• Use HDFS for storage of Hive data
• Store key metadata in an RDBMS
• Extend SQL interfaces, a familiar data warehousing tool in use at

enterprises
• High extensibility: User-defined types, user-defined functions,

formats, and scripts
• Leverage extreme scalability and performance of Hadoop
• Interoperability with other platforms

367Cloudware Application Development

The main difference between Hive and the other languages previously
discussed comes from the fact that Hive’s design is more influenced by
classic relational warehousing systems, which is evident both at the data
model and at the query language level. Hive thinks of its data in relational
terms—data sources are stored in tables, consisting of a fixed number
of rows with predefined data types. Similar to Pig and Jaql, Hive’s data
model provides support for semistructured and nested data in the form of
complex data types like associative arrays (maps), lists, and structs, which
facilitates the use of denormalized inputs. On the other hand, Hive dif-
fers from the other higher-level languages for Hadoop in the fact that it
uses a catalog to hold metadata about its input sources. This means that
the table schema must be declared and the data loaded before any queries
involving the table are submitted to the system (which mirrors the stan-
dard RDBMS process). The schema definition language extends the classic
DDL CREATE TABLE syntax. Currently, Hive does not provide support
for updates, which means that any data load statement will enforce the
removal of any old data in the specified target table or partition. The stan-
dard way to append data to an existing table in Hive is to create a new
partition for each append set. Since appends in an OLAP environment are
typically performed periodically in a batch manner, this strategy is a good
fit for most real-world scenarios.

The Hive Query Language (HiveQL) is an SQL dialect with various syntax
extensions. HiveQL supports many traditional SQL features like from clause
subqueries, various join types, group bys and aggregations, as well as many
useful built-in data processing functions that provide an intuitive syntax for
writing Hive queries to all users familiar with the SQL basics. In addition,
HiveQL provides native support for in-line MapReduce job specification. The
semantics of the mapper and the reducer are specified in external scripts,
which communicate with the parent Hadoop task through the standard
input and output streams (similar to the streaming API for user-defined
functions (UDFs) in Pig).

17.3.4 Pig

As data volumes and processing complexities increase, analyzing large data
sets introduces dataflow complexities that become harder to implement
in a MapReduce program. There was a need for an abstraction layer over
MapReduce: a high-level language that is more user friendly, is SQL-like in
terms of expressing dataflows, has the flexibility to manage multistep data
transformations, and handles joins with simplicity and easy program flow.
Apache Pig was the first system to provide a higher-level language on top of
Hadoop. Pig started as an internal research project at Yahoo (one of the early
adopters of Hadoop) but due to its popularity subsequently was promoted
to a production-level system and adopted as an open-source project by the

368 Guide to Cloud Computing for Business and Technology Managers

Apache Software Foundation. Pig is widely used both inside and outside
Yahoo for a wide range of tasks including ad hoc data analytics, ETL tasks,
log processing, and training collaborative filtering models for recommenda-
tion systems.

The fundamental goals of designing Pig were as follows:

• Programming flexibility: The ability to break down complex tasks
comprised of multiple steps and interprocess-related data transfor-
mations should be encoded as dataflow sequences that are easy to
design, develop, and maintain.

• Automatic optimization: Tasks are encoded to let the system optimize
their execution automatically. This allows the user to have greater
focus on program development, allowing the user to focus on
semantics rather than efficiency.

• Extensibility: Users can develop user-defined functions (UDFs) for
more complex processing requirements.

Pig queries are expressed in a declarative scripting language called Pig
Latin, which provides SQL-like functionality tailored toward big data’s
specific needs. Most notably from the syntax point of view, Pig Latin
enforces implicit specification of the dataflow as a sequence of expressions
chained together through the use of variables. This style of programming
is different from SQL, where the order of computation is not reflected at the
language level, and is better suited to the ad hoc nature of Pig as it makes
query development and maintenance easier due to the increased readabil-
ity of the code.

Unlike traditional SQL systems, the data do not have to be stored in a
system-specific format before it can be used by a query. Instead, the input
and output formats are specified through storage functions inside the load
and store expressions. In addition to ASCII and binary storage, users can
implement their own storage functions to add support for other custom
formats. Pig uses a dynamic type system to provide native support for
nonnormalized data models. In addition to the simple data types used
by relational databases, Pig defines three complex types—tuple, bag, and
map—which can be nested arbitrary to reflect the semistructured nature
of the processed data. For better support of ad hoc queries, Pig does not
maintain a catalog with schema information about the source data. Instead,
input schema is defined at the query level either explicitly by the user or
implicitly through type inference. At the top level, all input sources are
treated as bags of tuples; the tuple schema can be optionally supplied as
part of the load expression.

369Cloudware Application Development

17.4 Summary

The chapter discusses the functional programming paradigm followed by
the Google MapReduce algorithm and its reference implementation. We
discuss the Hadoop ecosystem including Hadoop Distributed File System
(HDFS), HBase NoSQL database, Hive data warehouse solution, and the Pig
query language for ad hoc analytical requirements. In the end, we discuss
CADM for the development of cloudware applications.

371

18
Cloudware Operations and Management

Cloud computing is on-demand access to a shared pool of computing
resources. It helps users to reduce costs, reduce management responsibilities,
and increase business agility. For this reason, it is becoming a popular para-
digm, and increasingly more companies are shifting toward IT cloud com-
puting solutions. Advantages are many but, being a new paradigm, there are
also challenges and inherent issues. These relate to data governance, service
management, process monitoring, infrastructure reliability, information
security, data integrity, and business continuity.

18.1 Characteristics of Cloud Operations

Cloud computational resources can be scaled up and down on demand and
paid for on a metered usage basis. The usage characteristics have multiple
options based on a host of parameters. These options have to be evaluated
on a case-by-case basis.

This ability to configure the various parameters per requirements (or
changing requirements) provides tremendous advantages for clients in
that they do not have to maintain internal computing systems designed
for peak loads that may occur only a small percentage of the time. Though
cloud offers the ability to provision massive amounts of computing power
and storage, these quantities are not unlimited; like any other physical sys-
tem, cloud computation must operate within physical limits imposed by
practical boundary conditions. Cloud users might have to fit their applica-
tions into one set of resource usage categories defined by the cloud pro-
vider. The cloud paradigm also supports innovation in that a variety of
new, advanced applications can be used in an affordable manner while
reducing the total cost of ownership. Some applications that are of long
duration and have stable computational requirements might be better
served by in-house or leased computers and storage than by paying cloud
fees over a long period of time.

372 Guide to Cloud Computing for Business and Technology Managers

As introduced in the earlier chapters, the major benefits of cloud comput-
ing can be summarized as follows:

• Means to move from operating in a capital expenditure environment
to an operational expenditure environment.

• Ability to rapidly deploy innovative business and research applica-
tions in a cost-effective manner.

• Use of virtualization to detach business services from the underly-
ing execution infrastructure.

• Disaster recovery and business continuity capabilities are intrinsic
in the cloud paradigm.

• Ability of the cloud provider to apply security safeguards more
effectively and efficiently in a centralized environment.

• Ability to select among a variety of cloud vendors that provide reli-
able scalable services, metered billing, and advanced development
resources.

• Scalable infrastructure that can rapidly provision and de-allocate
substantial resources on an as-needed basis.

18.2 Core Services

18.2.1 Discovery and Replication

Service discovery promotes reusability by allowing service users to find the
existing services. RESTful services support discovery and reuse at design
time. Replication can be used to create and maintain copies of an enter-
prise’s data at these sites. When events affecting an enterprise’s primary
location occur, key application services can effectively be restarted and
run at the remote location incurring no capital expenditure, only opera-
tional expenditure, until such time as the primary site is brought back
online. Replication keeps all replicas as a part of one atomic transaction.
Replication technology is available in storage arrays and network-based
appliances and through host-based software.

18.2.2 Load Balancing

Load balancing prevents system bottlenecks due to unbalanced loads. It also
considers implementing failover for the continuation of a service after fail-
ure of one or more of its components. This means that a load balancer pro-
vides a mechanism by which instances of applications can be provisioned
and deprovisioned automatically without changing network configuration.

373Cloudware Operations and Management

This is an inherited feature from grid-based computing for cloud-based plat-
forms. Energy conservation and resource consumption are not always a focal
point when discussing cloud computing; however, with proper load balanc-
ing in place, resource consumption can be kept to a minimum. This not only
serves to keep costs low and enterprises greener; it also puts less stress on the
hardware infrastructure of each individual component, making them poten-
tially last longer. Load balancing also enables other important features such
as scalability.

18.2.3 Resource Management

Cloud computing provides a way of deploying and accessing massively
scalable shared resources on demand, in real time, and at affordable cost.
Cloud resource management protocols deal with all kinds of homogeneous
and heterogeneous resource environment. Management of virtualized
resources, workload and resource scheduling, cloud resource provisioning
with QoS, and scalable resource management solutions are the concerning
points. Dynamic resource scheduling across a virtualized infrastructure for
those environments is another issue for cloud.

18.2.4 Data Governance

When data begin to move out of organizations, they are vulnerable to dis-
closure or loss. The act of moving sensitive data outside the organizational
boundary may also violate national regulations for privacy. In Germany, pass-
ing data across national boundaries can be a federal offence. Governance in
the cloud who and how is the big challenge for enterprise clouds. Governance
places a layer of processes and technology around services (location of ser-
vices, service dependencies, service monitoring, service security, and so on)
so that anything occurring will be quickly known. There are some questions
that need to be solved before mission-critical data and functionality can be
moved outside a controllable environment.

18.2.4.1 Interoperability

Interoperability means easy migration and integration of applications and
data between different vendors’ clouds. Owing to different hypervisors
(KVM, Hyper-V, ESX, ESXi), VM technologies, storage, configuring operat-
ing systems, various security standards, and management interfaces, many
cloud systems are not interoperable. However, many enterprises want
interoperability between their in-house infrastructure and the cloud. The
issue of interoperability needs to be addressed to allow applications to be
ported between clouds or to use multiple cloud infrastructures before critical
business applications are delivered from the cloud. Most clouds are com-
pletely opaque to their users. Most of the time, users are fine with this until

374 Guide to Cloud Computing for Business and Technology Managers

there is an access issue. In such situations, frustration increases exponen-
tially with time, partly because of the opacity. Is a mechanism like a network
weather map, in other words, some form of monitoring solution like autono-
mous agents, required?

18.2.4.2 Data Migration

Data migration between data centers or cloud systems are important con-
cerns of taxonomy. While migrating data, some considerations should be
taken into account like no data loss, availability, scalability, cost efficiency,
and load balancing. Users should be able to move their data and applications
any time from one to another seamlessly, without any one vendor control-
ling it. Seamless transfer, as in mobile communication, is required for cloud
computing to work. Many enterprises do not move their mission-critical data
and applications to the cloud because of vendor lock-in, security, governance,
and many more complications.

18.2.5 Management Services

The management services contain deployment, monitoring, reporting,
service-level agreement, and metering billing. We discuss these in detail.

18.2.5.1 Deployment and Configuration

To reduce the complexity and administrative burden across the cloud
deployment, we need the automation process life cycle. RightScale Cloud
Management Platform addresses three stages of the cloud application
deployment lifecycle, namely, design, manage, and deploy. Automated con-
figuration and maintenance of individual or networked computers, from the
policy specification, is very important in the computing arena; it improves
robustness and functionality without sacrificing the basic freedoms and
self-repairing concepts. That is why, to handle complex systems like cloud
environment and data center, we need such configuration management.
Configuration management framework tools help software developers and
engineers to manage server and application configuration by writing code,
rather than running commands by hand.

18.2.5.2 Monitoring and Reporting

Developing, testing, debugging, and studying the performance of cloud
systems are quite complex. Management cost increases significantly as the
number of sites increases. To address such problems, we need monitoring
and reporting mechanisms. Monitoring basically monitors the SLA lifecycle.
It also determines when an SLA completes and reports to the billing ser-
vices. There are some services that monitor the cloud systems and produce

375Cloudware Operations and Management

health reports such as Hyperic HQ, which monitors SimpleDB, Simple
Queue Service, and Flexible Payment Service, all offered by Amazon. It col-
lects the matrix and provides a rich analysis and reporting.

18.2.5.3 Service-Level Agreements (SLAs) Management

Users always want stable and reliable system service. Cloud architecture is
considered to be highly available, up and running 24 h × 7 days. Many cloud
service providers have made huge investments to make their system reli-
able. However, most cloud vendors today do not provide high availability
assurances. If a service goes down, for whatever reason, what can a user do?
How can users access their documents stored in the cloud? In such a case,
the provider should pay a fine to the user as compensation to meet SLAs.
An SLA specifies the measurement, evaluation, and reporting of the agreed
service-level standards such as the following:

 1. How raw quality measures will be used to evaluate agreed service
component

 2. How the raw quality measures will be qualified as a service quality
measure

 3. How the qualified quality measures will be used to estimate the ser-
vice quality levels

 4. How the results of service evaluation will be reported
 5. How disputes on service-level evaluation will be resolved

Currently, Amazon offers a 99.9% monthly uptime percentage SLA for Simple
Storage Service (Amazon S3) and credit is limited to 10%. Amazon credits
25% of charges if the availability drops below 99.0%, whereas 3Tera Virtual
Private Data Center (VPDC) service will include a 99.999% availability SLA
that is supposed to help assure customers about putting mission-critical
apps and services in the cloud.

18.2.5.4 Metering and Billing

Transparent metering and billing will increase the trust level of users toward
cloud services. Pay-as-you-go subscription or pay-as-you-consume model of
billing and metering are popular for cloud. This service gets the status of
the SLA and invokes the credit service, which debits the user credit card or
account and informs the user. There are many pricing strategies such as RAM
hours, CPU capacity, bandwidth (inbound/outbound data transfer), storage
space (gigabytes of data), software license fee, and subscription-based pric-
ing. There are some interesting new billing models such as GoGrid prepaid
cloud hosting plan and IDC cloud billing research, which are great examples
of moving cloud pricing models toward telecom models.

376 Guide to Cloud Computing for Business and Technology Managers

18.2.5.5 Authorization and Authentication

In public clouds, safeguards must be placed on machines to ensure proper
authentication and authorization. Within the private cloud environment, one
can track, pinpoint, control, and manage users who try to access machines
with improper credentials. Single sign-on is the basic requirement for a cus-
tomer who accesses multiple cloud services.

18.2.6 Fault Tolerance

In case of failure, there will be a hot backup instance of the application,
which is ready to take over without disruption. Cloud computing outages
extend into the more refined version of cloud service platforms. Some out-
ages have been quite lengthy. For example, Microsoft Azure had an outage
that lasted 22 h on March 13–14, 2008. Cloud reliance can cause significant
problems if downtime and outages are removed from your control. Table 18.1
shows failover records from some cloud service provider systems. These are
significant downtime incidents. Reliance on the cloud can cause real prob-
lems when time is money.

Google has also had numerous difficulties with its Gmail and application
services. These difficulties have generated significant interest in both tradi-
tional media and the blogosphere owing to deep-seated concerns regarding
service reliability. The incidents mentioned here are just the tip of the ice-
berg. Every year, thousands of websites struggle with unexpected down-
time and hundreds of networks break or have other issues. So, the major
problem for cloud computing is how to minimize outage/failover to pro-
vide reliable services. It is important to adopt the well-known Recovery-
Oriented Computing (ROC) paradigm in large data centers. Google uses
Google File System (GFS) or distributed disk storage; every piece of data is
replicated three times. If one machine dies, a master redistributes the data
to a new server.

18.3 Core Portfolio of Functionality

This section discusses the functional components that have to be provided
by the service provider. All the cloud service providers may not provide all
of these components; on the contrary, additional components may be added
if the need arises. The delivery of these functional components may be based
on different optimization criteria like cost optimization or performance
optimization and fulfill different user constrains like budget, performance,
instance types, load balancing, instance prices, and service workload.

377Cloudware Operations and Management

TA
B

LE
 1

8.
1

O
ut

ag
es

 in
 D

if
fe

re
nt

 C
lo

ud
 S

er
vi

ce
s

C
lo

u
d

 S
er

vi
ce

 a
n

d
 O

u
ta

ge
D

u
ra

ti
on

D
at

e
Im

p
li

ca
ti

on
s

G
oo

gl
e

G
M

A
il

30
 h

O
ct

ob
er

 1
6,

 2
00

8
U

se
rs

 c
ou

ld
 n

ot
 a

cc
es

s
th

ei
r

em
ai

ls
G

oo
gl

e
G

m
ai

l a
nd

 G
oo

gl
e

A
pp

s
24

 h
A

ug
us

t 1
5,

 2
00

8
T

ho
se

 a
ff

ec
te

d
 b

y
th

e
ou

ta
ge

 r
ec

ei
ve

d
 a

 5
02

 s
er

ve
r

er
ro

r
w

he
n

tr
yi

ng
 to

 lo
g

in
 to

 G
m

ai
l a

nd
 G

oo
gl

e
A

pp
s

Fl
ex

iS
ca

le
: c

or
e

ne
tw

or
k

fa
ilu

re
18

 h
O

ct
ob

er
 3

1,
 2

00
8

A
ll

se
rv

ic
es

 w
er

e
un

av
ai

la
bl

e
to

 c
us

to
m

er
s

A
m

az
on

 S
3

6–
8

h
Ju

ly
 2

0,
 2

00
8

U
se

rs
 c

ou
ld

 n
ot

 a
cc

es
s

th
e

st
or

ag
e

d
ue

 to
 s

in
gl

e
bi

t e
rr

or

le
ad

in
g

to
 g

os
si

p
pr

ot
oc

ol
 b

lo
w

up
G

oo
gl

e
N

et
w

or
k

3
h

M
ay

 1
4,

 2
00

9
T

he
 v

as
t m

aj
or

it
y

of
 G

oo
gl

e
se

rv
ic

es
 b

ec
am

e
un

av
ai

la
bl

e,

in
cl

ud
in

g
G

m
ai

l,
Yo

uT
ub

e,
 G

oo
gl

e
N

ew
s,

 a
nd

 e
ve

n
th

e
go

og
le

.c
om

 h
om

e
pa

ge
. T

he
 o

ut
ag

e
af

fe
ct

ed
 a

bo
ut

 1
4%

 o
f

G
oo

gl
e

us
er

s
w

or
ld

w
id

e
G

oo
gl

e
N

ew
s

1.
5

h
M

ay
 1

8,
 2

00
9

U
se

rs
 s

aw
 a

 5
03

 s
er

ve
r

er
ro

r,
al

on
g

w
it

h
a

m
es

sa
ge

 to
 tr

y
th

ei
r

re
qu

es
ts

 a
ga

in
 la

te
r

G
oo

gl
e

N
ew

s
2

h
Se

pt
em

be
r

22
, 2

00
9

M
an

y
us

er
s

ex
pe

ri
en

ce
d

 d
if

fic
ul

ti
es

 a
cc

es
si

ng
 G

oo
gl

e
N

ew
s

G
oo

gl
e

G
m

ai
l

2
h

Se
pt

em
be

r
1,

 2
00

9
U

se
rs

 c
ou

ld
 n

ot
 a

cc
es

s
th

ei
r

em
ai

ls
A

m
az

on
 E

C
2

8
h

D
ec

em
be

r
10

, 2
00

9
C

us
to

m
er

s
ex

pe
ri

en
ce

d
 a

 lo
ss

 o
f c

on
ne

ct
iv

it
y

to
 th

ei
r

se
rv

ic
e

in
st

an
ce

s
M

ic
ro

so
ft

 S
id

ek
ic

k
6

d
ay

s
M

ar
ch

 1
3,

 2
00

9
T

he
 m

as
si

ve
 o

ut
ag

e
le

ft
 S

id
ek

ic
k

cu
st

om
er

s
w

it
ho

ut
 a

cc
es

s
to

th

ei
r

ca
le

nd
ar

, a
d

d
re

ss
 b

oo
k,

 a
nd

 o
th

er
 k

ey
 a

sp
ec

ts
 o

f t
he

ir

se
rv

ic
e

M
ic

ro
so

ft
 A

zu
re

22
 h

M
ar

ch
 1

3,
 2

00
9

T
he

 o
ut

ag
e

oc
cu

rr
ed

 b
ef

or
e

th
e

se
rv

ic
e

ca
m

e
ou

t o
f b

et
a.

 T
he

ou

ta
ge

 le
ft

 p
eo

pl
e

w
it

ho
ut

 a
cc

es
s

to
 th

ei
r

ap
pl

ic
at

io
ns

N
et

su
it

e
30

 m
in

A
pr

il
27

, 2
01

0
T

he
 c

om
pa

ny
’s

 c
lo

ud
 a

pp
lic

at
io

ns
 w

er
e

in
ac

ce
ss

ib
le

 to

cu
st

om
er

s
w

or
ld

w
id

e

378 Guide to Cloud Computing for Business and Technology Managers

The following components are required:

 1. Service management: This is the most critical component of the cloud
service provider and performs the tasks related to service discovery,
service selection (in conjunction with other functions like seman-
tic engine and SLA and QoS management), service provisioning,
and service deprovisioning. The allocation of services is done in a
manner to preserve on-demand and elastic nature of cloud services
provisioning.

 2. Metering/billing: This functionality keeps track of the services con-
sumed along with any aggregations and discounts and other pricing-
related information (in conjunction with rules management and
monitoring engine). This module may have integration with exter-
nal third-party payment gateways and will meter data from various
resources and aggregate them so that they can be rated and billed.

 3. Data management: Also, an important functionality dealing with
data and their storage and security (in conjunction with integration,
transformation, security management, and SLA and QoS manage-
ment modules).

 4. Monitoring: Monitors the business activities, SLAs, holistic service
status, outstanding alerts, and policy violations. This module inter-
faces with most other modules and provides them with relevant
information.

 5. Security management: May include identity and access management
functionality for handling user roles and access issues and secu-
rity services like authentication, authorization, auditing, encryp-
tion, wire-level security, and other conventional security measures
required in a distributed environment. Privacy-related issues are
also handled by this module.

 6. SLA and QoS management: Makes use of metrics in the relevant areas,
some of them being legal metrics, SLA, and QoS requirements per-
taining to regulatory, privacy, data security, and penalties manage-
ment; interfaces with the security management, policy management,
rules management, logging/audit trails, monitoring, and perfor-
mance management modules; defines metrics for usage and assess-
ment of charge-backs, promotions, and discount-related information
management.

 7. Performance management: Handles the performance-related aspects
of business processes and services and also of the underlying
resources. It interfaces with certain other modules like monitoring
and support and incident management.

 8. Policy management: Policy handling including policy creation and
assessment, mapping, attachment, and deployment is performed as

379Cloudware Operations and Management

part of this module. Policy enforcement and escalations must also be
applied as appropriate as part of the functionality of this module.

 9. Self-service: Provides the customer with the ability to self-register
and perform self-service functions including provisioning and man-
agement tasks and also administration. This module ties in with the
security management module and may tie in with other modules
like rules management, SLA and QoS management, and policy
management.

 10. Support and incident management: Performance and utilization of
diagnostic information at multiple levels to troubleshoot and resolve
issues. Cloud management infrastructure must provide diagnostics
capabilities for the full stack. Incident management aims to restore
normal cloud operation as quickly as possible and minimize the
adverse effect on business operations. This may include resolution of
the root causes of incidents and thus minimizes the adverse impact
of incidents and problems on business and prevents recurrence of
incidents related to these errors. If resolution is not possible, then
alternative service deployment may be needed in conjunction with
service management module.

 11. Analytics: This module collects and makes use of historical data and
provides analytical information for both internal usages of the cloud
service provider but also for the cloud users. It provides insight into
business trends and user preferences, transaction visibility, business
key performance indicator (KPI) monitoring, reporting functional-
ity, and dashboards.

 12. Orchestration: Business transactions are often executed by coordi-
nating or arranging existing applications and infrastructure in the
cloud to implement business processes. This involves usage of tech-
nologies and tools like ESBs, process engines, middleware, legacy,
and packaged applications. Event processing may be a useful func-
tionality to have as it provides asynchronous resource coordination
and automated policy-based orchestration.

 13. Transformation: Involves changing an entity in one form to another
at runtime, for example, transformation of an entity from one data
model to another or transformation of message from one protocol to
another.

 14. Logging/audit trails: Performs creation of logs and audit trails. The
module is essential for fulfilling regulatory compliance and also
for interfacing to incident management and essential for security
management, SLA and QoS management, and support and incident
management modules.

 15. Mediation: This module helps to resolve the differences between two
or more systems in order to integrate them seamlessly. Mediation

380 Guide to Cloud Computing for Business and Technology Managers

can happen at different levels such as security, transport, message,
API, and protocol.

 16. Integration: Is used to facilitate the combination or aggregation of
separately produced components or services to perform a larger
task, ensuring that the problems in their interactions are addressed
by using some intermediary tool, say, mediation. This module is
necessary for interfacing to the multiple service providers who do
not follow the same standards in terms of protocols, technology,
APIs, etc.

 17. Semantic engine: A specialized entity (could be optional) that will
support the creation of a common understanding of and relation-
ships among entities in a domain by means of creation and usage
of ontologies. This module thus helps in easier mapping and under-
standing of services provided by different cloud vendors and helps
in creating ease of interoperability and common understanding
among cloud services provided by different vendors.

 18. Rules management: Is a support functionality that is utilized by
many other modules to perform complex decision making and
evaluation functionality and also to map the business require-
ments in a declarative, easy-to-use manner that allows easy update
and changes.

18.4 Metrics for Interfacing to Cloud Service Providers

The cloud service providers provide mediation, optimization, and value-
addition functionality based on either business or technical requirements of
the corresponding cloud users. It is based on these business requirements,
specified by means of defined metrics, that the cloud service providers pro-
vide the best-fitting service to the users and/or perform necessary selection
and filtering of the cloud service providers.

The metrics relevant for interfacing with the cloud service providers are
as follows:

 1. Business metrics
 a. Cost of service: Is one of the most important criteria and may be

quite difficult to specify and calculate. Cost of service may be
divided into one-time and ongoing fixed costs. The cost may
be based on per hour/per transaction/volume of transfer, quota,
time of request, availability of resources, and so on. Other crite-
ria may be commercial versus noncommercial provider usage,

381Cloudware Operations and Management

time, and/or cost optimization scheduling. It is one of the most
important but also the most difficult parameter to monitor and
regulate as it involves comparison of costing data for exist-
ing services to newly available services as well. Costing data
are complicated and may involve multiple subparameters like
fixed one-time costs and variable costs depending on time and
demand.

 b. Regulatory criteria-driven requirements: Regulatory requirements
that need to be fulfilled by the cloud user are further taken over
to the cloud service provider; examples of such data are geo-
graphical constraints like location of data, logging, audit trails,
and privacy.

 c. Maximum tolerable latency: This is typically a technical metrics,
but in case a business process has some specific response time-
related constraint, then it forms part of the business parameter.

 d. Business SLA requirements, including availability guarantees,
availability penalties, and penalty exclusions.

 e. Data-related requirements, for example, data security, data loca-
tion, backup, and storage.

 f. Role-based access control: These are business-related access control
metrics pertaining to hierarchy of the user organization.

 g. On-demand business process deployment and user or applica-
tion constraint management like management of budget and
deadline.

 h. Governance criteria like quality of service, policy enforcement,
and management.

 i. Environmental constraints, for example, preference for green
providers and incentives for green providers.

 2. Technical metrics
 a. Virtual machine requirements, say, those related to central pro-

cessing unit (CPU), memory, and operating system
 b. Security-related requirements like details related to encryption,

digital key management, and identity and access management
 c. Technical SLA requirements, including alerts and notifications

when SLA terms reach a critical point
 d. Maximum provisioning time
 e. Redundancy and disaster recovery metrics for critical applica-

tions or functionality
 f. Environment safety and protection-related metrics like carbon

emission rate and CPU power efficiency

382 Guide to Cloud Computing for Business and Technology Managers

18.5 Selection Criteria for Service Provider(s)

Planning for the involvement of a cloud service provider as part of the cloud
strategy is necessary and important for an enterprise when there is a need
for using more than one cloud service providers.

There are a number of generic criteria for the selection of a cloud service
provider. The criteria are given as follows:

• Cost/price: This is one of the main deciding factors for the users
of the service. This should include all the components of the cost,
including one-time and ongoing costs. The transparency of the costs
is also important to ensure that there are no hidden costs and so is
the review of the historical price trend to see how the cost of services
has changed in the past.

• Viability and reputation of the provider: Since this is a nascent field and
the users build their business processes based on the services pro-
vided by the cloud service provider, it is very important to look at
the reputation of the cloud service provider and assess their refer-
ences, the number of successful projects delivered, and the duration
of time for which they have been in business. It is also important to
assess the long-term stability of the provider’s business.

• Security and privacy: Security provision as a value addition is one of
the reasons for using the cloud service providers in the first place. It
is important to ensure that the service providers provide an end-to-
end security (including physical, application, and personnel related)
for the services they provide. Equally important (also from the point
of view of regulatory requirements fulfillment) is the review of how
a service provider manages privacy identity and access management,
and single sign-on feature provision is important. It is important
that the service provider provides details of security certifications
that their services may fulfill.

• Regulatory requirements fulfillment: Depending on the domain, the
cloud users have to fulfill varied requirements (say, audit trail provi-
sion, logging, etc.). The cloud service provider on behalf of the user
must ensure that the compliance requirements are met.

• Transparency of operational information and data: It is necessary to get
the insight into the basic operational information and data related
to one’s operation from the point of view of the cloud service user,
and the service provider that provides this information should be
preferred.

• Data management: Data are an important asset of the enterprise.
Functions related to data like data storage and backup, confidentiality

383Cloudware Operations and Management

and privacy of data, and geographical location of data are met.
Data availability is important for the user’s business, and, thus, it is
important to review the contingency plan that the service provider
has in the event of a data center/service failure (either own or of the
service provider’s).

• SLA management: The service provider’s readiness in SLA to provide
some transparency into the vendor’s operations in the areas of audits
and compliances and its flexibility to meet SLA requirements includ-
ing penalties in case of noncompliance is a key deciding factor as it
impacts the fulfillment of many other requirements. The flexibility
of the SLA to reflect the service user’s business requirement, includ-
ing a match to inputted translated business metric of the cloud ser-
vice user, must be reviewed.

• Contingency and disaster recovery plans: It is important to review the
contingency and disaster recovery plans that a service provider
provides.

• Features of services provided: Ultimately, the distinguishing factor
among different service providers may be the features of the service
they offer including the ability to find the best services for the user
based on the user’s business and its businesses location.

• Service provider references: A review of the references provided by
the service provider is a necessary step. This should ideally include
the possibility to communicate with actual users of the services
of the service provider.

18.6 Service-Level Agreements (SLAs)

Most customers are willing to move their own premise setup to a hosted
environment only if their data are kept securely and privately as well as
nonfunctional properties such as availability or performance are guaran-
teed. Providing cloud services to customers requires not only managing
the resources in a cost-efficient way but also running these services in cer-
tain quality satisfying the needs of the customers. The quality of delivered
services is usually formally defined in an agreement between the provider
and the customer, which is called service-level agreement (SLA). In the fol-
lowing sections, we introduce the basic ideas of such agreements from the
technical perspective of cloud computing and give an overview on tech-
niques to achieve the technical goals of service quality.

Service-level agreements define the common understanding about ser-
vices, guarantees, and responsibilities. They consist of two parts:

384 Guide to Cloud Computing for Business and Technology Managers

 1. Technical part: The technical part of an SLA (so-called service-level
objectives) specifies measurable characteristics such as performance
goals like response time, latency or availability, and the importance
of the service.

 2. Legal part: The legal part defines the legal responsibilities as well as
fee/revenue for using the service (if the performance goals are met)
and penalties (otherwise).

Supporting SLAs requires both the monitoring of resources and service pro-
viding as well as resource management in order to minimize the penalty
cost while avoiding over-provisioning of resources.

There are two types of SLAs from the perspective of application hosting.
These are described in detail here.

 1. Infrastructure SLA: The infrastructure provider manages and offers
guarantees on availability of the infrastructure, namely, server
machine, power, and network connectivity. Enterprises manage
themselves, their applications that are deployed on these server
machines. The machines are leased to the users and are isolated
from machines of other users. In such dedicated hosting environ-
ments, a practical example of service-level guarantees offered by
infrastructure providers is shown in Table 18.2.

 2. Application SLA: In the application colocation hosting model, the
server capacity is available to the applications based solely on their
resource demands. Hence, the service providers are flexible in allo-
cating and de-allocating computing resources among the colocated
applications. Therefore, the service providers are also responsible
for ensuring to meet their user’s application SLOs. For example, an
enterprise can have the following application SLA with a service
provider for one of its application, as shown in Table 18.3.

TABLE 18.2

Key Contractual Elements of an Infrastructural SLA

Hardware availability 99% uptime in a calendar month
Power availability 99.99% of the time in a calendar month
Data center network availability 99.99% of the time in a calendar month
Backbone network availability 99.999% of the time in a calendar month
Service credit for unavailability Refund of service credit prorated on downtime period
Outage notification guarantee Notification of customer within 1 h of complete

downtime
Internet latency guarantee When latency is measured at 5 min intervals to an

upstream provider, the average doesn’t exceed 60 ms
Packet loss guarantee Shall not exceed 1% in a calendar month

385Cloudware Operations and Management

It is also possible for a customer and the service provider to mutually agree
upon a set of SLAs with different performance and cost structure rather
than a single SLA. The customer has the flexibility to choose any of the
agreed SLAs from the available offerings. At runtime, the customer can
switch between the different SLAs.

Table 18.1 describes the amount of acceptable downtime per year for the
corresponding level of availability.

18.6.1 Quality of Service (QoS)

Quality of Service (QoS) is a well-known concept in other areas. For
example, in networking, QoS is defined in terms of error rate, latency, or
bandwidth and implemented using flow control, resource reservation, or
prioritization.

In classic database system operation, QoS and SLAs are mostly limited to
provide reliable and available data management. Query processing typically
aims at executing each query as fast as possible, but not to guarantee given
response times. However, for database services hosted on a cloud infrastruc-
ture and provided as multitenant service, more advanced QoS concepts are
required. Important criteria or measures are the following:

 1. Availability: The availability measure describes the ratio of the total
time the service and the data are accessible during a given time inter-
val and the length of this interval. For example, Amazon EC2 guar-
antees an availability of 99.95% for the service year per region, which
means downtimes in a single region up to 4.5 h per year are accept-
able. Availability can be achieved by introducing redundancies: data

TABLE 18.3

Key Contractual Elements of an Application SLA

Service-level
parameter metric

• Website response time (e.g., max of 3.5 s per user request)
• Latency of Web server (WS) (e.g., max of 0.2 s per request)
• Latency of DB (e.g., max of 0.5 s per query)

Function • Average latency of WS = (latency of Web server 1 +
latency of Web server 2)/2

• Website response time = average latency of Web server +
latency of database

Measurement directive • DB latency available via http://mgmt server/em/latency
• WS latency available via http://mgmtserver/ws/

instanceno/latency
Service-level objective • Service assurance

• Website latency <1 s when concurrent connection <1000
Penalty • 1000 USD for every minute while the SLO was breached

386 Guide to Cloud Computing for Business and Technology Managers

are stored at multiple nodes and replication techniques (see Section
3.4) are used to keep multiple instances consistent. Then, only the
number of replicas and their placement affect the degree of availabil-
ity. For instance, Amazon recommends to deploy to EC2 instances in
different availability zones to increase availability by having geo-
graphically distributed replicas, which is done for data in SimpleDB
automatically.

 2. Consistency: Consistency as service guarantee depends on the kind
of service provision. In case of a hosted database like Amazon RDS
or Microsoft Azure SQL, full ACID guarantees are given, whereas
scalable distributed data stores such as Amazon SimpleDB guaran-
tee only levels of eventual consistency. Techniques for ensuring dif-
ferent levels of consistency are standard database techniques that
can be found in the concerned textbooks.

 3. (Query) response time: The response time of a query can either be
defined in the form of deadline constraints, for example, response
time of a given query is ≤10 s, or not per query but as percentile con-
straints. The latter means, for example, that 90% of all requests need
to be processed within 10 s; otherwise, the provider will pay a pen-
alty charge. Though response time guarantees are not the domain
of standard SQL database systems, there exist some techniques in
real-time databases.

18.6.2 Pricing Models for Cloud Systems

One of the central ideas and key success factors of the cloud computing
paradigm is the pay-per-use price model. Ideally, customers would pay
only for the amount of the resources they have consumed. Looking at the
current market, services differ widely in their price models and range from
free or advertisement-based models over time or volume-based models
to subscription models. Based on a discussion of the different cost types
for cloud services, we present some fundamentals of pricing models in the
following.

18.6.2.1 Cost Types

For determining a pricing model, all direct and indirect costs of a provided
service have to be taken into account. The total costs typically comprise
capital expenditures (CapEx) and operational expenditures (OpEx). Capital
expenditures describes all costs for acquiring assets such as server and net-
work hardware, software licenses, but also facilities, power, and cooling
infrastructure. Operational expenditures (OpEx) includes all costs for run-
ning the service, for example, maintenance costs for servers, facilities, infra-
structure, payroll, but also legal and insurance fees. One of the economical

387Cloudware Operations and Management

promises of cloud computing is to trade CapEx for OpEx by outsourcing
IT hardware and services. Furthermore, for customers, there is no need for
long-term commitment to resources. However, this typically comes with
higher OpEx. A good analogy is the rental car business: relying on rental cars
instead of maintaining a company-owned fleet of cars avoids the big invest-
ment for purchasing cars (CapEx) but requires to pay the rates for each day
of use (OpEx). Cloud-based data management has some specific character-
istics that have to be taken into account for pricing models, because data are
not as elastic as pure computing jobs. The data sets have to be uploaded to
the cloud and stored there for a longer time and usually require additional
space for efficient access (indexing) and high availability (backups).

Thus, the following types of operational costs are included:

 1. Storage costs: Database applications require to store data persistently
on disk. In order to guarantee a reliable and high available service,
backup and archiving have to be performed, which need additional
storage space. In addition, for efficient access, index structures are
required, which are also stored on disk. The disk space occupied by
all these data (application data, backup, indexes) is considered part
of the storage costs.

 2. Data transfer costs: This type of costs covers the (initial and regularly)
transfer of application data to the service provider over the network
as well as the costs for delivering requests and results between cli-
ents and the database service.

 3. Computing costs: This represents typically the main cost type for pro-
cessing database services and includes processing time of running
a data management system (computing time, license fee) or process-
ing a certain number of requests (queries, transactions, read/write
requests).

Further costs can be also billed for certain guarantees and service-level
agreements, for example, availability, consistency level, or provided hard-
ware (CPU type, disk type).

18.6.2.2 Subscription Types

Based on the individual cost types, different pricing models can be built.
Currently available models are often inspired by other commercial ser-
vices (such as mobile phone plans) and range from a pure pay-per-use
approach where each type of cost is billed individually to flat-rate like
subscription models for longer time periods. In principle, these models
can be classified according to two dimensions: the unit for billing and the
degree of flexibility.

388 Guide to Cloud Computing for Business and Technology Managers

The first dimension describes which unit is used for billing. Typical units
are as follows:

 1. Time of usage: Examples are Amazon’s EC2 and RDS instances or
Rackspace instances that are billed in $ per hour for specific hard-
ware configurations. Further parameters such as system load, com-
pute cycles, bandwidth usage, or number or requests are not taken
into account. However, this means that it is up to the customer to
choose an appropriate configuration needed to handle the envisaged
load.

 2. Volume-based units: Examples are GB per month for storage services
or the number of requests per time unit. Volume-based pricing
models simplify resource provisioning and SLAs for the service pro-
vider: based on the requested volume, the provider can estimate the
required resources (disk space, computing resources to handle the
requests).

The second dimension characterizes the flexibility of service usage:

• On demand or pay per use: This is the most flexible approach—a cus-
tomer can use the service at any time as well as when he really wants
to use it. Apart from the consumed units (time, volume), no addi-
tional costs are billed.

• Auction based: In this model, which is, for instance, offered by
Amazon with their so-called spot instances in EC2, customers can
bid for unused capacities. The prices for such machine instances
vary over time depending on supply and demand. As long as the
price for these instances is below the customer’s bid (e.g., a maxi-
mum price), the customer can use such instances. Of course, this
makes sense only for applications that are very flexible in their
usage times. Furthermore, such applications have to deal with
possible interruptions that occur when prices of instances exceed
the bid.

• Reservation based: This means that capacity is reserved at the provid-
er’s side for which the customer has to pay a one-time or regular fee.
In return, the customer receives a discount for the regular charges
(time or volume).

Currently, cloud service providers use different combinations of these sub-
scription and cost types. This allows a flexible choice for customers but makes
it sometimes difficult to select the most appropriate offer. Some providers
offer basic online pricing calculators for determining the price of given con-
figurations, for example, Amazon3 and Microsoft.

389Cloudware Operations and Management

Reason
Respondents
Who Agree

Improved system reliability and availability 50%
Pay only for what you use 50%
Hardware savings 47%
Software license savings 46%
Lower labor costs 44%
Lower maintenance costs 42%
Reduced IT support needs 40%
Ability to take advantage of the latest funtinality 40%
Less pressure on internal resources 39%
Solve problems related to updating/upgrading 39%
Rapde deployment 39%
Ability to scale up resources to meet needs 39%
Ability to focus on core competencies 38%
Take advantage of the improved economies of scale 37%
Reduced infrastructure management needs 37%
Lower energy costs 29%
Reduced space requirements 26%
Create new revenue streams 23%

A broad set of concerns identified by the NIST working group on cloud
security includes the following:

• Potential loss of control/ownership of data
• Data integration, privacy enforcement, data encryption
• Data remanence after deprovisioning
• Multitenant data isolation
• Data location requirements within national borders
• Hypervisor security
• Audit data integrity protection
• Verification of subscriber policies through provider controls
• Certification/accreditation requirements for a given cloud service

The top workloads mentioned by the users involved in this study are data
mining and other analytics (83%), application streaming (83%), help desk ser-
vices (80%), industry-specific applications (80%), and development environ-
ments (80%).

The study also identified workloads that are not good candidates for
migration to a public cloud environment:

• Sensitive data such as employee and health-care records
• Multiple codependent services (e.g., online transaction processing)

390 Guide to Cloud Computing for Business and Technology Managers

• Third-party software without cloud licensing
• Workloads requiring auditability and accountability
• Workloads requiring customization

18.6.3 Software Licensing

Software licensing for cloud computing is an enduring problem with-
out a universally accepted solution at this time. The license management
technology is based on the old model of computing centers with licenses
given on the basis of named users or as site licenses. This licensing tech-
nology, developed for a centrally managed environment, cannot accom-
modate the distributed service infrastructure of cloud computing or of
grid computing.

Only very recently, IBM reached an agreement allowing some of its soft-
ware products to be used on EC2. Furthermore, MathWorks developed a
business model for the use of MATLAB in grid environments. The Software-
as-a-Service (SaaS) deployment model is gaining acceptance because it
allows users to pay only for the services they use.

There is significant pressure to change the traditional software licensing
model and find nonhardware-based solutions for cloud computing. The
increased negotiating power of users, coupled with the increase in software
piracy, has renewed interest in alternative schemes such as those proposed
by the SmartLM research project (www.smartlm.eu). SmartLM license man-
agement requires a complex software infrastructure involving SLA, negotia-
tion protocols, authentication, and other management functions.

A commercial product based on the ideas developed by this research
project is elasticLM, which provides license and billing for web-based
services. The architecture of the elasticLM license service has several layers:
co-allocation, authentication, administration, management, business, and
persistency. The authentication layer authenticates communication between
the license service and the billing service as well as the individual applica-
tions; the persistence layer stores the usage records. The main responsibil-
ity of the business layer is to provide the licensing service with the license
prices, and the management coordinates various components of the auto-
mated billing service.

When a user requests a license from the license service, the terms of the
license usage are negotiated and they are part of an SLA document. The
negotiation is based on application-specific templates and the license cost
becomes part of the SLA. The SLA describes all aspects of resource usage,
including the ID of application, duration, number of processors, and guaran-
tees, such as the maximum cost and deadlines. When multiple negotiation
steps are necessary, the WS-Agreement negotiation protocol is used.

To understand the complexity of the issues related to software licensing,
we point out some of the difficulties related to authorization. To verify the

391Cloudware Operations and Management

authorization to use a license, an application must have the certificate of an
authority. This certificate must be available locally to the application because
the application may be executed in an environment with restricted network
access. This opens up the possibility for an administrator to hijack the license
mechanism by exchanging the local certificate.

18.7 Summary

This chapter discussed issues related to cloudware operations and manage-
ment. It described the portfolio of core services (including discovery and
replication, load balancing, resource management, data governance, man-
agement services, and fault tolerance) and functionality (including Service
management, Metering/billing, Data management, monitoring, security
management, SLAs and QoS management, performance management, pol-
icy management, self-service, support and incident management, analytics,
orchestration, transformation, logging/audit trails, mediation, integration,
rules management, and semantic engine). It described metrics for interfac-
ing with service providers and, hence, criteria for their selection. In the last
part of the chapter, we discussed SLAs (Service Level Agreements) that assist
in evaluating the normalcy of ongoing operations.

393

19
Cloudware Security

19.1 Governance

We have seen a number of factors that need to be considered when think-
ing about a move to a cloud infrastructure. The number of potential issues
arising from neglecting any aspect of cloud security is large, and the impli-
cations can be catastrophic. While some of the items are mostly applicable
during the preparation for a switchover to cloud, many of the pertinent
activities remain afterward and require careful management. It is the overall
management of the business assets that should provide the focus for how
security (among other things) should be considered, and this management is
generally referred to as governance.

Governance is oft-talked about in the context of corporate governance,
rules, practices, customs, policies, and processes, which define and steer how
an organization conducts its daily business. Typically, the act of governance
results in two key functions:

 1. Providing defined chains of authority, responsibility, and communi-
cation to empower the appropriate staff to take decisions

 2. Defining mechanisms for policy and control, together with the asso-
ciated measurements, to facilitate roles for staff to undertake

As you would expect, corporate governance is all encompassing when it
comes to the operations, strategy, and future trajectory of an organization. It
has tended to have been regarded as applicable to more traditional demarca-
tions within business, such as the accounting, sales, human resource man-
agement, or production functions, to name a few. However, as we have seen
in this book and in Chapter 9 specifically (Enterprise Cloud Computing),
the opportunities created by consuming IT as a utility have the potential to
completely transform how business is conducted.

As such, there is emerging recognition that the impact of IT on a business
is crucial to its survival, and as more and more legislative and policy controls
now assume the use of IT, the need to govern the IT function is now para-
mount. As we have found elsewhere in this book, cloud computing presents

394 Guide to Cloud Computing for Business and Technology Managers

a convergence of the IT and business functions, and thus the governance of
IT is a logical next step for organizations who choose to embrace the cloud.

19.1.1 IT Governance

The practice of IT governance needs to understand the different ways in
which IT services are delivered and maintained in the presence of a cloud
infrastructure. For instance, for each of the issues identified, the governance
body needs to understand the implications of noncompliance with regula-
tory, ethical, business, and political constraints, as well as be suitably pre-
pared for unforeseen circumstances in the future. The management of this
activity requires delegation to a body that can oversee and marshal the holis-
tic perspective while also having the authority to intervene when required.
However, it is unlikely that the governing body can understand the totality
of detail that increasingly complex technology involves, so consideration of
the following items is needed:

 1. While IT governance is concerned with the technical capabilities and
requirements of technology, the adoption of cloud services, together
with the associated delegation of authority (but not responsibility) to
external partners, reinforces the need to understand the issues that
affect the business. Governing IT that includes clouds means that
an intimate understanding of the responsibility boundaries is as
important as whether there is sufficient bandwidth at each point of
access.

 2. A governance perspective usefully tends to bring to the fore
the potential myriad of services that may already exist. This list
of services is likely to increase in the future, so it is important to
empower the governing board to be able to rationalize and stan-
dardize where practicable. This in itself demands a blend of techni-
cal and business expertise that the governing board can call upon to
inform its operations.

 3. The pace of change is rapid, and cloud adoption will only accelerate
this change. Meaningful data are required to inform the decisions
taken, and therefore it is necessary to not only understand what met-
rics need to be monitored and reported, but the mechanisms that do
this must be automated.

IT governance should be seen as an opportunity to manage the emerging
organization that aspires to align its IT and business needs to generate value.
It is likely that this will require a risk-based approach to management, which
of course is hugely dependent on the quality of information used to assess
and monitor risk. Standards such as COBIT assist the creation of bench-
marks upon which monitoring can take place, but the resulting actions that

395Cloudware Security

are derived from this approach should not be underestimated. How many
in-house applications are subject to security auditing, for instance? What are
the implications of executing tested but not audited code on public clouds?

The ability to govern effectively means that an organization must ensure
that it can attribute cause to effect, be flexible in its operations, and have the
capability to accurately monitor its activities.

19.1.2 Security

The first release of the Cloud Security Alliance (CSA) report in 2010 identi-
fied seven top threats to cloud computing:

 1. Abuse of the cloud refers to the ability to conduct nefarious activities
from the cloud—for instance, using multiple AWS instances or appli-
cations supported by IaaS to launch Distributed Denial-of-Service
(DDoS) attacks (which prevent legitimate users from assessing cloud
services) or to distribute spam and malware.

 2. Shared technology considers threats due to multitenant access sup-
ported by virtualization. VMMs can have flaws allowing a guest
operating system to affect the security of the platform shared with
other virtual machines.

 3. Insecure APIs may not protect users during a range of activities, start-
ing with authentication and access control to monitoring and appli-
cation control during runtime mode.

 4. Malicious insiders risk arises because the cloud service providers do
not disclose their hiring standards and policies; potential harm due
to this particular form of attack is quite substantial.

 5. Data loss or leakage risks arise because proprietary or sensitive data
maybe permanently lost when cloud data replication fails and is
also followed by a storage media failure; similarly, inadvertent or
unauthorised access to such information by third parties can have
severe consequences. Since, maintaining copies of the data outside
the cloud is often unfeasible due to the sheer volume of data, both of
these risks can have devastating consequences for an individual or
an organization using cloud services.

 6. Account or service hijacking refers to stealing of credentials and is a sig-
nificant threat.

 7. Unknown risk profile refers to exposure to the ignorance or underesti-
mation of the very risks of cloud computing.

According to this report, the IaaS delivery model can be affected by all
threats. PaaS can be affected by all but the shared technology, whereas SaaS
is affected by all but abuse and shared technology.

396 Guide to Cloud Computing for Business and Technology Managers

19.1.3 Privacy

The advent of the Internet has transformed the familiar issues of security
and privacy beyond recognition. This is primarily because of the following:

• Every computer can be accessed and influenced by any other com-
puter anywhere on the Internet; this effectively eliminates the con-
cept of locality.

• Businesses that are supported on such an extended and open
IT-substrate are vulnerable to scrutiny and monitoring by interested
parties.

• Browsing and visitations of websites to gather information in
turn also exposes the visitor’s behavior itself to interpretation and
analyses.

Consumer privacy issues and concerns have a drastic effect on the enter-
prise’s ability to market to, connect to, and create an ongoing relationship
with your customers. Consumers are gravely concerned regarding the abuse
of their privacy, but gathering a certain amount of information is necessary
for companies to personalize and to serve their customers better. Thus, there
is a need for a balance between protecting a consumer’s privacy and the need
for enterprises to target and personalize their offerings to the customers. In
2000, US Federal Trade Commission recommended fair information prac-
tices of notice, choice, access, and security. Enterprises need to adhere to these
practices when creating and implementing their privacy policies.

Consumer-oriented commercial websites that collect personal identifying
information from or about consumers online would be required to comply
with the four widely accepted fair information practices:

 1. Notice: Websites would be required to provide consumers clear and
conspicuous notice of their information practices, including what
information they collect; how they collect it (e.g., directly or through
nonobvious means such as cookies); how they use it; how they pro-
vide Choice, Access, and Security to consumers; whether they dis-
close the information collected to other entities; and whether other
entities are collecting information through the site.

 2. Choice: Websites would be required to offer consumers choices as to
how their personal identifying information is used beyond the rea-
son for which the information was provided (e.g., to consummate a
transaction). Such choice would encompass both internal secondary
uses (such as marketing back to consumers) and external secondary
uses (such as disclosing data to other entities).

 3. Access: Websites would be required to offer consumers reason-
able access to the information a Website has collected about them,

397Cloudware Security

including a reasonable opportunity to review information and to
correct inaccuracies or delete information.

 4. Security: Websites would be required to take reasonable steps to
protect the security of the information they collect from consumers.
The Commission recognizes that the implementation of these prac-
tices may vary with the nature of the information collected and the
uses to which it is put, as well as with technological developments.
For this reason, the Commission recommends that any legislation
be phrased in general terms and be technologically neutral. Thus,
the definitions of fair information practices set forth in the statute
should be broad enough to provide flexibility to the implementing
agency in promulgating its rules or regulations.

Third-party privacy seals are a good way to gain the trust of consumers
because these third-party consumer privacy protection organizations cer-
tify the enterprise’s privacy policy. There are two types of privacy seal pro-
grams. One has strict guidelines that prohibit sites from sharing consumer
information they collect with other business partners or from using it for
direct marketing programs. Secure Assure, which has 200 member compa-
nies, offers an audit program but requires members to adhere to a stringent
privacy guideline stating that the e-business will never share a consumer’s
private information with a third party. Other privacy seal programs award
stamps-of-approval to sites that simply stick to whatever privacy policy
promises they have made. The oldest and most well known privacy seal pro-
gram is Electronic Frontier Foundation’s TRUSTe (www.truste.org), which
was started in 1997 and has more than 1300 companies as members.

The threat to information privacy and security can never be eliminated,
but controls and technologies can be applied to reduce the risks to accept-
able levels. The challenges faced by the various enterprises in this regard are
described below.

19.1.4 Trust

Trust in the context of cloud computing is intimately related to the general
problem of trust in online Activities. The Internet offers individuals the abil-
ity to obscure or conceal their identities. The resulting anonymity reduces the
cues normally used in judgments of trust. The identity is critical for develop-
ing trust relations; it allows us to base our trust on the past history of interac-
tions with an entity. Anonymity causes mistrust because identity is associated
with accountability, and, in the absence of identity, accountability cannot be
enforced. The opacity extends immediately from identity to personal charac-
teristics. It is impossible to infer whether the entity or individual we transact
with is who it pretends to be, since the transactions occur between entities
separated in time and distance. Finally, there are no guarantees that the enti-
ties we transact with fully understand the role they have assumed.

398 Guide to Cloud Computing for Business and Technology Managers

To compensate for the loss of clues, we need security mechanisms for
access control, transparency of identity, and surveillance. The mechanisms
for access control are designed to keep intruders and mischievous agents
out. Identity transparency requires that the relationship between a virtual
agent and a physical person be carefully checked through methods such
as biometric identification. Digital signatures and digital certificates are
used for identification. Credentials are used when an entity is not known.
Credentials are issued by a trusted authority and describe the qualities of
the entity using the credential. A Doctor of Dental Surgery diploma hanging
on the wall of a dentist’s office is a credential that the individual has been
trained by an accredited university and hence is capable of performing a
set of dental procedures; similarly, a digital signature is a credential used
in many distributed applications. Surveillance could be based on intrusion
detection or on logging and auditing. The first option is based on real-time
monitoring, the second on off-line sifting through audit records.

There are primarily two ways of determining trust, namely, Policies and
Reputation. Policies reveal the conditions to obtain trust and the actions to
take when some of the conditions are met. Policies require the verification
of credentials. Reputation is a quality attributed to an entity based on a rela-
tively long history of interactions with or possibly observations of the entity.
Recommendations are based on trust decisions made by others and filtered
through the perspective of the entity assessing the trust.

19.2 Security Risks

It is important to understand the risks of inadequate security so that an
enterprise can make an informed judgment about what, if any, information
should be trusted to the cloud.

Since the actual risks to a system are varied, an enterprise typically takes
a generalized approach to security and then manages exceptions separately,
for instance, identity management; it is usual for an employee to require a
user identity for access to a system when on the organization’s premises. But
this access has a different set of potential vulnerabilities if the employee is
working at home or in the field. These specific situations might not apply
to the cloud provider, who will by default create security strategies that are
relevant for that type of business.

The individual security mechanisms that a number of applications use
may not transfer easily to a cloud environment, and therefore, a detailed
understanding of the approach taken toward security is required if fur-
ther, unintended vulnerabilities are not to be introduced. This situation
is not new; organizations have been outsourcing data storage and tele-
phone call centers for some time now. What is different about cloud,

399Cloudware Security

however, is the depth of the infrastructure that is being entrusted into
the cloud. Both data storage and customer care management are discrete,
vertical functions that have been devolved to third parties. The devolve-
ment of infrastructure/applications/services is a horizontal function that
contains the heart of the organization’s operations.

Such is the potential complexity of the situation that enterprises adopt
a risk-based approach to security. This is where controls are prioritized
toward areas where security risks are the most damaging. One part of a risk-
based approach is to ensure that service-level agreements (SLAs) are in place.
However, SLAs are often used to protect the supplier, not the customer,
again underlining the importance of understanding the security detail so
that the requirements are catered for properly. So, even though you may be
impressed with the physical security during the sales tour of the cloud pro-
vider’s premises, it is still your responsibility to ensure that all of the other
aspects of security are assured as well.

Access control is an example of perimeter security. Without an account
and a password, you cannot penetrate the perimeter of the network. This
assumes though that those who have an account are honest and trustworthy.
Unfortunately, most breaches in security are the result of employees who
have legitimate access, and they are rarely detected. These internal threats
don’t go away if you move to the cloud, unless the cloud provider offers a
more secure service that you can utilize, which adds protection over and
above what you are currently using.

When dealing with security, it helps to be paranoid. Migrating systems to
the cloud might increase the headcount of people who have access to your
data, so your security strategy must have a provision to deal with threats from
the inside. While virtualization is seen as an example of a specific technology
that has enabled the cloud delivery model to become workable, it also com-
plicates the demands placed upon a security strategy as servers, storage, and
even networks are now executing in virtual environments. Rather than the
traditional risk of an employee divulging a password or snooping around a
system, an employee of a cloud provider might only have to provide access
to the virtualization layer for havoc to be wreaked. In fact, if we consider the
elasticity function of a cloud resource, any hacker would have plenty of com-
pute resource to use for nefarious purposes if granted some access to a cloud.

The provision of IT security is a challenge, and the effort required to do
it can make the migration to cloud appear an attractive one if it reduces the
hassle. However, the enterprise is placing trust in its provider and needs to
assure itself that the provider’s capabilities are at least as good as the cur-
rent architecture. Another factor is that today’s IT systems are complex and
becoming even more intricate and bespoke. The traditional model of secu-
rity is to define a hard security perimeter (usually around the data center)
and monitor all inbound and outbound traffic. The problem with multiten-
ant clouds is that all sorts of traffic will be present at the access point, and in
fact another enterprise’s traffic might be deemed as hostile, even though the

400 Guide to Cloud Computing for Business and Technology Managers

public cloud architecture is designed to have multiple sets of data coexisting
in one virtual appliance. This arrangement means that it is meaningless to
have systems in place that can both monitor and proactively protect against
potential breaches. The system has to be secure at the point of access.

The reality is that breaches happen, and then enterprises need to quickly
plug the hole, trying to understand what went wrong afterward. In the case
of serious breaches, the default behavior might be to shut a system down
completely, which is massively disruptive for a business. Finally, when an
enterprise is choosing a potential cloud provider, it may find it difficult to
assess a candidate supplier, since they don’t release details of their internal
services for the purposes of maintaining security.

19.3 Dimensions of Security

As described earlier, a move to a cloud provider means that an enterprise
will have to establish a level of trust with the provider. The process of build-
ing trust involves open communication and sufficient understanding on the
part of the enterprise, to ask the pertinent questions. We shall now consider
six key functional areas of security, in order to derive a checklist of security
fundamentals that must be present within a cloud system before migrating
to a public cloud:

 1. Identity management
 2. Network security
 3. Data security
 4. Instance security
 5. Application architecture
 6. Patch management

19.3.1 Identity Management

The first area is that of identity management. The nature of cloud services
means that identity management is paramount if end users can securely
access the services that they need to do their jobs. Since we anticipate a user
to be interacting with a business process that is composed of one or more
cloud services (see), we wouldn’t expect the user to have to manage separate
access details for each separate service that was invoked. In fact, in a Web
browser environment (the default interface for cloud services), this would be
particularly dangerous as users would simply let their passwords be saved
for convenience. So, along comes another person, who does not have access
to the payroll reports, and they use a computer where the passwords have
been saved in the Web browser. Chaos ensues! Single sign-on (SSO) is one

401Cloudware Security

example of a system where user identities are managed across a number of
separate systems. The user signs in with their account, and they are automat-
ically authorized to access business processes that they have been granted
permission for. Behind the scenes, this needs a role-based permission system
so that access rights can be quickly assembled, maintained, and revoked, for
individuals and en masse.

An additional benefit is that all users of the services benefit from the sim-
plification of SSO, which in an service-oriented environment (SOE) setting
means the suppliers as well. The IT department also finds that SSO assists
the management of user profiles in that, firstly, they won’t have to manage
individual accounts on a per-service basis (a lot of work) and, secondly, much
of the account maintenance can be automated. For example, a default set of
identities can be created for a number of job functions, which can be automat-
ically provisioned for new users. These may either be suitable already or can
be augmented with other capabilities quickly. This of course, reinforces the
need to have a comprehensive understanding of a service-based architecture,
in relation to the business that is being conducted. Once an identity manage-
ment mechanism is in place, account migration to the cloud is simplified.

19.3.2 Network Security

Network security is of course an important concern for any corporate, dis-
tributed system. The one issue that a move to a cloud brings is the fact that an
enterprise’s application network traffic is transported along with every other
application’s network traffic. This means that packets that are exchanged
between secure access points are mingling with packets that are exchanged
between less secure applications. While cloud providers appear to segregate
network traffic by utilizing virtual local area networks (VLAN), the separa-
tion is virtual (as the name implies), and therefore, at packet level, the traffic
is still mixed and shares the same cable. So, the sensitive accounts data for
payroll is present on the network, along with the (relatively) less sensitive
sales figures for the last quarter.

These data can’t be accessed without the correct permissions, but it does
mean that an employee with network administration rights could, with a bit
of work, have sight of the confidential information, even though they would
not have any operational need to do so. The traditional model of security in
this case has relied on trust, but in the context of a cloud environment (where
the network administrator is not directly on your payroll), there is a need to
actively control exactly who has access to what.

Since cloud adoption means that an enterprise has devolved all respon-
sibility for the infrastructure, it is not possible to build a private, physical
network, nor is it good practice to trust the honesty of a VLAN administra-
tor. The solution in this case is to provide end-to-end encryption of data
packets, between authorized applications. The fear of packets coexisting
with other packets has much greater ramifications when the owner of the

402 Guide to Cloud Computing for Business and Technology Managers

other packets might be a competitor. This is bound to occur at some point
if access to the cloud services is made over publicly shared Internet con-
nections (which they are). It is possible to acquire a private leased line to
a cloud provider, but this creates an architecture that is more like a tradi-
tional data center.

At some point, an enterprise is going to need access to a service that is out-
side of this infrastructure. The more comprehensive alternative is to create a
Virtual Private Network (VPN) connection to the cloud provider. This can be
terminated upon entry to the cloud provider, or for maximum security, it can
be terminated at the application. Of course, it is rare to get something for noth-
ing. Data encryption is costly in terms of processing overhead and directly
increases network latency, reducing throughput performance. It is therefore
prudent to consider what data need encrypting, and what the risks would be
if it ever got released publicly. You would expect an enterprise’s salary infor-
mation to be kept private, but a lot of the standard transactional reporting
data might be safe enough in a VLAN scenario. It follows that a security risk
assessment should be an integral part of the planning for a security strategy.

19.3.3 Data Security

There is no question that data are the key asset of an organization. Data
security is therefore a fundamental component of the security strategy for a
cloud migration. If data are lost, or inaccessible, then the effect can disarm
an enterprise. There are many instances where an enterprise suffers a major
infrastructure failure and the data are securely backed up somewhere, but
the systems cannot be reconstructed quickly enough afterward, causing rev-
enue losses. One of the apparent comforts of owning your hardware is that
you feel in control when disaster strikes. If you delegate this control to a
cloud provider, what measures should be taken?

In terms of responsibility, the cloud provider is wholly accountable for the
provision and maintenance of hardware. Since a consumer of cloud services
no longer has the responsibility for the infrastructure, they need to find a
way of dealing with the overall responsibilities associated with managing
data security, such as protecting against data theft or malicious change and
compliance with legislative measures for the transport, storage, and expung-
ing of data.

In terms of data transport, this can be dealt with by utilizing VPN mech-
anisms as described earlier. In terms of data storage, a move to the cloud
means that by default external parties now have access to the infrastructure
that the data reside on and, by implication, also have access to the data them-
selves. If an enterprise assumes a paranoid stance, then the only option is to
encrypt the data and concentrate upon developing a secure mechanism for
encryption key management, stored in a place where they cannot be accessed
by external parties. The administrators of the cloud provider can of course
still see data; it’s just that they can’t make sense of it.

403Cloudware Security

While the discussion has separated network security from data security,
the reality is that they should be considered together when planning the
security strategy. A risk assessment will determine which parts of the system
must be encrypted, and if transport encryption is required, then the data
must be sensitive enough to protect, so storage encryption will be required
also. The extent of this security will be determined by what the likely risk of
data leakage will be, as a trade-off against reduced network performance.

Another major shift in security thinking for cloud deployments is created
by the dynamic environment of virtualization. Traditional approaches to IT
security assume a static infrastructure that expands in a planned, orderly
way. If more storage is required, it is designed, incorporated into the overall
security strategy, and then implemented. Security policies are amended if
need be, and new procedures commissioned accordingly. Usually, the data
store is deep within a hardened security perimeter. In terms of off-premise
data centers, this is certainly the case.

19.3.4 Instance Security

However, the agile, collaborative environment of the cloud, which exposes
internal services for external consumption, which dynamically provisions
extra compute and storage resources on demand, is a more challenging beast
to tame. An enterprise must now be more concerned with instance security.
The secure data store is now a virtual entity, composed of a number of secure
repositories that are associated with individual service instances. Whereas
the scope of a traditional security model was that of the system to be secured,
the scope is now limited to a particular instance but also is multiplied by the
number of instances that are executing at any one time. It follows that cen-
tralized management of security is more complex, and more of the security
controls require delegating to the individual services themselves. Instance
security is provided in the following ways:

 1. Instance-level firewall: Typically, the cloud provider will provide a
firewall for each VLAN that is present. This firewall serves to virtu-
ally separate the traffic between user’s respective VLANs. Bearing
in mind the caveat mentioned earlier that the physical separation
of traffic is not implemented with VLANs, it is necessary to ensure
that each instance has a firewall to marshal only authorized traf-
fic into the associated virtual machine. As this relates to applica-
tion security, it is clearly not the responsibility of the cloud provider
and therefore may require extra in-house expertise developing on
the part of the consuming enterprise. Individual instance firewalls
are controlled on a fine-grained basis, and it is likely that different
instances will present different requirements. However, this is the
maintenance cost of ensuring that only the appropriate data are
passed onto each instance.

404 Guide to Cloud Computing for Business and Technology Managers

 2. Daemons/background services: Anyone who has set up an externally
exposed server and then hardened the build will be aware of back-
ground services that can be exploited by those with malicious intent.
Each instance must be assessed to understand what operating sys-
tem services are required to complete the job and ensure that noth-
ing else is enabled.

 3. Penetration testing: There are two parts to this activity. First, an audit
mechanism should identify if the existing security measures have
been properly implemented. The outcome of this might be a list of
items that need attention to ensure that the overall security strategy
is maintained. Secondly, a series of invasive tests simulate the effects
of the instances in response to external attack. These tests place the
system under load, which may expose hitherto undetected vulner-
abilities. In practice, such auditing and testing is at the fringe of the
relationship between an enterprise and a cloud provider, since the
provision of shared services to a number of enterprises potentially
puts all of them at risk if one particular enterprise starts doing pen-
etration tests. Cloud providers have responded in two ways. The
first is to have vulnerability testing as a cloud service (SaaS), which
can perform some of the work required. The second approach is
to develop in-house penetration capabilities at the cloud provider,
who will conduct tests and present a list of recommendations for the
enterprise to consider.

 4. Intrusion detection/prevention: Intrusion Detection Systems (IDS)
monitor network traffic and report anomalies in relation to prede-
termined security policies. The logs generated can then be used to
identify areas that may need hardening, or they may be used as part
of a forensic investigation after a breach has occurred. An Intrusion
Prevention System (IPS) takes any anomalous behavior and pro-
actively alters a firewall to prevent a recurrence of the behavior by
stopping the traffic from accessing the instance. For cloud environ-
ments, host-based variants of IDS/IPS are required (HIDS/HIPS) for
each application instance that consumes external traffic. Again, the
extent to which this security measure is deployed will be dependent
upon the risk profile produced by the initial assessment.

 5. Application auditing: There are still cases where unwanted intruders
can circumvent network security and gain access to applications.
Automated application auditing monitors the applications that are
installed and raises an alarm when files are changed. This is often
referred to as file change monitoring and can be applied to any appli-
cation or system files where changes would not normally be expected.

 6. Antivirus: One approach to prevent viruses or malware being installed
is to robustly prevent users from installing applications themselves.
However, this does not stop e-mails being opened nor, in the case of

405Cloudware Security

the cloud-based SOE, does it mean that the business partners of an
enterprise enforce such policies. In the same way that other vulnera-
bilities at instance level need to be protected, the same applies to the
prevention of malicious programs being allowed to penetrate and
infect the service. Each instance should ideally be checked with the
latest signature file every time that it is executed to maintain maxi-
mum protection. This does create a significant overhead for services
that are in frequent use, and therefore a cloud-based antivirus/mal-
ware service may be more appropriate. Such a service ensures that
the latest signature files are present, without using the execution of a
service to trigger an external check.

In summary, the concept of instance security for cloud services does not so
much rely upon new technology, but more a rethink in terms of how existing
solutions are deployed.

19.3.5 Application Architecture

A common approach to application architecture is that of separating the
architecture into tiers, whereby communication access between tiers is
tightly controlled. This serves to constrain any problems in one tier without
adversely affecting the other. For instance, a Web application tier might be
kept separate from the back-office system tier. In between the tiers would be
a firewall that restricts the network traffic between the two tiers.

As mentioned earlier in the chapter, the multitenant environment of a pub-
lic cloud prevents physical network infrastructure from being inserted. At
best, an enterprise could create VLANs, albeit that the network traffic is still
physically intermingled. One approach is to seek out a cloud provider who
is willing to allow the user to define subnets as part of the rented infrastruc-
ture. This would permit an enterprise to replicate some of its more tradi-
tional architecture within a virtualized environment and achieve its desired
network topology. Another approach would be to persist with instance-level
management and implement tier separation at the instance firewalls. This
increases complexity somewhat, but it could be argued that it fits more cohe-
sively with the instance approach to managing security in a robust way by
treating each appliance as a discrete service provider.

An alternative option is to adopt the services of a cloud provider to help in
the management of security. Some cloud providers are now offering security
layers that mimic instance-level firewalls. Such layers are convenient to use,
though they have the potential to increase vendor lock-in until more open
security standards are developed.

19.3.6 Patch Management

Patch management refers to the constant checking and maintenance of soft-
ware during its use. As bugs and vulnerabilities are discovered, the corrections

406 Guide to Cloud Computing for Business and Technology Managers

may result in software patches that need to be applied. The resourcing and
management of software patching is perhaps one of the motivators for con-
sidering cloud adoption, since anything relating to the services that are
provided will be managed by the cloud provider. SaaS is the best example of
fully delegating the responsibility to the provider; for IaaS, it only applies to
the infrastructure itself, not the systems or services that run on them.

However, one aspect that enterprises should consider is the way in which a
cloud provider manages the installation of patches, particularly those cloud
providers who originate from a history of being a data center. Traditionally,
images of the system would be created by the data center, which was a snap-
shot of a particular instance. This could then be deployed rapidly, without
having to build an installation from scratch every time. In the era of rapid
provisioning, this means that new images have to be created each time a
patch is installed, resulting in lots of images being created. As the cloud
computing industry matures, more and more cloud providers will reject this
practice and utilize automation to dynamically build instances on top of very
basic images. This ensures that the latest software updates are incorporated
into the instance but also permits extra instances to be dynamically provi-
sioned to enable service elasticity. Thus, software patches can be kept in one
repository (and therefore managed) and be called upon only when they are
required.

This is an important issue to consider for an enterprise. The IT depart-
ment does not want to be investing significant resources into protecting
instances, only to find that the instance is built upon an image with a known
vulnerability.

19.4 Cloud Security Concerns

The top security concerns of cloud users are as follows:

 1. Availability: Cloud requirements for availability are concerned with
denying illegitimate access to computing resources and prevent-
ing external attacks such as denial-of-service attacks. Additional
issues to address include attempts by malicious entities to control,
destroy, or damage computing resources and deny legitimate access
to systems. While availability is being preserved, confidentiality
and integrity have to be maintained. Requirements for this category
should address how to ensure that computing resources are avail-
able to authorized users when needed.

 2. Authentication: Cloud requirements for authentication specify the
means of authenticating a user when the user is requesting service
on a cloud resource and presenting his or her identity. The authenti-
cation must be performed in a secure manner. Strong authentication

407Cloudware Security

using a public key certificate should be employed to bind a user to an
identity. Exchanged information should not be alterable. This safe-
guard can be accomplished using a certificate-based digital signa-
ture. Some corresponding requirements include the following:

 a. Mechanisms for determining identity
 b. Binding of a resource to an identity
 c. Identification of communication origins
 d. Management of out-of-band authentication means
 e. Reaffirmations of identities
 3. Authorization: Subsequent to authentication, cloud requirements for

authorization address authorization to allow access to resources,
including the following:

 a. A user requesting that specified services not be applied to his or
her message traffic

 b. Bases for negative or positive responses
 c. Specifying responses to requests for services in a simple and

clear manner
 d. Including the type of service and the identity of the user in an

authorization to access services
 e. Identification of entities that have the authority to set authoriza-

tion rules between users and services
 f. Means for the provider of services to identify the user and asso-

ciated traffic
 g. Means for the user to acquire information concerning the service

profile kept by the service provider on the user
Consequent to the authorization, the system must address the following:

 a. Specific mechanisms to provide for access control
 b. Privileges assigned to subjects during the system’s life
 c. Management of access control subsystems
 4. Integrity: Cloud requirements for integrity ensure the integrity of

data both in transit and in storage. It should also specify means
to recover from detectable errors, such as deletions, insertions,
and modifications. The means to protect the integrity of informa-
tion include access control policies and decisions regarding who
can transmit and receive data, and which information can be
exchanged. Derived requirements for integrity should address the
following:

 a. Validating the data origin
 b. Detecting the alteration of data
 c. Determining whether the data origin has changed

408 Guide to Cloud Computing for Business and Technology Managers

 5. Confidentiality: Cloud requirements for confidentiality are con-
cerned with protecting data during transfers between entities. A
policy defines the requirements for ensuring the confidentiality of
data by preventing unauthorized disclosure of information being
sent between two end points. The policy should specify who can
exchange information and what type of data can be exchanged.
Related issues include intellectual property rights, access control,
encryption, inference, anonymity, and covert channels. These pol-
icy statements should translate into requirements that address the
following:

 a. Mechanisms that should be applied to enforce authorization
 b. What form of information is provided to the user and what the

user can view
 c. The means of identity establishment
 d. What other types of confidentiality utilities should be used
 6. Auditing: Cloud requirements for auditing include the following:
 a. Determination of the audit’s scope
 b. Determination of the audit’s objectives
 c. Validation of the audit plan
 d. Identification of necessary resources
 e. Conduct of the audit
 f. Documentation of the audit
 g. Validation of the audit results
 h. Report of final results

The audit should also consider organizational characteristics such as super-
visory issues, institutional ethics, compensation policies, organizational
history, and the business environment. In particular, the following ele-
ments of the cloud system management should be considered:

 1. Organizational roles and responsibilities
 a. Separation of duties
 2. IS management
 a. Qualifications of IS staff
 b. IS training
 3. Third party–provided services
 a. Managing of contracts
 b. Service-level agreements (SLAs)

409Cloudware Security

 4. Infrastructure Management
 a. Capacity management
 b. Database administration
 c. Information system security management
 d. Business continuity management
 5. Quality management and assurance standards
 6. Change management
 7. Problem management
 8. Project management
 a. Performance management and indicators
 9. Economic performance
 10. Expense management and monitoring

The cloud policy decomposition for the audit component is recursive in that
the audit has to address the cloud system security policy, standards, guide-
lines, and procedures. It should also delineate the three basic types of con-
trols, which are preventive, detective, and corrective; and it should provide
the basis for a qualitative audit risk assessment that includes the following:

• Identification of all relevant assets
• Valuation of the assets
• Identification of threats
• Identification of regulatory requirements
• Identification of organizational risk requirements
• Identification of the likelihood of threat occurrence
• Definition of organizational entities or subgroupings
• Review of previous audits
• Determination of audit budget constraints

Users are greatly concerned about the legal framework for
enforcing cloud computing security. The cloud technology has
moved much faster than cloud security and privacy legislation,
so users have legitimate concerns regarding the ability to defend

their rights. Because the data centers of a cloud system may be located
in several countries, it is difficult to understand which laws apply—the
laws of the country where information is stored and processed, the
laws of the countries where the information crossed from the user to
the data center, or the laws of the country where the user is located.

410 Guide to Cloud Computing for Business and Technology Managers

19.5 Cloud Security Solutions

Here is an overview of what cloud users can and should do to minimize
security risks regarding data handling by the Cloud Service Provider (CSP).
First, users should evaluate the security policies and the mechanism the CSP
has in place to enforce these policies. Then users should analyze the informa-
tion that would be stored and processed on the cloud. Finally, the contractual
obligations should be clearly spelled out. The contract between the user and
the CSP should do the following:

• State explicitly the CSP’s obligations to securely handle sensitive
information and its obligation to comply with privacy laws

• Spell out CSP liabilities for mishandling sensitive information
• Spell out CSP liabilities for data loss
• Spell out the rules governing the ownership of the data
• Specify the geographical regions where information and backups

can be stored

To minimize security risks, a user may try to avoid processing sensitive data
on a cloud.

19.5.1 Aspects of Cloud Security Solutions

19.5.1.1 Operating System Security

Operating System (OS) is a complex software system consisting of millions
of lines of code, and it is vulnerable to a wide range of malicious attacks. An
OS does not insulate completely one application from another, and once an
application is compromised, the entire physical platform and all applications
running on it can be affected. The platform security level is thus reduced
to the security level of the most vulnerable application running on the plat-
form. Operating systems provide only weak mechanisms for applications to
authenticate to one another and do not have a trusted path between users
and applications. These shortcomings add to the challenges of providing
security in a distributed computing environment.

An OS allows multiple applications to share the hardware resources
of a physical system, subject to a set of policies. A critical function of an
OS is to protect applications against a wide range of malicious attacks
such as unauthorized access to privileged information, tampering with
executable code, and spoofing. Such attacks can now target even single-
user systems such as personal computers, tablets, or smartphones. Data
brought into the system may contain malicious code; this could occur via
a Java applet, or data imported by a browser from a malicious Website.
The existence of trusted paths, mechanisms supporting user interactions

411Cloudware Security

with trusted software, is critical to system security. If such mechanisms do
not exist, malicious software can impersonate trusted software. Some sys-
tems provide trust paths for a few functions such as log-in authentication
and password changing and allow servers to authenticate their clients. A
trusted-path mechanism is required to prevent malicious software invoked
by an authorized application to tamper with the attributes of the object
and/or with the policy rules.

A highly secure operating system is necessary but not sufficient unto itself;
application-specific security is also necessary. Sometimes security imple-
mented above the operating system is better. This is the case for electronic
commerce that requires a digital signature on each transaction. Applications
with special privileges that perform security-related functions are called
trusted applications. Such applications should only be allowed the lowest
level of privileges required to perform their functions. For example, type
enforcement is a mandatory security mechanism that can be used to restrict
a trusted application to the lowest level of privileges.

19.5.1.2 Virtual Machine (VM) Security

VM technology provides a stricter isolation of virtual machines from one
another than the isolation of processes in a traditional operating system.
Indeed, a VMM controls the execution of privileged operations and can thus
enforce memory isolation as well as disk and network access. The VMMs are
considerably less complex and better structured than traditional operating
systems; thus, they are in a better position to respond to security attacks.
A major challenge is that a VMM sees only raw data regarding the state of
a guest operating system, whereas security services typically operate at a
higher logical level, for example, at the level of a file rather than a disk block.
Virtual security services are typically provided by the VMM or through a
dedicated security services VM. A secure trusted computing base (TCB) is
a necessary condition for security in a virtual machine environment; if the
TCB is compromised, the security of the entire system is affected.

A guest OS runs on simulated hardware, and the VMM has access to the
state of all virtual machines operating on the same hardware. The state of a
guest virtual machine can be saved, restored, cloned, and encrypted by the
VMM. Not only can replication ensure reliability, it can also support secu-
rity, whereas cloning could be used to recognize a malicious application by
testing it on a cloned system and observing whether it behaves normally.

One of the most significant aspects of virtualization is that the complete
state of an operating system running under a virtual machine is captured
by the VM. This state can be saved in a file and then the file can be cop-
ied and shared. Thus, creating a VM reduces ultimately to copying a file;
therefore there will be a natural explosion in the number of VMs, and the
only limitation for the number of VMs is the amount of storage space avail-
able. While traditional organizations install and maintain the same version

412 Guide to Cloud Computing for Business and Technology Managers

of system software, in a virtual environment the number of different operat-
ing systems, their versions, and the patch status of each version will be very
diverse, taxing the support team. A side effect of the ability to record in a file
the complete state of a VM is the possibility to roll back a VM. This opens
wide the door for a new type of vulnerability caused by events recorded in
the memory of an attacker.

In case of an infection, in nonvirtual environments, once it is detected,
the infected systems are quarantined and then cleaned up. The systems will
then behave normally until the next episode of infection occurs. However, in
case of virtual environments, the infected VMs may be dormant at the time
when the measures to clean up the systems are taken and then, at a later
time, they could wake up and infect other systems. This scenario can repeat
itself indefinitely.

Another undesirable effect of the virtual environment affects the trust.
Trust is conditioned by the ability to guarantee the identity of entities involved. Each
computer system in a network has a unique physical, or MAC, address; the
uniqueness of this address guarantees that an infected or malicious system
can be identified and then cleaned, shut down, or denied network access.
This process breaks down for virtual systems when VMs are created dynam-
ically. Often, to avoid name collision, a random MAC address is assigned to
a new VM.

There is price to be paid for the better security provided by virtualization.
This price includes: higher hardware costs, because a virtual system requires
more resources, such as CPU cycles, memory, disk, and network bandwidth;
the cost of developing VMMs and modifying the host operating systems in
case of paravirtualization; and the overhead of virtualization because the
VMM is involved in privileged operations.

19.5.1.3 Security Threats from Shared VM Images

One of the major security risks, especially associated with the IaaS cloud deliv-
ery model, is the sharing of VM images like Amazon Machine Images (AMIs).

19.6 Cloudware Security, Governance, Risk, and Compliance

Cloud computing is a combination of virtualization, process automation,
and dynamic response to changing application conditions. None of these, on
its own, are anything more than a logical extension of existing IT; the combi-
nation, however, changes the way IT operates.

Some of the changes are as follows:

• Dynamism: The rapid provisioning of computing resources, as well
as rapid change in application topologies as computing resources

413Cloudware Security

are dynamically added and subtracted in response to changing
application load.

 First of all, cloud computing leverages virtualization, which
breaks the association between application and physical server.
Consequently, assuming security can be tied to physical resources is
no longer practical. Cloud computing extends virtualization to add
dynamism—the ability for applications to rapidly change deploy-
ment topology. Moreover, user self-service (NIST Cloud Computing
characteristic Number One) means that the assumptions of extended
deployment timelines, with sufficient opportunity for security
review and implementation prior to moving an application into pro-
duction, are no longer valid.

• Pooled resources cloud computing abstracts use from assets, where
use (i.e., application operation) is not associated with a particular set
of computing resources, but instead is hosted in a general pool of
computing resources. This means that the location of specific appli-
cation components may change from time to time as loads are rebal-
anced within the resource pool. It also means that security measures
must not be associated with specific hardware, but must instead
migrate dynamically along with the application as it moves from one
set of computing resources to another.

 In a pooled resource environment, no user controls the infrastruc-
ture, so the common appliance solution is not possible—after all,
one user’s traffic examination appliance is another user’s intrusion
threat. Consequently, the shared environment of Cloud Computing
negates many traditional security practices.

• Security deperimeterization: Because cloud applications operate in
a dynamic, shared resource pool, traditional security solutions are
often unusable. Relying on a network-attached appliance to exam-
ine all network traffic is unworkable, due to restrictions imposed
by cloud providers. Moreover, the ongoing opening up of applica-
tions to external parties like partners and customers also means that
the traditional model of imposing strong security at the data cen-
ter perimeter (i.e., relying on a restrictive firewall to prevent traffic
from reaching internal resources) is unsustainable as well. The new
model of security requires that each endpoint implements security
measures to protect itself as appropriate.

These changes, combined, mean that the traditional models of security,
governance, and compliance all change in the world of cloud computing.
In the areas of security and compliance, the cloud user and cloud provider
both hold some of the responsibility. The interface between where one par-
ty’s responsibility ends and the other begins may be referred to as the trust
boundary. In its basic form, the trust boundary represents a demarcation

414 Guide to Cloud Computing for Business and Technology Managers

line: on one side of the line, the cloud provider possesses responsibility for
security measures; on the other, the cloud user possesses responsibility (see
Figure 13.2). On the cloud provider’s side of the trust boundary, the user is a
passive assessor of what the cloud provider implements in terms of security
practices. On the cloud user’s side of the trust boundary, the user is an active
implementer of security practices.

The location of the trust boundary varies according to what model of cloud
computing is being used: IaaS, PaaS, or SaaS. Each model has the cloud pro-
vider taking on differing levels of responsibility for the total application, and
thereby affects where the trust boundary is located. The thick black zigzag
line indicates where the trust boundary lies for each Cloud delivery model.
As an example, in a PaaS environment, the Cloud provider is responsible for
the security of the infrastructure and the middleware, while the Cloud user
retains responsibility for the security of the application itself. As you can see
from the descriptions, this means that the Cloud user would need to audit
and evaluate whether the security measures of the provider in its areas of
responsibility are sufficient.

Every Cloud provider offers a security framework into which
users integrate their application. Naturally, every provider has a
somewhat different framework, so it is incumbent upon users to
understand the framework and ensure that they integrate with

it properly. In fact, it is more than crucial. Without understanding the
security framework presented by the Cloud provider, it is likely that
the Cloud user will fail to configure its usage properly, and thereby
leave security vulnerabilities that may be exploited by attackers.

Figure 13.2 is a chart of security responsibilities of each of the three Cloud
delivery models, along three key areas of responsibility: infrastructure, oper-
ating system (and middleware), and application. Here are brief descriptions
of each area of responsibility:

 1. Application: This area refers to the software used to provide the
actual functionality of the application itself. Falling under this area
are topics like: software component version verification, patch instal-
lation practices, application identity management, and the like.

 2. Operating system and middleware: This area refers to software
components that provide the operating environment within which
the application runs. Key security issues for this area of responsibil-
ity include whether appropriate security software is installed within
the OS, patch installation practices, administrative access to manage
these components, and so on.

415Cloudware Security

 3. Infrastructure: This area addresses both physical security and soft-
ware security. Physical security refers both to the physical infra-
structure of the cloud computing environment (i.e., the data center
itself) and the security practices surrounding the physical infra-
structure. For example, this area covers whether the data center has
redundant Internet access methods, as well as what practices are in
place regarding access to the physical facility (e.g., requiring both
identification documents and biometric scanning as prerequisites
for entering the data center facility). Physical infrastructure would
also refer to the hardware within the data center like back-up gen-
erators and so on. Finally, infrastructure also refers to the software
infrastructure used to implement the cloud computing environ-
ment. Most cloud computing (though not all) uses virtualization as
a foundation for the cloud computing environment, so this security
area would cover the virtualization hypervisor, including security
practices related to controlling access to logging into administer the
virtualization and ensuring proper security patches are installed.

19.7 Assessing a Cloud Service Provider

A report by the European Network and Information Security Agency sug-
gests the following security risks as being priorities for cloud-specific
architectures:

 1. Loss of governance: Governance is complicated by the fact that some
responsibilities are delegated to the cloud provider, but the lines
of responsibility do not fall across traditional boundaries. These
boundaries are less well established and may need to be debated
with the cloud provider in terms of what responsibility they will
wholly adopt and what responsibility needs to be shared. The tra-
ditional approach is to draw up service-level agreements (SLAs),
though these, without sufficient scrutiny, may leave security gaps.

 2. Lock-in: At the time of writing, there is a lack of consensus with
regard to tools, procedures, or standard data formats to enable data,
application, and service portability. Cloud consumers who wish to
migrate to other cloud platforms in the future may find the costs too
prohibitive, therefore increasing the dependency between a cloud
provider and consumer.

 3. Isolation failure: The pooling of computing resources among multi-
ple tenants is a classic cloud environment. It is therefore necessary
to have mechanisms in place to isolate any failures to the mini-
mum number of instances possible. This can also be the source of

416 Guide to Cloud Computing for Business and Technology Managers

a security vulnerability exploit (guest hopping attacks), although it
is more challenging to successfully attack a hypervisor (where the
resource is isolated from the infrastructure) rather than a traditional
operating system architecture.

 4. Compliance risks: Enterprises that have invested heavily in the attain-
ment of industry standard or regulatory certification may risk non-
compliance if the cloud provider cannot evidence their compliance
or if the cloud provider does not permit audit of its own facilities. In
practice, this means that certain certifications cannot be achieved or
maintained when using public clouds.

 5. Management interface compromise: The web-based customer manage-
ment interfaces that cloud providers supply are also an extra risk
with regard to extra opportunities to compromise a cloud system.

 6. Data protection: An enterprise may not be able to verify how a cloud
provider handles its data and therefore cannot establish whether the
practices employed are lawful. In the case of federated clouds, where
different clouds are linked by a trusted network, this challenge is
more complicated. Some cloud providers have achieved certified sta-
tus with regard to data handling.

 7. Insecure or incomplete data deletion: The request to delete a cloud may
not result in the data being completely expunged, and there may be
instances when immediate wiping is not desirable.

The main purpose of any interaction with a potential cloud pro-
vider is to establish whether their security strategy is harmoni-
ous with a particular enterprise. This becomes more difficult as
an enterprise moves up the cloud computing stack. For instance,

if an enterprise is seeking IaaS, then all of the OS security upward is the
responsibility of the enterprise, not the cloud provider. If PaaS is
required, then there is some responsibility for the provider to ensure
that the OS and platform layers are secure, but again, role-based per-
missions that are part of the application layer are ultimately the respon-
sibility of the consuming enterprise. This becomes more complex if
access control is associated with OS-level security. For SaaS, the pro-
vider maintains the access to the application, but access within the
application may be managed by the customer.

Again, this becomes ever more complicated as external services are con-
sumed, thus reinforcing the need to understand security in the context of
an enterprise, before a cloud migration takes place. A solid implementation
of security in a service-based environment is much easier to transfer to the
cloud, irrespective of the level in the stack that is required. The key concept

417Cloudware Security

here is to establish where the boundary of trust exists between the consumer
and the provider; this needs to be established up front to prevent costly con-
fusion in the future. Table 19.1 illustrates some pertinent issues to raise with
a potential cloud provider.

19.7.1 Requisite Certifications

It is evident that to stand any chance of successfully evaluating a cloud offer-
ing requires considerable expertise. Arguably, the expertise can only be
acquired by undertaking the provision of cloud services itself. The nature of
IT is that it is a domain that is constantly faced with newly emerging tech-
nologies, approaches, and models, and therefore it is not atypical to be faced
with the business case driving a fundamental change, without fully compre-
hending the impact that this change is likely to make.

The normal response from the IT industry is to create a body of indus-
trial partners, many of whom will have a vested interest in the products that
are on offer (it’s usually a technology for sale). Industrial parties are joined
by representatives from government or trade bodies and sometimes from
regulatory agencies. Once formed, the body works toward a standard that
can be used to harmonize the approaches taken toward the adoption of the

TABLE 19.1

Security Risk Areas When Selecting a Potential Public Cloud Provider

Issue Questions for Potential Public Cloud Providers

Architecture Is the provider’s security architecture available for scrutiny?
What is the architecture for access management?

Risk assessment Do you utilize an independent authority to assess and monitor
security risks?

Legislation, compliance,
and governance

What controls do you have in place to ensure that domain-
specific legislation is complied with?

Information location Where will the information reside?
Segregation Will the applications/tools be shared with other tenants? Which

application/tools will be shared?
Service level What service level is to be guaranteed and what measures are in

place for access to data during downtime? What is the scope of
any penalties for downtime/loss of access?

Portability What standards are employed to guarantee data/application/
tools/process portability?

Physical security To what standard is physical security provided?
Management tools How are software updates and patches managed to minimize

service disruption? What monitoring tools are provided?
Perimeter security What controls are in place for firewalls and the management of

Virtual Private Network (VPN) access?
Encryption What standards for encryption are in place? How are public

keys managed? How is single sign-on (SSO) implemented?

418 Guide to Cloud Computing for Business and Technology Managers

new technology, including the specification of new products that adhere
to the standard. The implementation of a standard makes the process of
evaluation, and ultimately comparison with other technologies, much more
straightforward and also enables comparisons to be made more effectively
with technologies that are clearly different to the standard.

Unfortunately, the standard itself does not mean that an end user is pro-
ficient enough to evaluate against it correctly, and there is always the risk
of bias affecting any qualitative judgments that have favorable market con-
sequences for the enterprise concerned. This is normally addressed by the
use of an impartial third party, who can conduct the evaluation without
any vested interest and, through the process of auditing, can certify that a
given standard or standards have been complied with. This process is more
rigorous in terms of quality assurance and more expedient in that end users
are not repeatedly conducting evaluations, an activity that they are not prac-
ticed at.

The certification process consists of an approved auditor inspecting the
system or infrastructure to be scrutinized, and then making an assessment
against a set of formal criteria. Satisfaction must be achieved in the criteria
assessed in order to be awarded a certificate of compliance. Having such a
scheme in place is invaluable when faced with the prospect of selecting a
provider of services; a simple filter is whether the candidate service provider
has the relevant certification. From then on, there is the assurance that the
standards for that particular domain have been certified.

Table 19.2 summarizes some of the more prevalent standards that are
applicable to cloud computing. The multiplicity of standards does imply
overlap, and this can create complications for organizations engaged in
a variety of industrial domains (public cloud providers, for instance).
Having said this, should an enterprise who already has certified compli-
ance with a standard decide to select a cloud provider, the details of the
compliance will make comparison with the cloud provider’s offering more
straightforward.

The Cloud Security Alliance (CSA) is a not-for-profit organization that pro-
vides recommendations for the planning and implementation of security in
cloud systems. Its mission is as follows:

To promote the use of best practices for providing security assurance within
Cloud Computing, and provide education on the uses of Cloud Computing
to help secure all other forms of computing.

https://cloudsecurityalliance.org/
It comprises technology vendors, users, security experts, and service pro-

viders, who collaborate to establish industrial standards for the execution of
secure cloud environments. The CSA has an international remit and orga-
nizes conferences and local meetings to exchange ideas with regard to cloud
security. This focus upon security has led to the publication of research into
cloud computing, including user’s experiences of compliance with the myr-
iad standards.

419Cloudware Security

19.8 Summary

This chapter dealt with the security characteristics and challenges of cloud
computing environments. The chapter started with an introduction to the
requirements of governance and security for an enterprise. It described the
various dimensions of security essential for an enterprise followed by a pri-
ority list of security concerns related to the operations of cloudware appli-
cations. The later part of the chapter briefly sketched aspects of security
solutions at the Operating System (OS) and Virtual Machine (VM) levels. In
the end, it described issues related to the assessment and selection of a cloud
service provider (CSP).

TABLE 19.2

Cloud Computing Provisioning IT Certification Standards

Standard Remit

Control Objectives for Information
and Related Technology (COBIT)

A set of process declarations that describe how IT
should be managed by an organization.

National Institute of Standards and
Testing (NIST) SP 800-53

The quality assurance of secure information provision
to US government agencies, being audited against the
Federal Information Security Management Act
(FIMSA).

Federal Risk and Authorization
Management Program
(FedRAMP)

Quality assurance is achieved by collectively achieving
multiple certifications that are compliant with FIMSA.
This is intended for large IT infrastructures where
compliance can be a largely repetitive process.

ISO/IEC 27001:2005—Information
Technology, security techniques,
information security management
systems—requirements

Security controls to assure the quality of information
service provision.

Statement on Standards for
Attestation Engagements (SSAE)
No. 16, Reporting on Controls at a
Service Organization

This standard supersedes the Statement on Auditing
Standards (SAS) No. 70. Service Organizations. SSAE
16 describes controls for organizations that provide
services to users, including an assessment of the
reliability and consistency of process execution.

Generally Accepted Privacy
Principles (GAPP)

This standard is primarily concerned with information
privacy policies and practices.

421

20
Migrating to Cloudware

Cloud computing is an on-demand access to a shared pool of computing
resources. It helps consumers to reduce costs, reduce management responsi-
bilities, and increase business agility. For this reason, it is becoming a popu-
lar paradigm, and increasingly more companies are shifting toward IT cloud
computing solutions. Advantages are many but, being a new paradigm,
there are also challenges and inherent issues.

20.1 Cloud Computing

Cloud computing is an important development in the landscape of comput-
ing options. Although cloud technologies have been around for some time,
it has only been until very recently that the cloud as a business model has
gathered momentum. Cloud is viewed as a business–IT innovation that is
expected to accelerate the pace of some of the changes mentioned earlier
as well as an opportunity to foster new business models and innovative
solutions. Cloud technologies have come a long way and are maturing fast
along the evolving business models, and companies need to look beyond the
hype to fully exploit these emerging opportunities. Most of the conversa-
tions revolve around placing the strategy focus on the technology often at
the expense of real business benefits. The cloud hype proposes that cloud
adoption is a sure path to business benefits, often not articulating in balance
the cloud option against the trade-offs and interdependencies.

There is a need for a business-focused strategy that takes account of cloud
and its capabilities, and accords within the enterprises business and tech-
nology portfolio. IT decision makers need to determine where and how
cloud could offer business value for their enterprises by establishing a
strong foundation for a long-term evolution toward cloud and other emerg-
ing options as they mature over time. Just like any (information) technology
solution, cloud computing offers tools and techniques that may or may not
fit business needs. Hence, it is imperative to consider the impact of cloud
adoption on short-, medium-, and long-term business strategy and opera-
tional delivery.

422 Guide to Cloud Computing for Business and Technology Managers

Companies of all sizes have increasingly been affected by unpredictable
and uncertain changing business environments in recent years:

 1. Externally, current business landscape is driven by new hurdles and
opportunities such as challenging economy, emerging technologies,
increasing commoditization of technology, shorter information life
cycle, increased transparency along the supply chains, changing
customer demands and preferences, evolving issues around trans-
parency, privacy, security, as well as associated regulations, compli-
ance, and standards.

 2. Internally, enterprises are challenged by tighter budgets and empha-
sis on managing investments effectively, reducing costs, managing
the evolving complexity of markets, and managing new relation-
ships including developing new business models to differentiate
and stay competitive.

 3. Technologically, enterprises are challenged for harnessing the tech-
nology capabilities for efficient and effective business delivery, pro-
cess, and operational efficiency, strategically aligning IT resources to
business needs for optimized business benefit realization, manag-
ing risk, and many more.

Addressing these concerns and maintaining growth and delivering business
value has more than ever driven enterprises to focus on their core compe-
tencies by carefully designing and leveraging the unique and differentiated
processes, architectures, skills and competencies, and relationships across
their business ecosystems. IT as a valuable strategic asset has also been the
center of attention due to its significant business impact and also the invest-
ment requirements and the need to lower operations cost, deriving business
benefits, improved productivity and performance, and streamlined pro-
cesses and services, just to name a few.

Strategic value of cloud is demonstrated when it plays a key role in an
enterprise’s achievement of overall business strategy. As an ingredient of the
IT portfolio, cloud strategy needs to be focused on business outcomes and
plays a significant role in optimizing and improving core value chain pro-
cesses and drives innovation that enables new technology-enabled product
and service revenue streams. The results can be translated into and mea-
sured by improved customer satisfaction and market share.

Therefore, the underpinning premises of the planning for cloud include
the following:

• Going into the cloud requires strategic planning that leverages the
business effectiveness.

• A strategic planning framework can help ensure that cloud invest-
ments are aligned with and support the strategic business objectives.

423Migrating to Cloudware

• Cloud can contribute to developing a sustainable competitive
advantage.

• Cloud and other emerging technologies should be recognized as
strategic opportunities.

• Cloud and other emerging technologies need to be managed in a
wider context of a sustainable IT portfolio.

• Business and enterprise architectures should be made cloud compli-
ant to link the multiple strategic business and technology priorities
and operational delivery.

• Internal and external business environments will have bearing on
the cloud options and provision configuration.

• Cloud adoption will imply business and organizational change and
can in turn drive or support it.

• Perhaps most importantly, it is imperative to strike a balance between
business and information technology.

20.2 Planning for Migration

As enterprises take the strategic information era further into the innova-
tion era, they need to be able to develop a fitting strategic view of the nexus
between their Information Technology and business performance and in the
way it impacts their competitive position. Cloud computing reduced barriers
to entry; accelerates innovation cycles, as well as time to value and markets;
and commoditizes the once unique technical capabilities companies invested
in to design and develop. The dynamics are creating a new paradigm: com-
moditize to differentiate. Enterprises of all sizes now have incredible oppor-
tunity to review their current business processes and technology portfolios
and identify scope for simplification and new efficiencies and focus on their
core business where they can develop differentiating capacities. This exer-
cise requires smart planning not only of technological order but rather a
very important business activity. Enterprises need to appreciate the relation-
ship between technology in general and cloud fit, more specifically, to their
business and develop a holistic view of impacts of various business models
and scenarios in the context of their industry and their business. It is impor-
tant to realize the need to look beyond the boundaries of their enterprises
and consider the value chains and complex ecosystems that make up the
future successful cloud adoptions. Although it is stated that switching cost
from one cloud provider to another is significantly lower than the equiva-
lent traditional IT, the industry is still taking shape and the risks need to be
fully accounted for as well. The outcome would be developing integrative
business–IT strategies that leverage cloud for business benefits realization.

424 Guide to Cloud Computing for Business and Technology Managers

It is important to consider cloud in its totality in relation to as-is and the
to-be context of the business. This means that companies should see cloud as
a mix of many options in terms of business models, deployment models, and
technology architecture. Business benefits will often be achieved as a result
of careful and smart integration and configuration of various cloud options.

Developing a cloud strategy is not easy and can be a complex task even
more so if these strategies need to support business strategies. How these
strategies are formulated and managed will depend on the organizational
structure, culture, and organizational pressures both external and internal.
The environment may be stable and allow for structured planning to take
place, or the enterprise may be operating in a volatile changing environment
where there is a requirement to respond to immediate issues and develop
emergent strategies fast.

Hence, a cloud computing strategy needs to aim to

• Articulate the value, benefits, risks, and trade-offs of cloud computing
• Provide a decision framework to evaluate the cloud opportunity in

relation to strategic business and technology direction
• Support with development of an appropriate target architecture
• Support with adopting an appropriate cloud choice and infrastruc-

ture to deliver
• Provide a plan and methodology for successful adoption
• Identify activities, roles, and responsibilities for catalyzing cloud

adoption
• Identify measures, targets, and initiatives that support monitoring,

optimization, and continuous improvement

Strategic planning for cloud is the effective and sustainable management
of cloud provision and its optimal technology and business impact. It also
includes the inter- and intraorganizational elements such as change man-
agement, process management, governance, managing policies, and service-
level agreements. Broadly speaking, there are three areas that should be
considered in any such strategic planning exercise:

 1. Managing the long-term and optimal impact of cloud provision in
the context of enterprise including management of the cloud service
and the inter- and intrarelationships with the stakeholders includ-
ing the user community, service providers and other stakeholders,
policies, and process management.

 This level of strategy is predominantly concerned with management
controls for cloud and broader IT systems, management roles and
responsibilities, cloud performance measurement, optimization,
and continuous improvement.

425Migrating to Cloudware

 2. Managing the long-term and optimal impact of cloud in the broader
context of the information systems strategy.

 This level of strategy will be primarily concerned with aligning cloud
investment with business requirements and seeking strategic advan-
tage from cloud provision. The typical approach is to formulate these
strategies following formal enterprise’s strategic planning frame-
works to align with the enterprise’s business strategy. The resulting
action plan should consist of a mix of short-term and medium-term
application requirements following a thorough review of current
technology and systems use and emerging technology issues.

 3. Managing the long-run and optimal impact of cloud in the broader
context of underlying IT infrastructure and application portfolio.

 The cloud strategy will be primarily concerned with the technical
policies relating to cloud architecture (and its fit within the broader IT
architectures), including risks and service-level agreements (SLAs).
It seeks to provide a framework within which the cloud provision
can deliver services required by the users. It is heavily influenced
by the CIO and IT specialists and is likely to be a single corporate
strategy. Separate federated cloud strategies may be required if there
are very different needs in particular business units.

In practice, all three of these are interlinked and need to be managed accord-
ingly to ensure a coherent and strategic cloud provision.

The planning process must address the following aspects:

• What is the current state of the business in terms of the management
and utilization of current business and supporting information sys-
tem and technologies: as-is (baseline/current state) analysis

• What is the desired state of the enterprise in terms of the man-
agement and utilization of business assets and IT resources: to-be
(target/future state) analysis

• How can the enterprise close any strategic gaps identified in its man-
agement and utilization of cloud as an IT resource: realization plan

• How can the resulting information systems plans be implemented
successfully: go live

• How to review progress through effective business metrics and con-
trol structures and procedures: maintenance

What is clearly evident is that the whole process of strategy development
relies on different groups of stakeholders in the enterprise working together
to assess business and process requirements and the information needs and
the steps toward developing implementable strategy. The caveat to this is
that there are wide-ranging issues that need to be mitigated to ensure that

426 Guide to Cloud Computing for Business and Technology Managers

adoption of the cloud strategy can be successful. The issues encompass vari-
ous areas including internal competencies and experience of the strategy
development as well as cloud delivery teams, organizational change man-
agement, project management, technical solution management, and data
governance, just to name a few. It is therefore imperative that the cloud busi-
ness case and plan consider a holistic view that cuts across people, systems,
architectures and business processes for successful adoption and optimizing
business benefits.

The method we have described in the following is a generic
approach toward adoption of most systems including cloud and
respective organizational requirements. In practice, it is of
course necessary to modify or extend the plan to suit specific

needs. One of the key tasks before applying the model is to produce an
organizations-specific adoption plan. To do so, you need to review vari-
ous steps and building blocks for relevance and fit and adapt them
appropriately to the circumstances of the enterprise. Depending on the
maturity of the enterprise in terms of their business and enterprise
architectures and alignment of current systems adoption processes
with their business model, the cloud adoption plan may involve the fol-
lowing changes:

• Organizations may opt for either an as-is or to-be as the first
approach depending on their level of understanding of cloud
and business and technology maturity. In as-is, first, an assess-
ment of the current state landscape informs the gaps and
opportunities for cloud adoption, whereas in the latter, a target
solution is elaborated and mapped back to current state; gaps
and change requirements are identified and assessed to inform
the realization plans.

• In case of SMEs, it might be more appropriate to use a cutdown
model adjusted to their typically lower resource levels and sys-
tem complexity. The plan adaptation is a function of practical
assessment of resource and competency availability and the
value that can realistically be delivered.

20.3 Deployment Model Scenarios

In the early days of service-oriented architecture (SOA), there was great
debate in the industry about where to begin with SOA and Web Services—
internally within the four walls of your enterprise or externally with

427Migrating to Cloudware

customer- and partner-facing Web Services. Central to the debate were the
challenges around Web Services security.

Cloud has surfaced the very same challenges, especially in the data secu-
rity and privacy arena. Many of the cloud security challenges are those that
have been by and large addressed through SOA and Web Services security
standards and solutions, fundamentally because cloud is so heavily depen-
dent on SOA and Web Services as the means of exposing prepackaged cloud-
enabled resources and capabilities via interfaces that can be discovered,
bound to, and leveraged via an service-level agreement (SLA).

The question of where to begin with cloud revolves around the same inter-
nal versus external debate we had with SOA. In cloud vernacular, this relates
to the various cloud deployment models available—internal private clouds,
external public clouds, and lastly hybrid clouds that blend private and public
cloud capabilities. There are a variety of advantages for starting with each
of the three: public clouds, private clouds, and hybrid clouds. The respective
reasons for beginning your cloud initiative with private, public, or hybrid
cloud deployment models will vary by industry and business need. Every
organization must justify its decision based on tolerance for risk, stance
toward emerging technology adoption, and other factors.

20.3.1 Public Cloud

Public cloud deployments, in which an organization migrates an applica-
tion, its data, or a business process onto a third-party cloud service pro-
vider’s platform via the Internet, are excellent ways to begin exploring
cloud computing in a cost-effective and agile rapid time-to-market fash-
ion. Leveraging various cloud offerings from Amazon, Google, Salesforce,
and others is an excellent way to explore what cloud can offer to your
enterprise.

The following is a list of reasons an organization would choose to begin
its cloud computing initiative with a public cloud service:

• Low cost. Public clouds offer a very low cost of entry into cloud com-
puting, which supports a POC or pilot project with limited research
and development (R&D) funding.

• Cloud solution variety. There is a wide variety of cloud-enabled
resources to assemble into complete cloud solutions, from virtual-
ization and cloud operating system (OS) or platform technologies
to Platforms-as-a-Service (PaaS) and Software-as-a-Service (SaaS)
offerings.

• Low risk. An organization can quickly experiment with cloud com-
puting solutions with minimal risk exposure.

• Pay for what you need/use. Public clouds are based on a completely
variable, utility cost model, whereby once the initial project has

428 Guide to Cloud Computing for Business and Technology Managers

completed, or if you no longer need the cloud services, you can stop
paying the fees.

• Rapid accumulation of knowledge, skills, and experience. Public
clouds offer a way to quickly gain experience, knowledge, and
skills on the emerging technology trend of cloud computing.
Leveraging public clouds enables your organization to tap into the
knowledge and experience of your third-party cloud service pro-
vider. This is a tremendous competitive advantage for any orga-
nization seeking first-mover advantage for its cloud computing
strategy.

20.3.2 Private Cloud

Private cloud deployment scenarios, in which an organization implements
cloud technologies on its internal network, or its Intranet, behind its secu-
rity firewalls, enable the organization to explore cloud capabilities internally
without the risk exposure of moving its data or applications outside of its
own internal and corporate security controls.

The following is a list of reasons an organization would choose to begin its
cloud computing initiative with a private cloud deployment model:

• Security and privacy. Mitigates privacy and security concerns by
maintaining data behind your own firewalls.

• Strategic opacity. Maintains strategic opacity, so your competitors
cannot ascertain your intentions.

• Focus on internal optimization first. Internally optimize internal
utilization of infrastructure assets.

• Become an internal cloud service provider. Beginning your cloud
strategy with a private cloud focus will accelerate your ability to
become an internal cloud service provider to the enterprise. This is
a key benefit of beginning your cloud initiative internally with a pri-
vate cloud deployment model.

20.3.3 Hybrid Cloud

Hybrid clouds leverage aspects of both public and private clouds to address
a broader set of operational use cases and business scenarios. For example,
an organization may use private cloud capabilities to federate two data cen-
ters and optimize utilization and availability of computer, storage, and net-
work resources and may also in parallel leverage public cloud capabilities
from Amazon to offer a new application or service accessible via Amazon’s
e-commerce storefronts. This hybrid cloud mixes multiple cloud patterns to
satisfy this requirement example.

429Migrating to Cloudware

The following is a list of reasons an organization would choose to begin its
cloud computing initiative with a hybrid cloud deployment model:

• Begin with the end game. A hybrid cloud deployment as your cloud
start point supports the ultimate end state of cloud computing. Most
industry analysts feel that in a short time, there will be only hybrid
clouds, and the separation into public and private clouds is an artifi-
cial distinction given the infancy of the cloud industry.

• Cloud solution range. Hybrid clouds offer a great magnitude of solu-
tion variations that address business models and solutions that we
can barely imagine now. Why not begin with hybrid clouds early to
better understand what the true potential of cloud is in the bigger
picture? There is no reason why you should constrain your learning
process out of the gate. Hybrid clouds offer that to you.

• Explore cloud-based business models. Hybrid clouds allow you to
explore and create new business models that exploit the combina-
tion of private and public cloud use cases. In this manner, you can
actually explore business model innovation through new channels
to market and new distribution models of internal processes across
your extended value chain. Hybrid clouds offer this unique experi-
ence to your organization.

• Extra-enterprise thinking. Hybrid clouds encourage extra-enterprise
thinking with respect to business processes, cloud solutions, and
capabilities. If you begin your cloud initiative with an extended
enterprise frame of reference, you will be in a better position to inno-
vate your business model, operations model, and business processes
by leveraging cloud solutions.

• End-state knowledge acceleration. Beginning with hybrid clouds
allows your organization to practice the cloud end state sooner by
learning, gaining expertise, and accelerating the knowledge accu-
mulation your team will benefit from in the short and long term. The
more you understand about how cloud will evolve and the sooner
you develop that understanding, the sooner you can exploit first-
mover advantage.

20.4 Cloud Adoption Plan

The cloud adoption plan should ensure close alignment of the target archi-
tecture goals, measures, and initiatives with the strategic business objectives
that address the operational requirements of the business.

430 Guide to Cloud Computing for Business and Technology Managers

20.4.1 As-Is (Baseline/Current State) Analysis

The assessment of the current broader information systems and support-
ing technology landscape indicates the existing capabilities and resources
in support of the current business strategy. There will almost certainly be
gaps between the current resources and competencies and those needed to
satisfy the cloud-enabled information system. The main deliverable of the
as-is analysis is establishing business direction and needs stemming from its
strategy and business architecture and the collection of demands from the
current business operations in its internal and external context.

20.4.1.1 Analyzing the Business Context and Technology
Requirements and Opportunities

This stage of analysis considers the macrocontext of the business. It is impor-
tant to indentify the trends that can affect the business positively or nega-
tively. This has strategic significance and cloud affects the choice of cloud
model an organization opts for or the pace of change required and potential
risks that might affect the adoption plans.

It is also important to consider the level at which the framework is applied.
It is useful to consider the local as well as global context of the business in
the cloud. Similarly, it may be helpful to narrow down to a particular part of
the business and analyze the impact of cloud at that level as it will provide
an opportunity to focus on more relevant and specific influences and issues.

Some of the other concepts, tools, and techniques that help with internal
and external analysis include the following:

• Porter’s five forces analysis to identify possible supply chain link-
ages with.

• Customers and suppliers and other actors such as service providers
or service brokers should also assist in evaluating stakeholder activ-
ity and their interests in the cloud ecosystem.

• Value chain analysis to identify if cloud could improve efficiency
or effectiveness or provide competitive advantage through linkages
within the internal and external value chains.

• SWOT analysis for each business.

20.4.1.2 Analyzing the As-Is Business Architecture

This stage of analysis requires critical evaluation of the business environ-
ment, business and technology drivers, business processes, and organiza-
tional change program. In essence, it is an audit of the enterprise’s current
context, direction, and capabilities. This exercise is similar to an enterprise
architecture development, and its purpose is to establish the business case
for cloud by modeling a clear understanding of the vision and existing level

431Migrating to Cloudware

of business and technical maturity to determine what factors need to be
introduced or improved in successful path toward the cloud adoption.

Analyzing the cloud in isolation of the business architecture and narrowly
focusing the plan on the technical adoption of cloud is unlikely to deliver
a holistic picture of existing concerns nor will it realistically address the
potential business benefits and the wider impact that it has on the entire
organization.

Some examples of useful concepts and tools that can contribute to this
stage of analysis are

• Use-case modeling and analysis
• Business process modeling and analysis

20.4.1.3 Analyzing the Current IT and IS Architecture and Systems

At this stage, we want to establish how information systems (IS) contrib-
ute to the business and what underlying IT infrastructure and architectures
support the IS provision. The key activities involve compilation of the cur-
rent systems portfolio followed by critical evaluation of effectiveness and
efficiencies and any issues or shortcomings that can be addressed. In this
context, we need to critically evaluate the nexus between IT and business,
that is, IT contribution to business and the extent to which business is able
to leverage the existing IT capabilities to achieve strategic objectives and
goals. Establishing the strengths and weaknesses of the current provision
and identifying potential opportunities and risks will also be an important
deliverable at this stage.

Some of the useful concepts, tools, and techniques that can help with this
analysis would be the following:

• McFarlan’s IT portfolio grid analysis: that is, strategic, high-potential,
key operational, support systems.

• Evaluate each system employing the business value add versus
delivered technical quality assessments.

20.4.2 To-Be (Target/Future State) Analysis

The key task here is to develop appropriate target/desired cloud solutions.
This encompasses both business and technical aspects of cloud deploy-
ment. The core focus is to identify, define, and configure cloud-enabled
information system architecture and application portfolio that support the
business architecture.

At this stage, we also consider what aspects of business operation and
what business processes in what part of the business will be affected and
how. A detailed definition of target business and technology infrastructure,

432 Guide to Cloud Computing for Business and Technology Managers

application, and data architectures in relation to a suitable cloud deployment
model will be a key deliverable.

The scope and level of granularity and rigor of decomposition in this exer-
cise will depend on the relevance of the technical elements to attaining the
target cloud model, maturity of existing infrastructure, existing architecture
models and descriptions, and the extent it can sufficiently enable identifica-
tion of gaps and the scope of candidate/target cloud provision.

20.4.2.1 Data for the Cloud

The purpose of the to-be architecture for data for cloud is to define the data
entities (and their characteristics) relevant to the enterprise that will be pro-
cessed by the service and cloud-enabled applications. Moving to the cloud
may critically require data transformation and migration; hence, one con-
cern will be adopting suitable standards and processes that may affect all
data entities and processing services and applications whether existing or in
the target applications and architecture.

Undertaking transformation toward cloud requires careful understanding
and addressing information life-cycle management and governance issues.
Some of these issues relate to risk and security concerns that will constrain
the choice of platforms, cloud deployment architecture, service-level agree-
ments, etc. Some of the finer-grain considerations in data management for
cloud include access and identification, authentication, confidentiality, avail-
ability, privacy, ownership and distribution, retention, and auditability.

Data engineering requirements for the cloud include the following:

• Data architecture (and structure)
• Data management (processes)
• Data migration
• Data integration
• Data governance

20.4.2.2 Applications for the Cloud

The core objective here is to define the target platform and application archi-
tecture including cloud services, referenced across the technical and busi-
ness functions, data requirements, and business processes. The exercise will
highlight the extent and nature of interoperability and integration, migra-
tion, and operational concerns that need to be addressed. Cloud will not only
consolidate resources and change the way the services are consumed and
managed but also open new requirements and opportunities due to its prop-
erties and limitations.

The objective is to define the relevant types of applications and enable
technologies necessary to process the data and information effectively

433Migrating to Cloudware

and efficiently to support the business. In this sense, we need to logically
group applications in terms of capabilities that manage the data objects
defined earlier in the data architecture to support the business functions
in the business architecture. Although generally these application building
blocks are stable and remain relatively unchanged over time, we are seeking
fresh opportunities to improve, simplify, augment, or replace components
for the target cloud-enabled systems landscape. The business architecture
and the application portfolio analysis in the as-is assessment earlier will
inform the list of affected or required logical and physical components in
the application stack.

20.4.2.3 Technology and Infrastructure for the Cloud

This aspect of to-be analysis is concerned with defining target cloud technol-
ogy portfolio components. In this exercise, we map underlying technology
and respective application components defined in the application architec-
ture depending on the cloud model of choice. Depending on the business
vision, and business architecture and business and technology maturity, the
technology deployment may be a hybrid configuration, which means that
cloud will coexist within a modified current technology architecture. In this
manner, we are making the technology platform cloud enabled to make nec-
essary exchanges across a heterogeneous environment not only possible but
optimized for business efficiency and effectiveness. In case of full migration
to a new cloud platform again, we need to assess the technology and busi-
ness readiness.

This element of the to-be analysis is essential for the realization phase.

20.4.3 Realization

Realization plan consists of the activities that the organization needs to
maintain to close any strategic and delivery gaps identified in its adoption,
utilization, and management of cloud as an IT resource. The key components
of this aspect of the cloud plan primarily draw on the iterative assessment
of fit–gap analysis in as-is and to-be analyses. Any gaps and dependen-
cies and appropriate solutions need to be identified, analyzed, and consoli-
dated ensuring that any constraints on the adoption or migration plans are
addressed.

An important activity here involves assessment, validation, and consoli-
dation of business, functional, and systems requirements through review-
ing cloud technology requirements and gaps and solutions proposed. Once
consolidated, it is important to identify functional integration points. As
cloud services are delivered based on shared services and shared resources,
it is important to assess the need and scope for reuse and interoperability.
It is likely that business is not fully migrating to cloud and there is still
need for utilizing bespoke, COTS (commercial off the shelf), or third-party

434 Guide to Cloud Computing for Business and Technology Managers

services; hence, verifying service integration and interoperability is an
important task.

The realization plan will be articulated as an overall cloud adoption strat-
egy. The merits of different strategic approaches characterized by pace and
scope of change/adoption need to be balanced against business constraints
such as funding and resource concerns, technology maturity, existing busi-
ness capabilities, and opportunity costs. The organization may opt for
phased and incremental introduction of cloud or a big bang approach. Cloud
computing requires a different strategy to the upgrade of existing IT infra-
structure. Formulation of an appropriate strategic approach for this will rely
on careful analysis of risks and change requirements.

20.4.3.1 Fit–Gap Analysis

The fit–gap analysis involves linking the as-is and to-be models for busi-
ness, information system, and IT architectures and compares, contrasts, and
rationalizes the trade-offs and interdependencies of the activities to validate
the cloud requirement specification (within broader IS/IT portfolio) for orga-
nization, business, and technical perspectives. Logically grouping and orga-
nizing activities into program and project work packages will feed into the
realization and adoption plans and requirements.

Fit–gap analysis is widely used in many problem-solving-based methods
and is concerned with validating the issues, solutions, plans, etc. The pri-
mary goal at this stage is to highlight any overlaps or shortfalls between
the as-is and to-be states. It concentrates on the evaluation of gaps, includ-
ing further fine-tuning of priorities to consolidate, integrate, and analyze the
information to determine the best way to contribute to cloud implementation
and transition plans.

There are different categories of gaps to consider relating to busi-
ness, systems, technologies, and data. Various techniques could be used
in this exercise such as creating a simple gap matrix that lists as-is and
to-be components in columns and rows with respective gaps in the inter-
section. Similarly, to consolidate gaps and assess potential solutions and
dependencies, a gaps-solution dependency table will be an easy technique
to use. This can serve as a planning tool toward creating project work
packages and initiatives.

20.4.3.2 Change Management

Adopting cloud computing will inevitably require change that cuts across
the enterprise both in terms of understanding the cloud and its value
proposition, and opportunities and different ways it affects the busi-
ness from new ways to engage with the old and new business applica-
tions, possible changes to the current processes, new data related policies,
the new operating model that uses “services” as the key organizational

435Migrating to Cloudware

construct, the new approach to accounting for cloud and management of
IT resources, new roles, skills and competencies.

Change will be part of the business alignment exercise or organizational
readiness building block in the plan and important work package in the
cloud program or project management. The plan should outline the required
change, goals and objectives and critical success factors, impact of change,
and strategies for implementation. The key activities involve change plan-
ning (change plan), change enablement, change management, and embed-
ding the change.

A change and capability maturity assessment early on will help determine
readiness factors, qualified and quantified, as well as potential constraints
and risks, identified and planned. These form important deliverables of the
change/transformation plan.

Change management is a structured approach to transitioning the enter-
prise, teams, individuals, and culture from the as-is state to the desired tar-
get (to-be) state. It aims to align the enterprise and strategies with the target
architecture through identifying, characterizing, and addressing issues
relating to communications, process and system design, workforce manage-
ment, performance management, and overall governance features that can
help to support the organizational and other changes as a result of adopting
cloud.

20.4.3.3 Risk Analysis

Cloud adoption comes with its bag of issues, risks, and security concerns. It
is important to perform risk assessment to identify and validate potential
issues and consolidate appropriate mitigation strategies. This will form an
integral part of the transition plans that will feed into the cloud project man-
agement. The business and technology drivers for cloud have to be assessed
against the risk factors at the earlier stages of the process. The risks can be
business, organizational, systems, data, or people related.

Risk mitigation strategy may leverage existing enterprise’s governance
and capabilities or may require extending or developing capacity and
competencies.

As far as security of the cloud is concerned, there is a requirement to
implement updated security strategies and governance framework needed
to govern cloud operations and services to ensure their long-term stability.
Some examples of technical consideration may include policies in relation
to service availability, service scalability, performance management, service
security policies, acceptable usage, auditing, and data retention.

There are two broad categories of risk:

 1. Delivery risk: entails risk of not delivering the required or expected
capabilities, for instance, unproven technology provision, reliance
of vendors, lack of clarity of scope and deliverables, provider or

436 Guide to Cloud Computing for Business and Technology Managers

technology compliance and standards issues, level of integration/
interface required of cloud solution with existing systems, and qual-
ity of project management.

 2. Benefits risk: entails risk of not achieving expected business ben-
efits such as lack of business–IT alignment, lack of alignment with
technical standards and architectures, lack of appropriate security
compliance, lack of credibility and measurability of business out-
comes, change management requirements, and senior management
involvement.

There are various tools and techniques to help with risk assessment. A risk
classification matrix, followed by a tiered probability–impact matrix analy-
sis, that is, identify risk elements in terms of their impact and probability
being low, medium, or high, serves as a useful technique. Similarly, a risk
scorecard and risk matrix can illustrate the risk, quantified impact, and miti-
gation measures in a structured and traceable manner.

20.4.4 Go Live

The main objective of go-live plan is supporting cloud business value deliv-
ery through creation of a viable cloud adoption plan and recommendations.
The key activities include assessing the dependencies, costs, and benefits of
the various realization projects. The prioritized list of projects will form the
basis of the detailed go-live plan.

Some of the key deliverables of this phase include the following:

 1. Addressing/establishing management framework capability for
cloud transformation aligned with enterprise’s strategic planning,
operations management, performance management, program and
project management, and governance frameworks.

 2. Value planning: Identifying business value drivers and assign-
ing them to all relevant activities and projects. This will serve as a
benchmark for performance management and monitoring. Analysis
and assignment of strategic fit, critical success factors, business key
performance indicators, cloud performance indicator, process per-
formance indicators, return on investment, etc., will form a set of
criteria and benchmarks to assess business value realization of the
cloud project.

 3. Cost–benefit analysis and validation using TCO, ROI, and risk mod-
els assigned to each relevant project.

 4. Resource allocation, coordination and scheduling, and capability
planning to establish the resource requirements and operational
delivery implications of the project.

437Migrating to Cloudware

 5. Aggregating, categorizing, and prioritizing projects to establish
project sequence, timescales, timeline, and key milestones in line
with value delivery plans.

 6. Best practice recommendations for successful implementation.
 7. Plan governance process that entails the process of managing and

evaluating the cloud plan and its realization success.
 8. Integrating and documenting the plan.

20.5 Summary

It is important to prioritize the cloud initiative and the adoption model
according to business drivers and priorities. These may be affected by
high-level strategic business objectives and the overall business model of
the organization. In any case, articulating the organization-specific guid-
ing principles for the plan development at the planning stage will serve an
important milestone toward successful adoption of the cloud initiative.

Section IV

Cloudware Applications

This section presents an overview of the areas of cloudware applications of
significance for the future, namely, big data, mobile (i.e., enterprise mobiliza-
tion), and context-aware applications. Chapter 21 defines and identifies the
common characteristics of big data applications along with corresponding
tools, techniques, and technologies. Chapter 22 deals with enterprise agility
and its realization through mobilization applications. Chapter 23 introduces
the concept of context-aware applications and explains how they can signifi-
cantly enhance the efficiency and effectiveness of even routinely occurring
transactions.

An end-user application’s effectiveness and performance can be enhanced
by transforming it from a bare transaction to a transaction clothed by a sur-
rounding context formed as an aggregate of all relevant decision patterns in
the past.

441

21
Big Data Computing Applications

The rapid growth of the Internet and World Wide Web has led to vast amounts
of information available online. In addition, business and government orga-
nizations create large amounts of both structured and unstructured infor-
mation that needs to be processed, analyzed, and linked. It is estimated
the amount of information currently stored in a digital form in 2007 at 281
exabytes and the overall compound growth rate at 57% with information
in organizations growing at even a faster rate. It is also estimated that 95%
of all current information exists in unstructured form with increased data
processing requirements compared to structured information. The storing,
managing, accessing, and processing of this vast amount of data represent
a fundamental need and an immense challenge in order to satisfy needs to
search, analyze, mine, and visualize these data as information.

The Web is believed to have well over a trillion Web pages, of which at
least 50 billion have been catalogued and indexed by search engines such
as Google, making them searchable by all of us. This massive Web content
spans well over 100 million domains (i.e., locations where we point our
browsers, such as http://www.wikipedia.org). These are themselves grow-
ing at a rate of more than 20,000 net domain additions daily. Facebook and
Twitter each have over 900 million users, who between them generate over
300 million posts a day (roughly 250 million tweets and over 60 million
Facebook updates). Added to this are the over 10,000 credit-card payments
made per second, the well over 30 billion point-of-sale transactions per year
(via dial-up POS devices), and finally the over 6 billion mobile phones, of
which almost 1 billion are smartphones, many of which are GPS-enabled,
and which access the Internet for e-commerce, tweets, and post updates on
Facebook. Finally, and last but not least, there are the images and videos on
YouTube and other sites, which by themselves outstrip all these put together
in terms of the sheer volume of data they represent.

21.1 Big Data

This deluge of data, along with emerging techniques and technologies used
to handle it, is commonly referred to today as big data. Such big data are both
valuable and challenging, because of their sheer volume. So much so that the
volume of data being created in the current 5 years from 2010 to 2015 will

442 Guide to Cloud Computing for Business and Technology Managers

far exceed all the data generated in human history. The Web, where all these
data are being produced and reside, consists of millions of servers, with data
storage soon to be measured in zettabytes.

Cloud computing provides the opportunity for organizations with limited
internal resources to implement large-scale big data computing applications
in a cost-effective manner. The fundamental challenges of big data com-
puting are managing and processing exponentially growing data volumes,
significantly reducing associated data analysis cycles to support practical,
timely applications, and developing new algorithms that can scale to search
and process massive amounts of data. The answer to these challenges is a
scalable, integrated computer systems hardware and software architecture
designed for parallel processing of big data computing applications. This
chapter explores the challenges of big data computing.

21.1.1 What Is Big Data?

Big data can be defined as volumes of data available in varying degrees of
complexity, generated at different velocities and varying degrees of ambi-
guity, which cannot be processed using traditional technologies, processing
methods, algorithms, or any commercial off-the-shelf solutions.

Data defined as big data include weather; geospatial and GIS data;
consumer-driven data from social media; enterprise-generated data from
legal, sales, marketing, procurement, finance, and human-resources depart-
ment; and device-generated data from sensor networks, nuclear plants, x-ray
and scanning devices, and airplane engines.

21.1.1.1 Data Volume

The most interesting data for any organization to tap into today are social
media data. The amount of data generated by consumers every minute pro-
vides extremely important insights into choices, opinions, influences, con-
nections, brand loyalty, brand management, and much more. Social media
sites provide not only consumer perspectives but also competitive posi-
tioning, trends, and access to communities formed by common interest.
Organizations today leverage the social media pages to personalize market-
ing of products and services to each customer.

Every enterprise has massive amounts of e-mails that are generated by its
employees, customers, and executives on a daily basis. These e-mails are all
considered an asset of the corporation and need to be managed as such. After
Enron and the collapse of many audits in enterprises, the US government
mandated that all enterprises should have a clear life-cycle management of
e-mails and that e-mails should be available and auditable on a case-by-case
basis. There are several examples that come to mind like insider trading,
intellectual property, competitive analysis, and much more, to justify gover-
nance and management of e-mails.

443Big Data Computing Applications

If companies can analyze petabytes of data (equivalent to 20 million four
drawer file cabinets filled with text files or 13.3 years of HDTV content) with
acceptable performance to discern patterns and anomalies, businesses can
begin to make sense of data in new ways. Table 21.1 indicates the escalating
scale of data.

The list of features for handling data volume included the following:

• Nontraditional and unorthodox data processing techniques need to
be innovated for processing this data type.

• Metadata is essential for processing these data successfully.
• Metrics and KPIs are key to provide visualization.
• Raw data do not need to be stored online for access.
• Processed output needs to be integrated into an enterprise level ana-

lytical ecosystem to provide better insights and visibility into the
trends and outcomes of business exercises including CRM, optimi-
zation of inventory, and clickstream analysis.

• The enterprise data warehouse (EDW) is needed for analytics and
reporting.

21.1.1.2 Data Velocity

The business models adopted by Amazon, Facebook, Yahoo, and Google,
which became the de facto business models for most web-based companies,
operate on the fact that by tracking customer clicks and navigations on the
website, you can deliver personalized browsing and shopping experiences.
In this process of clickstreams, there are millions of clicks gathered from
users at every second, amounting to large volumes of data. These data can
be processed, segmented, and modeled to study population behaviors based
on time of day, geography, advertisement effectiveness, click behavior, and
guided navigation response. The result sets of these models can be stored to
create a better experience for the next set of clicks exhibiting similar behav-
iors. The velocity of data produced by user clicks on any website today is a
prime example for big data velocity.

TABLE 21.1

Scale of Data

Size of Data Scale of Data

1000 megabytes 1 gigabyte (GB)
1000 gigabytes 1 terabyte (TB)
1000 terabytes 1 petabyte (PB)
1000 petabytes 1 exabyte (EB)
1000 exabytes 1 zettabyte (ZB)
1000 zettabytes 1 yottabyte (YB)

444 Guide to Cloud Computing for Business and Technology Managers

The most popular way to share pictures, music, and data today is via mobile
devices. The sheer volume of data that is transmitted by mobile networks
provides insights to the providers on the performance of their network, the
amount of data processed at each tower, the time of day, the associated geog-
raphies, user demographics, location, latencies, and much more. The velocity
of data movement is unpredictable and sometimes can cause a network to
crash. The data movement and its study have enabled mobile service provid-
ers to improve the QoS (quality of service), and associating these data with
social media inputs has enabled insights into competitive intelligence.

The list of features for handling data velocity included the following:

• System must be elastic for handling data velocity along with volume.
• System must scale up and scale down as needed without increasing

costs.
• System must be able to process data across the infrastructure in the

least processing time.
• System throughput should remain stable independent of data

velocity.
• System should be able to process data on a distributed platform.

21.1.1.3 Data Variety

Data come in multiple formats as it ranges from e-mails to tweets to social
media and sensor data. There is no control over the input data format or the
structure of the data. The processing complexity associated with a variety
of formats is the availability of appropriate metadata for identifying what is
contained in the actual data. This is critical when we process images, audio,
video, and large chunks of text. The absence of metadata or partial metadata
means processing delays from the ingestion of data to producing the final
metrics and, more importantly, in integrating the results with the data ware-
house (Tables 21.2 and 21.3).

The list of features for handling data variety included the following:

• Scalability
• Distributed processing capabilities
• Image processing capabilities
• Graph processing capabilities
• Video and audio processing capabilities

21.1.2 Common Characteristics of Big Data Computing Systems

There are several important common characteristics of big data computing
systems that distinguish them from other forms of computing:

445Big Data Computing Applications

 1. Principle of colocation of the data and programs or algorithms to perform
the computation: To achieve high performance in big data computing,
it is important to minimize the movement of data. This principle—
Move the code to the data—which was designed into the data-parallel
processing architecture implemented by Seisint in 2003, is extremely
effective since program size is usually small in comparison to the
large data sets processed by big data systems and results in much
less network traffic since data can be read locally instead of across the
network. In direct contrast to other types of computing and super-
computing that utilize data stored in a separate repository or servers
and transfer the data to the processing system for computation, big
data computing uses distributed data and distributed file systems
in which data are located across a cluster of processing nodes and,
instead of moving the data, the program or algorithm is transferred
to the nodes with the data that need to be processed. This character-
istic allows processing algorithms to execute on the nodes where the
data reside reducing system overhead and increasing performance.

 2. Programming model utilized: Big data computing systems utilize a
machine-independent approach in which applications are expressed
in terms of high-level operations on data and the runtime system
transparently controls the scheduling, execution, load balancing, com-
munications, and movement of programs and data across the distrib-
uted computing cluster. The programming abstraction and language

TABLE 21.2

Value of Big Data across Industries

Volume
of Data

Velocity
of Data

Variety
of Data

Underutilized
Data (Dark Data)

Big Data Value
Potential

Banking and
securities

High High Low Medium High

Communications
and media
services

High High High Medium High

Education Very low Very low Very low High Medium
Government High Medium High High High
Health-care
providers

Medium High Medium Medium High

Insurance Medium Medium Medium Medium Medium
Manufacturing High High High High High
Chemicals and
natural
resources

High High High High Medium

Retail High High High Low High
Transportation Medium Medium Medium High Medium
Utilities Medium Medium Medium Medium Medium

446 Guide to Cloud Computing for Business and Technology Managers

tools allow the processing to be expressed in terms of dataflows and
transformations incorporating new dataflow programming languages
and shared libraries of common data manipulation algorithms such
as sorting. Conventional supercomputing and distributed computing
systems typically utilize machine-dependent programming models
that can require low-level programmer control of processing and node
communications using conventional imperative programming lan-
guages and specialized software packages, which adds complexity to
the parallel programming task and reduces programmer productivity.
A machine-dependent programming model also requires significant
tuning and is more susceptible to single points of failure.

 3. Focus on reliability and availability: Large-scale systems with hun-
dreds or thousands of processing nodes are inherently more sus-
ceptible to hardware failures, communications errors, and software
bugs. Big data computing systems are designed to be fault resilient.
This includes redundant copies of all data files on disk, storage
of intermediate processing results on disk, automatic detection of
node or processing failures, and selective recomputation of results.

TABLE 21.3

Industry Use Cases for Big Data

Manufacturing Retail
Product research Customer relationship management
Engineering analysis Store location and layout
Predictive maintenance Fraud detection and prevention
Process and quality metrics Supply-chain optimization
Distribution optimization Dynamic pricing

Media and telecommunications Financial services
Network optimization Algorithmic trading
Customer scoring Risk analysis
Churn prevention Fraud detection
Fraud prevention Portfolio analysis

Energy Advertising and public relations
Smart grid Demand signaling
Exploration Targeted advertising
Operational modeling Sentiment analysis
Power-line sensors Customer acquisition

Health care and life sciences Government
Pharmacogenomics Market governance
Bioinformatics Weapon systems and counter terrorism
Pharmaceutical research Econometrics
Clinical outcomes research Health informatics

447Big Data Computing Applications

A processing cluster configured for big data computing is typically
able to continue operation with a reduced number of nodes fol-
lowing a node failure with automatic and transparent recovery of
incomplete processing.

A final important characteristic of big data computing systems is the inher-
ent scalability of the underlying hardware and software architecture. Big
data computing systems can typically be scaled in a linear fashion to accom-
modate virtually any amount of data or to meet time-critical performance
requirements by simply adding additional processing nodes to a system con-
figuration in order to achieve billions of records per second processing rates
(BORPS). The number of nodes and processing tasks assigned for a specific
application can be variable or fixed depending on the hardware, software,
communications, and distributed file system architecture. This scalability
allows computing problems once considered to be intractable due to the
amount of data required or amount of processing time required to now be
feasible and affords opportunities for new breakthroughs in data analysis
and information processing.

One of the key characteristics of the cloud is elastic scalability:
users can add or subtract resources in almost real time based on
changing requirements. The cloud plays an important role
within the big data world. Dramatic changes happen when

these infrastructure components are combined with the advances in
data management. Horizontally expandable and optimized infrastruc-
ture supports the practical implementation of big data. Cloudware
technologies like virtualization increases the efficiency of the cloud
that makes many complex systems easier to optimize. As a result,
organizations have the performance and optimization to be able to
access data that were previously either unavailable or very hard to
collect. Big data platforms are increasingly used as sources of enor-
mous amounts of data about customer preferences, sentiment, and
behaviors. Companies can integrate this information with internal
sales and product data to gain insight into customer preferences to
make more targeted and personalized offers.

21.1.3 Big Data Appliances

Big data analytics applications combine the means for developing and imple-
menting algorithms that must access, consume, and manage data. In essence,
the framework relies on a technology ecosystem of components that must be
combined in a variety of ways to address each application’s requirements,
which can range from general information technology (IT) performance
scalability to detailed performance improvement objectives associated with

448 Guide to Cloud Computing for Business and Technology Managers

specific algorithmic demands. For example, some algorithms expect that
massive amounts of data are immediately available quickly, necessitating
large amounts of core memory. Other applications may need numerous iter-
ative exchanges of data between different computing nodes, which would
require high-speed networks.

The big data technology ecosystem stack may include the following:

 1. Scalable storage systems that are used for capturing, manipulating,
and analyzing massive data sets.

 2. A computing platform, sometimes configured specifically for large-
scale analytics, often composed of multiple (typically multicore) pro-
cessing nodes connected via a high-speed network to memory and
disk storage subsystems. These are often referred to as appliances.

 3. A data management environment, whose configurations may range
from a traditional database management system scaled to massive
parallelism to databases configured with alternative distributions
and layouts, to newer graph-based or other NoSQL data manage-
ment schemes.

 4. An application development framework to simplify the process of
developing, executing, testing, and debugging new application code.
This framework should include programming models, development
tools, program execution and scheduling, and system configuration
and management capabilities.

 5. Methods of scalable analytics (including statistical and data mining
models) that can be configured by the analysts and other business
consumers to help improve the ability to design and build analytical
and predictive models.

 6. Management processes and tools that are necessary to ensure align-
ment with the enterprise analytics infrastructure and collaboration
among the developers, analysts, and other business users.

21.2 Tools, Techniques, and Technologies of Big Data

21.2.1 Big Data Architecture

Analytical environments are deployed in different architectural models.
Even on parallel platforms, many databases are built on a shared everything
approach in which the persistent storage and memory components are all
shared by the different processing units.

Parallel architectures are classified by what shared resources each proces-
sor can directly access. One typically distinguishes shared memory, shared
disk, and shared nothing architectures (as depicted in Figure 21.1).

449Big Data Computing Applications

 1. In a shared memory system, all processors have direct access to all
memory via a shared bus. Typical examples are the common sym-
metric multiprocessor systems, where each processor core can access
the complete memory via the shared memory bus. To preserve the
abstraction, processor caches, buffering a subset of the data closer to
the processor for fast access, have to be kept consistent with special-
ized protocols. Because disks are typically accessed via the memory,
all processes also have access to all disks.

 2. In a shared disk architecture, all processes have their own private
memory, but all disks are shared. A cluster of computers connected
to a SAN is a representative for this architecture.

 3. In a shared nothing architecture, each processor has its private
memory and private disk. The data is distributed across all disks,
and each processor is responsible only for the data on its own con-
nected memory and disks. To operate on data that spans the differ-
ent memories or disks, the processors have to explicitly send data
to other processors. If a processor fails, data held by its memory
and disks is unavailable. Therefore, the shared nothing architecture
requires special considerations to prevent data loss.

When scaling out the system, the two main bottlenecks are typically the
bandwidth of the shared medium and the overhead of maintaining a con-
sistent view of the shared data in the presence of cache hierarchies. For
that reason, the shared nothing architecture is considered the most scalable
one, because it has no shared medium and no shared data. While it is often
argued that shared disk architectures have certain advantages for transac-
tion processing, the shared nothing is the undisputed architecture of choice
for analytical queries.

A shared-disk approach may have isolated processors, each with its
own memory, but the persistent storage on disk is still shared across the
system. These types of architectures are layered on top of SMP machines.
While there may be applications that are suited to this approach, there are

Shared memory Shared disk Shared nothing

P P P P P P P P P P P P

MMMMMMMMMMMM

FIGURE 21.1
Parallel architectures.

450 Guide to Cloud Computing for Business and Technology Managers

bottlenecks that exist because of the sharing, because all I/O and memory
requests are transferred (and satisfied) over the same bus. As more proces-
sors are added, the synchronization and communication needs increase
exponentially, and therefore the bus is less able to handle the increased need
for bandwidth. This means that unless the need for bandwidth is satisfied,
there will be limits to the degree of scalability.

In contrast, in a shared-nothing approach, each processor has its own dedi-
cated disk storage. This approach, which maps nicely to an MPP architecture,
is not only more suitable to discrete allocation and distribution of the data, it
enables more effective parallelization and consequently does not introduce
the same kind of bus bottlenecks from which the SMP/shared-memory and
shared-disk approaches suffer. Most big data appliances use a collection of
computing resources, typically a combination of processing nodes and stor-
age nodes.

21.2.2 Row versus Column-Oriented Data Layouts

Most traditional database systems employ a row-oriented layout, in which
all the values associated with a specific row are laid out consecutively in
memory. That layout may work well for transaction processing applications
that focus on updating specific records associated with a limited number of
transactions (or transaction steps) at a time; these are manifested as algorith-
mic scans that are performed using multiway joins. Accessing whole rows
at a time when only the values of a smaller set of columns are needed may
flood the network with extraneous data that are not immediately needed and
ultimately will increase the execution time.

Big data analytics applications scan, aggregate, and summarize over mas-
sive data sets. Analytical applications and queries will only need to access the
data elements needed to satisfy join conditions. With row-oriented layouts,
the entire record must be read in order to access the required attributes, with
significantly more data read than is needed to satisfy the request. Also, the
row-oriented layout is often misaligned with the characteristics of the dif-
ferent types of memory systems (core, cache, disk, etc.), leading to increased
access latencies. Subsequently, row-oriented data layouts will not enable the
types of joins or aggregations typical of analytic queries to execute with the
anticipated level of performance.

Hence, a number of appliances for big data use a database management
system that uses an alternate, columnar layout for data that can help to reduce
the negative performance impacts of data latency that plague databases with
a row-oriented data layout. The values for each column can be stored sepa-
rately, and because of this, for any query, the system is able to selectively
access the specific column values requested to evaluate the join conditions.
Instead of requiring separate indexes to tune queries, the data values them-
selves within each column form the index. This speeds up data access while

451Big Data Computing Applications

reducing the overall database footprint, while dramatically improving query
performance. The simplicity of the columnar approach provides many ben-
efits, especially for those seeking a high-performance environment to meet
the growing needs of extremely large analytic data sets.

21.2.3 NoSQL Data Management

NoSQL suggests environments that combine traditional SQL (or SQL-like
query languages) with alternative means of querying and access. NoSQL
data systems hold out the promise of greater flexibility in database manage-
ment while reducing the dependence on more formal database administra-
tion. NoSQL databases have more relaxed modeling constraints, which may
benefit both the application developer and the end-user analysts when their
interactive analyses are not throttled by the need to cast each query in terms
of a relational table-based environment.

Different NoSQL frameworks are optimized for different types of analyses.
For example, some are implemented as key–value stores, which nicely align
to certain big data programming models, while another emerging model is a
graph database, in which a graph abstraction is implemented to embed both
semantics and connectivity within its structure. In fact, the general concepts
for NoSQL include schema-less modeling in which the semantics of the data
are embedded within a flexible connectivity and storage model; this pro-
vides for automatic distribution of data and elasticity with respect to the use
of computing, storage, and network bandwidth in ways that don’t force spe-
cific binding of data to be persistently stored in particular physical locations.
NoSQL databases also provide for integrated data caching that helps reduce
data access latency and speed performance.

A relatively simple type of NoSQL data store is a key–value store, a schema-
less model in which distinct character strings called keys are associated with
values (or sets of values, or even more complex entity objects)—not unlike
hash table data structure. If you want to associate multiple values with a
single key, you need to consider the representations of the objects and how
they are associated with the key. For example, you may want to associate a
list of attributes with a single key, which may suggest that the value stored
with the key is yet another key–value store object itself.

The key–value store does not impose any constraints about data
typing or data structure—the value associated with the key is
the value, and it is up to the consuming business applications to
assert expectations about the data values and their semantics

and interpretation. This demonstrates the schema-less property of the
model.

452 Guide to Cloud Computing for Business and Technology Managers

Key–value stores are essentially very long and presumably thin
tables (in that there are not many columns associated with each row).
The table’s rows can be sorted by the key–value to simplify finding the
key during a query. Alternatively, the keys can be hashed using a hash
function that maps the key to a particular location (sometimes called
a bucket) in the table. The representation can grow indefinitely, which
makes it good for storing large amounts of data that can be accessed
relatively quickly, as well as allows massive amounts of indexed data
values to be appended to the same key–value table, which can then be
sharded or distributed across the storage nodes. Under the right con-
ditions, the table is distributed in a way that is aligned with the way
the keys are organized, so that the hashing function that is used to
determine where any specific key exists in the table can also be used to
determine which node holds that key’s bucket (i.e., the portion of the
table holding that key).

NoSQL data management environments are engineered for two key
criteria:

 1. Fast accessibility, whether that means inserting data into the model
or pulling it out via some query or access method

 2. Scalability for volume, so as to support the accumulation and man-
agement of massive amounts of data

The different approaches are amenable to extensibility, scalability, and
distribution, and these characteristics blend nicely with programming mod-
els (like MapReduce) with straightforward creation and execution of many
parallel processing threads. Distributing a tabular data store or a key–value
store allows many queries/accesses to be performed simultaneously, espe-
cially when the hashing of the keys maps to different data storage nodes.
Employing different data allocation strategies will allow the tables to grow
indefinitely without requiring significant rebalancing. In other words, these
data organizations are designed for high-performance computing for report-
ing and analysis.

This model will not inherently provide any kind of tradi-
tional database capabilities (such as atomicity of transactions
or consistency when multiple transactions are executed
simultaneously)—those capabilities must be provided by the

application itself.

453Big Data Computing Applications

21.2.4 In-Memory Computing

The idea of running databases in memory was used by business intelligence
(BI) product company QlikView. In-memory allows the processing of mas-
sive quantities of data in main memory to provide immediate results from
analysis and transaction. The data to be processed is ideally real-time data or
as close to real time as is technically possible. Data in main memory (RAM)
can be accessed 100,000 times faster than data on a hard disk; this can dra-
matically decrease access time to retrieve data and make it available for the
purpose of reporting, analytics solutions, or other applications.

The medium used by a database to store data, that is, RAM, is divided
into pages. In-memory databases saves changed pages in savepoints,
which are asynchronously written to persistent storage in regular inter-
vals. Each committed transaction generates a log entry that is written to
nonvolatile storage—this log is written synchronously. In other words, a
transaction does not return before the corresponding log entry has been
written to persistent storage—in order to meet the durability require-
ment that was described earlier—thus ensuring that in-memory databases
meet (and pass) the ACID test (see Section 5.7, “Transaction Processing
Monitors” for a Note on ACID). After a power failure, the database pages
are restored from the savepoints; the database logs are applied to restore
the changes that were not captured in the savepoints. This ensures that the
database can be restored in memory to exactly the same state as before the
power failure.

21.2.5 Developing Big Data Applications

For most big data appliances, the ability to achieve scalability to accommo-
date growing data volumes is predicated on multiprocessing—distributing
the computation across the collection of computing nodes in ways that are
aligned with the distribution of data across the storage nodes. One of the key
objectives of using a multiprocessing node environment is to speed applica-
tion execution by breaking up large chunks of work into much smaller ones
that can be farmed out to a pool of available processing nodes. In the best
of all possible worlds, the data sets to be consumed and analyzed are also
distributed across a pool of storage nodes. As long as there are no depen-
dencies forcing any one specific task to wait to begin until another specific
one ends, these smaller tasks can be executed at the same time, that is, task
parallelism. More than just scalability, it is the concept of automated scalability
that has generated the present surge of interest in big data analytics (with
corresponding optimization of costs).

A good development framework will simplify the process of developing,
executing, testing, and debugging new application code, and this framework
should include

454 Guide to Cloud Computing for Business and Technology Managers

 1. A programming model and development tools
 2. Facility for program loading, execution, and for process and thread

scheduling
 3. System configuration and management tools

The context for all of these framework components is tightly coupled with the
key characteristics of a big data application—algorithms that take advantage
of running lots of tasks in parallel on many computing nodes to analyze lots of
data distributed among many storage nodes. Typically, a big data platform will
consist of a collection (or a pool) of processing nodes; the optimal performances
can be achieved when all the processing nodes are kept busy, and that means
maintaining a healthy allocation of tasks to idle nodes within the pool. Any
big application that is to be developed must map to this context, and that is
where the programming model comes in. The programming model essentially
describes two aspects of application execution within a parallel environment:

 1. How an application is coded
 2. How that code maps to the parallel environment

MapReduce programming model is a combination of the familiar proce-
dural/imperative approaches used by Java or C++ programmers embedded
within what is effectively a functional language programming model such
as the one used within languages like Lisp and APL. The similarity is based
on MapReduce’s dependence on two basic operations that are applied to sets
or lists of data value pairs:

 1. Map, which describes the computation or analysis applied to a set of
input key–value pairs to produce a set of intermediate key–value pairs

 2. Reduce, in which the set of values associated with the intermediate
key–value pairs output by the map operation are combined to pro-
vide the results

A MapReduce application is envisioned as a series of basic operations
applied in a sequence to small sets of many (millions, billions, or even more)
data items. These data items are logically organized in a way that enables
the MapReduce execution model to allocate tasks that can be executed in
parallel.

Combining both data and computational independence means
that both the data and the computations can be distributed
across multiple storage and processing units and automatically
parallelized. This parallelizability allows the programmer to

exploit scalable massively parallel processing resources for increased
processing speed and performance.

455Big Data Computing Applications

21.3 Additional Details on Big Data Technologies

21.3.1 Processing Approach

Current big data computing platforms use a divide and conquer parallel pro-
cessing approach combining multiple processors and disks in large com-
puting clusters connected using high-speed communications switches and
networks that allows the data to be partitioned among the available com-
puting resources and processed independently to achieve performance and
scalability based on the amount of data (Figure 5.1). We define a cluster as
“a type of parallel and distributed system, which consists of a collection of
inter-connected stand-alone computers working together as a single inte-
grated computing resource.”

This approach to parallel processing is often referred to as a shared-nothing
approach since each node consisting of processor, local memory, and disk
resources shares nothing with other nodes in the cluster. In parallel comput-
ing, this approach is considered suitable for data processing problems that
are embarrassingly parallel, that is, where it is relatively easy to separate the
problem into a number of parallel tasks and there is no dependency or com-
munication required between the tasks other than overall management of
the tasks. These types of data processing problems are inherently adaptable
to various forms of distributed computing including clusters and data grids
and cloud computing.

21.3.2 Big Data System Architecture

A variety of system architectures have been implemented for big data
and large-scale data analysis applications including parallel and distrib-
uted relational database management systems that have been available
to run on shared-nothing clusters of processing nodes for more than two
decades. These include database systems from Teradata, Netezza, Vertica,
and Exadata/Oracle, and others, which provide high-performance parallel
database platforms. Although these systems have the ability to run paral-
lel applications and queries expressed in the SQL, they are typically not
general-purpose processing platforms and usually run as a back-end to a
separate front-end application processing system.

Although this approach offers benefits when the data utilized are primar-
ily structured in nature and fits easily into the constraints of a relational
database, and often excels for transaction processing applications, most data
growth is with data in unstructured form and new processing paradigms
with more flexible data models were needed. Internet companies such as
Google, Yahoo, Microsoft, Facebook, and others required a new process-
ing approach to effectively deal with the enormous amount of Web data
for applications such as search engines and social networking. In addition,

456 Guide to Cloud Computing for Business and Technology Managers

many government and business organizations were overwhelmed with data
that could not be effectively processed, linked, and analyzed with traditional
computing approaches.

Several solutions have emerged including the MapReduce architecture
pioneered by Google and now available in an open-source implementa-
tion called Hadoop used by Yahoo, Facebook, and others (see Section 17.3,
“Hadoop”).

21.3.2.1 Brewer’s CAP Theorem and the BASE Principle

In the previous section, we briefly discussed techniques for achieving ACID
properties in a database system. However, applying these techniques in
large-scale scenarios such as data services in the cloud leads to scalability
problems: the amount of data to be stored and processed and the transac-
tion and query load to be managed are usually too large to run the database
services on a single machine. To overcome this data storage bottleneck, the
database must be stored on multiple nodes, for which horizontal scaling is
the typically chosen approach.

The database is partitioned across the different nodes: either tablewise or
by sharding (see Section 21.3.3 below). Both cases result in a distributed sys-
tem for which Eric Brewer has formulated the famous CAP theorem, which
characterizes three of the main properties of such a system:

 1. Consistency: All clients have the same view, even in the case of
updates. For multisite transactions, this requires all-or-nothing
semantics. For replicated data, this implies that all replicas have
always consistent states.

 2. Availability: Availability implies that all clients always find a replica
of data even in the presence of failures.

 3. Partition tolerance: In the case of network failures that split the nodes
into groups (partitions), the system is still able to continue the
processing.

The CAP theorem further states that in a distributed, shared-data system,
these three properties cannot be achieved simultaneously in the presence of
failures. In order to understand the implications, we have to consider pos-
sible failures. For scalability reasons, the database is running on two sites
S1 and S2 sharing a data object o, for example, a flight booking record. This
data sharing should be transparent to client applications, that is, an appli-
cation AS1 connected to site A and AS2 accessing the database via site S2.
Both clients should always see the same state of o even in the presence of an
update. Hence, in order to ensure a consistent view, any update performed
for instance by AS1 and changing o to a new state o has to be propagated by
sending a message m to update o at S2 so AS2 reads o. To understand why

457Big Data Computing Applications

the CAP theorem holds, we consider the scenario where the network con-
necting S1 and S2 fails, resulting in a network partitioning and whether all
three properties can be simultaneously fulfilled. In this situation, m cannot
be delivered resulting in an inconsistent (outdated) value of o at site S2. If
we want to avoid this to ensure consistency, m has to be sent synchronously,
that is, in an atomic operation with the updates. However, this procedure
sacrifices the availability property: if m cannot be delivered, the update on
node S1 cannot be performed. However, sending m asynchronously does not
solve the problem because then S1 does not know when S2 receives the mes-
sage. Hence, any approach trying to achieve a strong consistent view such
as locking and centralized management would either violate availability or
partition tolerance.

In order to address these restrictions imposed by CAP, the system designer
has to choose to relax or give up one of these three properties:

• Consistency: If we want to preserve availability and partition toler-
ance, the only choice is to give up or relax consistency: the data can
be updated on both sites, and both sites will converge to the same
state when the connection between them is re-established and a cer-
tain time has elapsed.

• Availability: Availability is given up by simply waiting when a parti-
tion event occurs until the nodes come back and the data are con-
sistent again. The service is unavailable during the waiting time.
Particularly, for large settings with many nodes, this could result in
long downtimes.

• Partition tolerance: Basically, this means avoiding network par-
titioning in the case of link failures. Partition tolerance can be
achieved by ensuring that each node is connected to each other or
making a single atomically failing unit, but obviously, this limits
scalability.

The CAP theorem implies that consistency guarantees in large-scale
distributed systems cannot be as strict as those in centralized systems.
Specifically, it suggests that distributed systems may need to provide BASE
guarantees instead of the ACID guarantees provided by traditional data-
base systems (see note on ACID in Chapter 5, Section 5.7, “Transaction
Processing Monitors”). The CAP theorem states that no distributed system
can provide more than two of the following three guarantees: consistency,
availability, and partitioning tolerance. Here, consistency is defined as in
databases; that is, if multiple operations are performed on the same object
(which is actually stored in a distributed system), the results of the opera-
tions appear as if the operations were carried out in some definite order
on a single system. Availability is defined to be satisfied if each opera-
tion on the system (e.g., a query) returns some result. The system provides

458 Guide to Cloud Computing for Business and Technology Managers

partitioning tolerance if the system is operational even when the network
between two components of the system is down.

Since distributed systems can satisfy only two of the three properties due
to the CAP theorem, there are three types of distributed systems. CA (con-
sistent, available) systems provide consistency and availability, but cannot
tolerate network partitions. An example of a CA system is a clustered data-
base, where each node stores a subset of the data. Such a database cannot
provide availability in the case of network partitioning, since queries to data
in the partitioned nodes must fail. CA systems may not be useful for cloud
computing, since partitions are likely to occur in medium to large networks
(including the case where the latency is very high). If there is no network
partitioning, all servers are consistent, and the value seen by both clients is
the correct value.

However, if the network is partitioned, it is no longer possible to keep all
the servers consistent in the face of updates. There are then two choices. One
choice is to keep both servers up and ignore the inconsistency. This leads to
AP (available, partition-tolerant) systems where the system is always avail-
able, but may not return consistent results. The other possible choice is to
bring one of the servers down, to avoid inconsistent values. This leads to
CP (consistent, partition-tolerant) systems where the system always returns
consistent results but may be unavailable under partitioning—including the
case where the latency is very high. AP systems provide weak consistency.
An important subclass of weakly consistent systems is those that provide
eventual consistency. A system is defined as being eventually consistent if
the system is guaranteed to reach a consistent state in a finite amount of time
if there are no failures (e.g., network partitions) and no updates are made.
The inconsistency window for such systems is the maximum amount of time
that can elapse between the time that the update is made and the time that
the update is guaranteed to be visible to all clients. If the inconsistency win-
dow is small compared to the update rate, then one method of dealing with
stale data is to wait for a period greater than the inconsistency window and
then retry the query.

Classic database systems focus on guaranteeing the ACID properties and,
therefore, favor consistency over partition tolerance and availability. This is
achieved by employing techniques like distributed locking and two-phase
commit protocols. In certain circumstances, data needs are not transaction-
ally focused, and at such times, the relational model is not the most appropri-
ate one for what we need to do with the data we are storing. However, giving
up availability is often not an option in Web business where users expect a
24 × 7 or always-on operation.

Most traditional RDBMS would guarantee that all the values in all our
nodes are identical before it allows another user to read the values. But as we
have seen, that is at a significant cost in terms of performance. Relational data-
bases, with their large processing overhead in terms of maintaining the ACID
attributes of the data they store and their reliance on potentially processor

459Big Data Computing Applications

hungry joins, are not the right tool for the task they have before them: quickly
finding relevant data from terabytes of unstructured data (Web content)
that may be stored across thousands of geographically desperate nodes. In
other words, relational model does not scale well for this type of data. Thus,
techniques for guaranteeing strong consistency in large distributed systems
limit scalability and results in latency issues. To cope with these problems,
BASE was proposed as an alternative to ACID.

21.3.2.2 BASE (Basically Available, Soft State, Eventual Consistency)

BASE follows an optimistic approach accepting stale data and approximate
answers while favoring availability. Some ways to achieve this are by sup-
porting partial failures without total system failures, decoupling updates on
different tables (i.e., relaxing consistency), and item potent operations that can
be applied multiple times with the same result. In this sense, BASE describes
more a spectrum of architectural styles than a single model. The eventual
state of consistency can be provided as a result of a read repair, where any
outdated data are refreshed with the latest version of the data as a result of
the system detecting stale data during a read operation. Another approach is
that of weak consistency. In this case, the read operation will return the first
value found, not checking for staleness. Any stale nodes discovered are sim-
ply marked for updating at some stage in the future. This is a performance-
focused approach but has the associated risk that data retrieved may not
be the most current. In the following sections, we will discuss several tech-
niques for implementing services following the BASE principle.

Conventional storage techniques may not be adequate for big data and,
hence, the cloud applications. To scale storage systems to cloud scale, the
basic technique is to partition and replicate the data over multiple inde-
pendent storage systems. The word independent is emphasized, since it is
well-known that databases can be partitioned into mutually dependent sub-
databases that are automatically synchronized for reasons of performance
and availability. Partitioning and replication increases the overall through-
put of the system, since the total throughput of the combined system is the
aggregate of the individual storage systems. To scale both the throughput
and the maximum size of the data that can be stored beyond the limits of tra-
ditional database deployments, it is possible to partition the data, and store
each partition in its own database. For scaling the throughput only, it is pos-
sible to use replication. Partitioning and replication also increase the storage
capacity of a storage system by reducing the amount of data that needs to be
stored in each partition. However, this creates synchronization and consis-
tency problems, and discussion of this aspect is out of scope for this book.

The other technology for scaling storage described in this section is
known by the name Not only SQL (NoSQL). NoSQL was developed as a
reaction to the perception that conventional databases, focused on the need
to ensure data integrity for enterprise applications, were too rigid to scale

460 Guide to Cloud Computing for Business and Technology Managers

to cloud levels. As an example, conventional databases enforce a schema
on the data being stored, and changing the schema is not easy. However,
changing the schema may be a necessity in a rapidly changing environment
like the cloud. NoSQL storage systems provide more flexibility and simplic-
ity compared to relational databases. The disadvantage, however, is greater
application complexity. NoSQL systems, for example, do not enforce a rigid
schema. The trade-off is that applications have to be written to deal with
data records of varying formats (schema). BASE is the NoSQL operating
premise, in the same way that traditional transactionally focused databases
use ACID: one moves from a world of certainty in terms of data consistency
to a world where all we are promised is that all copies of the data will, at
some point, be the same.

Partitioning and replication techniques used for scaling are as follows:

 1. The first possible method is to store different tables in different
databases (as in multidatabase systems).

 2. The second approach is to partition the data within a single table
onto different databases. There are two natural ways to partition the
data from within a table: to store different rows in different data-
bases and to store different columns in different databases (more
common for NoSQL databases)

21.3.2.3 Functional Decomposition

As stated previously, one technique for partitioning the data to be stored is to
store different tables in different databases, leading to the storage of the data
in a multi-database system (MDBS).

21.3.2.4 Master–Slave Replication

To increase the throughput of transactions from the database, it is possible
to have multiple copies of the database. A common replication method is
master–slave replication. The master and slave databases are replicas of each
other. All writes go to the master and the master keeps the slaves in sync.
However, reads can be distributed to any database. Since this configuration
distributes the reads among multiple databases, it is a good technology for
read-intensive workloads. For write-intensive workloads, it is possible to have
multiple masters, but then ensuring consistency if multiple processes update
different replicas simultaneously is a complex problem. Additionally, time to
write increases, due to the necessity of writing to all masters and the synchro-
nization overhead between the masters rapidly becomes a limiting overhead.

21.3.3 Row Partitioning or Sharding

In cloud technology, sharding is used to refer to the technique of parti-
tioning a table among multiple independent databases by row. However,

461Big Data Computing Applications

partitioning of data by row in relational databases is not new and is referred
to as horizontal partitioning in parallel database technology. The distinc-
tion between sharding and horizontal partitioning is that horizontal par-
titioning is done transparently to the application by the database, whereas
sharding is explicit partitioning done by the application. However, the two
techniques have started converging, since traditional database vendors
have started offering support for more sophisticated partitioning strategies.
Since sharding is similar to horizontal partitioning, we first discuss differ-
ent horizontal partitioning techniques. It can be seen that a good sharding
technique depends upon both the organization of the data and the type of
queries expected.

The different techniques of sharding are as follows:

 1. Round-robin partitioning: The round-robin method distributes the
rows in a round-robin fashion over different databases. In the exam-
ple, we could partition the transaction table into multiple databases
so that the first transaction is stored in the first database, the second
in the second database, and so on. The advantage of round-robin
partitioning is its simplicity. However, it also suffers from the disad-
vantage of losing associations (say) during a query, unless all data-
bases are queried. Hash partitioning and range partitioning do not
suffer from the disadvantage of losing record associations.

 2. Hash partitioning method: In this method, the value of a selected
attribute is hashed to find the database into which the tuple should
be stored. If queries are frequently made on an attribute (say
Customer_Id), then associations can be preserved by using this attri-
bute as the attribute that is hashed, so that records with the same
value of this attribute can be found in the same database.

 3. Range partitioning: The range partitioning technique stores records
with similar attributes in the same database. For example, the range
of Customer_Id could be partitioned between different databases.
Again, if the attributes chosen for grouping are those on which que-
ries are frequently made, record association is preserved and it is not
necessary to merge results from different databases. Range partition-
ing can be susceptible to load imbalance, unless the partitioning is
chosen carefully. It is possible to choose the partitions so that there
is an imbalance in the amount of data stored in the partitions (data
skew) or in the execution of queries across partitions (execution skew).
These problems are less likely in round-robin and hash partitioning,
since they tend to uniformly distribute the data over the partitions.

Thus, hash partitioning is particularly well suited to large-scale systems.
Round-robin simplifies a uniform distribution of records but does not facili-
tate the restriction of operations to single partitions. While range partitioning

462 Guide to Cloud Computing for Business and Technology Managers

does support this, it requires knowledge about the data distribution in order
to properly adjust the ranges.

21.4 NoSQL Databases

NoSQL databases have been classified into four subcategories:

 1. Column family stores: An extension of the key–value architecture with
columns and column families; the overall goal was to process dis-
tributed data over a pool of infrastructure, for example, HBase and
Cassandra.

 2. Key–value pairs: This model is implemented using a hash table where
there is a unique key and a pointer to a particular item of data creat-
ing a key–value pair, for example, Voldemort.

 3. Document databases: This class of databases is modeled after Lotus
Notes and similar to key–value stores. The data are stored as a docu-
ment and is represented in JSON or XML formats. The biggest design
feature is the flexibility to list multiple levels of key–value pairs, for
example, Riak and CouchDB.

 4. Graph databases: Based on the graph theory, this class of database
supports the scalability across a cluster of machines. The complexity
of representation for extremely complex sets of documents is evolv-
ing, for example, Neo4J.

21.4.1 Column-Oriented Stores or Databases

Hadoop HBase is the distributed database that supports the storage needs of
the Hadoop distributed programming platform. HBase is designed by taking
inspiration from Google BigTable; its main goal is to offer real-time read/
write operations for tables with billions of rows and millions of columns by
leveraging clusters of commodity hardware. The internal architecture and
logic model of HBase is very similar to Google BigTable, and the entire sys-
tem is backed by the Hadoop Distributed File System (HDFS), which mimics
the structure and services of GFS.

21.4.2 Key–Value Stores (K–V Store) or Databases

Apache Cassandra is a distributed object store from an aging large amounts
of structured data spread across many commodity servers. The system
is designed to avoid a single point of failure and offer a highly reliable
service. Cassandra was initially developed by Facebook; now, it is part
of the Apache incubator initiative. Facebook in the initial years had used

463Big Data Computing Applications

a leading commercial database solution for their internal architecture in
conjunction with some Hadoop. Eventually, the tsunami of users led the
company to start thinking in terms of unlimited scalability and focus on
availability and distribution. The nature of the data and its producers and
consumers did not mandate consistency but needed unlimited availabil-
ity and scalable performance. The team at Facebook built an architecture
that combines the data model approaches of BigTable and the infrastruc-
ture approaches of Dynamo with scalability and performance capabilities,
named Cassandra. Cassandra is often referred to as hybrid architecture
since it combines the column-oriented data model from BigTable with
Hadoop MapReduce jobs, and it implements the patterns from Dynamo
like eventually consistent, gossip protocols, a master–master way of serv-
ing both read and write requests. Cassandra supports a full replication
model based on NoSQL architectures.

The Cassandra team had a few design goals to meet, considering the archi-
tecture at the time of first development and deployment was primarily being
done at Facebook. The goals included

• High availability
• Eventual consistency
• Incremental scalability
• Optimistic replication
• Tunable trade-offs between consistency, durability, and latency
• Low cost of ownership
• Minimal administration

Amazon Dynamo is the distributed key–value store that supports the man-
agement of information of several of the business services offered by Amazon
Inc. The main goal of Dynamo is to provide an incrementally scalable and
highly available storage system. This goal helps in achieving reliability at a
massive scale, where thousands of servers and network components build
an infrastructure serving 10 million requests per day. Dynamo provides a
simplified interface based on get/put semantics, where objects are stored
and retrieved with a unique identifier (key). The main goal of achieving
an extremely reliable infrastructure has imposed some constraints on the
properties of these systems. For example, ACID properties on data have been
sacrificed in favor of a more reliable and efficient infrastructure. This creates
what it is called an eventually consistent model (i.e., in the long term, all the
users will see the same data).

21.4.3 Document-Oriented Databases

Document-oriented databases or document databases can be defined as a
schema-less and flexible model of storing data as documents, rather than

464 Guide to Cloud Computing for Business and Technology Managers

relational structures. The document will contain all the data it needs to
answer specific query questions. Benefits of this model include

• Ability to store dynamic data in unstructured, semistructured, or
structured formats

• Ability to create persisted views from a base document and store the
same for analysis

• Ability to store and process large data sets

The design features of document-oriented databases include

• Schema-free—There is no restriction on the structure and format of
how the data need to be stored. This flexibility allows an evolving
system to add more data and allows the existing data to be retained
in the current structure.

• Document store—Objects can be serialized and stored in a docu-
ment, and there is no relational integrity to enforce and follow.

• Ease of creation and maintenance—A simple creation of the docu-
ment allows complex objects to be created once and there is minimal
maintenance once the document is created.

• No relationship enforcement—Documents are independent of each
other and there is no foreign key relationship to worry about when
executing queries. The effects of concurrency and performance
issues related to the same are not a bother here.

• Open formats—Documents are described using JSON, XML, or some
derivative, making the process standard and clean from the start.

• Built-in versioning—Documents can get large and messy with ver-
sions. To avoid conflicts and keep processing efficiencies, versioning
is implemented by most solutions available today.

Document databases express the data as files in JSON or XML formats. This
allows the same document to be parsed for multiple contexts and the results
scrapped and added to the next iteration of the database data.

Apache CouchDB and MongoDB are two examples of document stores.
Both provide a schema-less store whereby the primary objects are documents
organized into a collection of key–value fields. The value of each field can be
of type string, integer, float, date, or an array of values. The databases expose
a RESTful interface and represent data in JSON format. Both allow query-
ing and indexing data by using the MapReduce programming model, expose
JavaScript as a base language for data querying and manipulation rather than
SQL, and support large files as documents. From an infrastructure point of
view, the two systems support data replication and high availability. CouchDB
ensures ACID properties on data. MongoDB supports sharding, which is the
ability to distribute the content of a collection among different nodes.

465Big Data Computing Applications

21.4.4 Graph Stores or Databases

Social media and the emergence of Facebook, LinkedIn, and Twitter have
accelerated the emergence of the most complex NoSQL database, the graph
database. The graph database is oriented toward modeling and deploying
data that is graphical by construct. For example, to represent a person and
their friends in a social network, we can either write code to convert the
social graph into key–value pairs on a Dynamo or Cassandra or simply con-
vert them into a node-edge model in a graph database, where managing the
relationship representation is much more simplified.

A graph database represents each object as a node and the relationships
as an edge. This means person is a node and household is a node and the
relationship between them is an edge. Like the classic ER model for RDBMS,
we need to create an attribute model for a graph database. We can start by
taking the highest level in a hierarchy as a root node (similar to an entity)
and connect each attribute as its subnode. To represent different levels of the
hierarchy, we can add a subcategory or subreference and create another list
of attributes at that level. This creates a natural traversal model like a tree
traversal, which is similar to traversing a graph. Depending on the cyclic
property of the graph, we can have a balanced or skewed model. Some of the
most evolved graph databases include Neo4J, InfiniteGraph, GraphDB, and
AllegroGraph.

21.4.5 Comparison of NoSQL Databases

 1. Column-based databases allow for rapid location and return of data
from one particular attribute. They are potentially very slow with
writing, however, since data may need to be shuffled around to
allow a new data item to be inserted. As a rough guide then, tradi-
tional transactionally oriented databases will probably fair better in
an RDBMS. Column based will probably thrive in areas where speed
of access to nonvolatile data is important, for example, in some deci-
sion support applications. You only need to review marketing mate-
rial from commercial contenders, like Ingres Vectorwise, to see that
business analytics is seen as the key market and speed of data access
the main product differentiator.

 2. If you do not need large and complex data structures and can always
access your data using a known key, then key–value stores have a
performance advantage over most RDBMS. Oracle has a feature
within their RDBMS that allows you to define a table at an index-
organized table (IOT), and this works in a similar way. However,
you do still have the overhead of consistency checking, and these
IOTs are often just a small part of a larger schema. RDBMS have a
reputation for poor scaling in distributed systems, and this is where
key–value stores can be a distinct advantage.

466 Guide to Cloud Computing for Business and Technology Managers

 3. Document-centric databases are good where the data are difficult
to structure. Web pages and blog entries are two oft-quoted exam-
ples. Unlike RDBMS, which impose structure by their very nature,
document-centric databases allow free-form data to be stored. The
onus is then on the data retriever to make sense of the data that are
stored.

21.5 Summary

This chapter introduces big data systems that are associated with big volume,
variety, and velocity. It describes the characteristic features of such systems
including big data architecture, row versus column-oriented data layouts,
NoSQL data management, in-memory computing, and developing big data
applications. In the later part of the chapter, it provides a brief on the vari-
ous types of NoSQL databases including column-oriented stores, key–value
stores, document-oriented databases, and graph stores.

467

22
Mobile Applications

Mobile computing represents a fundamentally new paradigm in enterprise
computing. Mobile computing enables operating a job- and role-specific
application loaded on a handheld or tablet device that passes only relevant
data between a field worker and the relevant back-end enterprise systems
regardless of connectivity availability.

22.1 Agile Enterprises

The difficult challenges facing businesses today require organizations to
be transitioned into flexible, agile structures that can respond to new mar-
ket opportunities quickly with a minimum of new investment and risk. As
enterprises have experienced the need to be simultaneously efficient, flexible,
responsive, and adaptive, they have transitioned themselves into agile enter-
prises with small, autonomous teams that work concurrently and reconfig-
ure quickly and adopt highly decentralized management that recognizes its
knowledge base and manages it effectively.

Enterprise agility is the ability to be

 1. Responsive—Adaptability is enabled by the concept of loosely cou-
pled interacting components reconfigurable within a unified frame-
work. This is essential for ensuring opportunity management to
sustain viability.

 The ability to be responsive involves the following aspects:
 a. An organizational structure that enables change is based on

reusable elements that are reconfigurable in a scalable frame-
work. Reusability and reconfigurability are generic concepts that
are applicable to work procedures, manufacturing cells, produc-
tion teams, and information automation systems.

 b. An organizational culture that facilitates change and focuses on
change proficiency.

 2. Intelligence intensive or ability to manage and apply knowledge
effectively whether it is knowledge of a customer, a market opportu-
nity, a competitor’s threat, a production process, a business practice,

468 Guide to Cloud Computing for Business and Technology Managers

a product technology, or an individual’s competency. This is essen-
tial for ensuring innovation management to sustain leadership.

 The ability to be intelligence intensive involves the following aspects:
 a. Enterprise knowledge management
 b. Enterprise collaborative learning

When confronted with a competitive opportunity, a smaller
company is able to act more quickly, whereas a larger company
has access to more comprehensive knowledge (options,
resources, etc.) and can decide to act sooner and more

thoroughly.

Agility is the ability to respond to (and ideally benefit from) unexpected
change. Agility is unplanned and unscheduled adaption to unforeseen
and unexpected external circumstances. However, we must differentiate
between agility and flexibility. Flexibility is scheduled or planned adapta-
tion to unforeseen yet expected external circumstances.

One of the foremost abilities of an agile enterprise is its ability to quickly
react to change and adapt to new opportunities. This ability to change works
along two dimensions:

 1. The number or types of change an organization is able to undergo
 2. The degree of change an organization is able to undergo

The former is termed as range, and the latter is termed as response abil-
ity. The more response able an enterprise is, the more radical a change it
can gracefully address. Range refers to how large a domain is covered by
the agile response system; in other words, how far from the expected set of
events one can go and still have the system respond well. However, given
a specific range, how well the system responds is a measure of response or
change ability.

Enterprises primarily aim progressively for efficiency, flexi-
bility, and innovation in that order. The Model Builder’s kit,
Erector Set kit, and LEGO kit are illustrations of enterprises
targeting for efficiency, flexibility, and innovation (i.e., agility),

respectively.

Construction toys offer a useful metaphor because the enterprise systems
we are concerned with must be configured and reconfigured constantly,
precisely the objective of most construction toys. An enterprise system

469Mobile Applications

architecture and structure consisting of reusable components reconfigurable
in a scalable framework can be an effective base model for creating variable
(or built-for-change) systems. For achieving this, the nature of the framework
appears to be a critical factor. We can introduce the framework/component
concept, by looking at three types of construction toys and observing how
they are used in practice, namely, Erector Set kit, LEGO kit, and Model
Builder’s kit.

You can build virtually anything over and over again with either of these
toys; but fundamental differences in their architectures give each system
unique dynamic characteristics. All consist of a basic set of core construction
components and also have an architectural and structural framework that
enables connecting the components into an unbounded variety of configura-
tions. Nevertheless, the Model Builder is not as reusable in practice as Erector
Set; and, the Erector Set is not as reusable or reconfigurable or scalable in
practice as LEGO, but LEGO is more reusable, reconfigurable, and scalable
than either of them. LEGO is the dominant construction toy of choice among
preteen builders—who appear to value experimentation and innovation.

The Model Builder’s kit can be used to construct one object like airplane
of one intended size. A highly integrated system, this construction kit offers
maximum esthetic appeal for one-time construction use; but the parts are
not reusable, the construction cannot be reconfigured, and one intended size
precludes any scalability. But it will remain what it is for all time—there is
zero variability here.

Erector Set kits can be purchased for constructing specific models, such
as a small airplane that can be assembled in many different configurations.
With the Erector Set kit, the first built model is likely to remain as origi-
nally configured in any particular play session. Erector Set, for all its modu-
lar structure, is just not as reconfigurable in practice as LEGO. The Erector
Set connectivity framework employs a special-purpose intermediate subsys-
tem used solely to attach one part to another—a nut-and-bolt pair and a 90°
elbow. The components in the system all have holes through which the bolts
may pass to connect one component with another. When a nut is lost, a bolt
is useless, and vice versa; when all the nuts and bolts remaining in a set
have been used, any remaining construction components are useless, and
vice versa. All the parts in a LEGO set can always be used and reused, but
the Erector Set, for all its modularity, is not as reusable in practice as LEGO.

LEGO offers similar kits, and both toys include a few necessary special
parts, like wheels and cowlings, to augment the core construction compo-
nents. Watch a child work with either and you will see the LEGO construc-
tion undergoes constant metamorphosis; the child may start with one of the
pictured configurations, but then reconfigures the pieces into all manner
of other imagined styles. LEGO components are plug compatible with each
other, containing the connectivity framework as an integral feature of the
component. A standard grid of bumps and cavities on component surfaces
allow them to snap together into a larger configuration—without limit.

470 Guide to Cloud Computing for Business and Technology Managers

The Model Builder’s kit has a tight framework: a precise construction
sequence, no part interchangeability, and high integration. Erector Set has
a loose framework that does not encourage interaction among parts and
insufficiently discriminates among compatible parts. In contrast, each
component in the LEGO system carries all it needs to interact with other
components (the interaction framework rejects most unintended parts) and
can grow without end.

22.1.1 Stability versus Agility

Most large-scale change efforts in established enterprises fail to meet expec-
tations because nearly all models of organization design, effectiveness,
and change assume stability is not only desirable but also attainable. The
theory and practice in organization design explicitly encourage organiza-
tions to seek alignment, stability, and equilibrium. The predominant logic
of organizational effectiveness has been that an organization’s fit with its
environment, its execution, and its predictability are the keys to its success.
Organizations are encouraged to institutionalize best practices, freeze them
into place, focus on execution, stick to their knitting, increase predictability,
and get processes under control. These ideas establish stability as the key to
performance.

Stability of a distinctive competitive advantage is a strong driver for orga-
nization design because of its expected link to excellence and effective-
ness. Leveraging an advantage requires commitments that focus attention,
resources, and investments to the chosen alternatives. In other words, com-
petitive advantage results when enterprises finely hone their operations to
perform in a particular way. This leads to large investments in operating
technologies, structures, and ways of doing things. If such commitments
are successful, they lead to a period of high performance and a considerable
amount of positive reinforcement. Financial markets reward stable competi-
tive advantages and predictable streams of earnings: a commitment to align-
ment reflects a commitment to stability.

Consequently, enterprises are built to support stable strategies, organiza-
tional structures, and enduring value creations, not to vary. For example, the
often-used strengths, weaknesses, opportunities, and threats (SWOT) anal-
ysis encourages the firm to leverage opportunities while avoiding weak-
nesses and threats. This alignment among positive and negative forces is
implicitly assumed to remain constant, and there is no built-in assumption
of agility. When environments are stable or at least predictable, enterprises
are characterized by rules, norms, and systems that limit experimenta-
tion, control variation, and rewarded consistent performance. They have
many checks and balances in place to ensure that the organization operates
in the prescribed manner. Thus, to get the high performance they want,
enterprises put in place practices they see as a good fit, without considering
whether they can be changed and whether they will support changes in

471Mobile Applications

future, that is, by aligning themselves to achieve high performance today,
enterprises often make it difficult to vary, so that they can have high perfor-
mance tomorrow.

When the environment is changing slowly or predictably, these models are
adequate. However, as the rate of change increases with increasing global-
ization, technological breakthroughs, associative alliances, and regulatory
changes, enterprises have to look for greater agility, flexibility, and innova-
tion from their companies. Instead of pursuing strategies, structures, and
cultures that are designed to create long-term competitive advantages, com-
panies must seek a string of temporary competitive advantages through an
approach to organization design that assumes change is normal. With the
advent of the Internet and the accompanying extended virtual market spaces,
enterprises are now competing based on intangible assets like identity, intel-
lectual property, ability to attract and stick to customers, and their ability
to organize, reorganize frequently, or organize differently in different areas
depending on the need. Thus, the need for changes in management and
organization is much more frequent, and excellence is much more a function
of possessing the ability for changes. Enterprises need to be built around
practices that encourage change, not thwart it. Instead of having to create
change efforts, disrupt the status quo, or adapt to change, enterprises should
be built for change.

To meet the conflicting objectives of performing well against current set
of environmental demands and changing themselves to face future business
environments, enterprises must engender two types of changes: the natural
process of evolution, or what we will call strategic adjustments, and strategic
reorientations:

 1. Strategic adjustments involve the day-to-day tactical changes
required to bring in new customers, make incremental improve-
ments in products and services, and comply with regulatory require-
ments. This type of change helps fine-tune current strategies and
structures to achieve short-term results; it is steady, incremental, and
natural. This basic capability to evolve is essential if an enterprise is
to survive to thrive.

 2. Strategic reorientation involves altering an existing strategy and, in
some cases, adopting a new strategy. When the environment evolves
or changes sufficiently, an organization must significantly adjust
some elements of its strategy and the way it executes that strategy.
More often than not, enterprises have to face a transformational
change that involves not just a new strategy but a transformation
of the business model that leads to new products, services, and cus-
tomers and requires markedly new competencies and capabilities.
However, operationally, all these changes can be seen as manifes-
tations of the basic changes only differing in degrees and multiple
dimensions.

472 Guide to Cloud Computing for Business and Technology Managers

Maintaining an agile enterprise is not a matter of searching for the strategy
but continuously strategizing, not a matter of specifying an organization
design but committing to a process of organizing, and not generating value
but continuously improving the efficiency and effectiveness of the value gen-
eration process. It is a search for a series of temporary configurations that
create short-term advantages. In turbulent environments, enterprises that
string together a series of temporary but adequate competitive advantages
will outperform enterprises that stick with one advantage for an extended
period of time. The key issue for the built-for-change enterprise is orches-
tration or coordinating the multiple changing subsystems to produce high
levels of current enterprise performance.

22.1.2 Aspects of Agility

This section addresses the analytical side of agility or change proficiency
of the enterprise. It highlights the fundamental principles that underlie an
enterprise’s ability to change, and by indicating how to apply these prin-
ciples in real situations, it illustrates what it is that makes a business and any
of its constituting systems easy to change.

Agility or change proficiency enables both efficiency programs (e.g.,
lean production) and transformation programs; if the enterprise is profi-
cient at change, it can adapt to take advantage of an unpredictable oppor-
tunity and can also counter the unpredictable threat. Agility can embrace
semantics across the whole spectrum: it can capture cycle-time reduction,
with everything happening faster; it can build on lean production, with
high resource productivity; it can encompass mass customization, with
customer-responsive product variation; it can embrace virtual enterprise,
with streamlined supplier networks and opportunistic partnerships; it can
echo reengineering, with a process and transformation focus; and it can
demand a learning organization, with systemic training and education.
Being agile means being proficient at change. Agility allows an enterprise to
do anything it wants to do whenever it wants to—or has to—do it. Thus, an
agile enterprise can employ business process reengineering as a core compe-
tency when transformation is called for; it can hasten its conversion to lean
production when greater efficiencies are useful; and it can continue to suc-
ceed when constant innovation becomes the dominant competitive strategy.
Agility can be wielded overtly as a business strategy as well as inherently as
a sustainable-existence competency.

Agility derives from both the physical ability to act (change ability) and
the intellectual ability to find appropriate things to act on (knowledge
management). Agility can be expressed as the ability to manage and apply
knowledge effectively, so that enterprise has the potential to thrive in a
continuously changing and unpredictable business environment. Agility
derives from two sources: an enterprise architecture that enables varia-
tion and an organizational culture that also facilitates required change or

473Mobile Applications

variation. The enterprise architecture that enables variation is based on
reusable elements that are reconfigurable in a scalable framework.

Agility is a core fundamental requirement of all enterprises. It was not
an area of interest when environmental variation was relatively slow and
predictable. Now, there is virtually no choice; enterprises must develop a
conscious competency. Practically, all enterprises now need some method to
assess their agility and determine whether it is sufficient or needs improve-
ment. This section introduces techniques for characterizing, measuring,
and comparing variability in all aspects of business and among different
businesses.

22.1.3 Principles of Built-for-Change Systems

Christopher Alexander introduced the concept of patterns in the late 1970s in
the field of architecture. A pattern describes a commonly occurring solution
that generates decidedly successful outcomes.

A list of success patterns for agile enterprises (and systems) in terms of
their constituting elements or functions or components are as follows.

22.1.3.1 Reusable

Agility Pattern 1 Self-contained units (components): The components of
agile enterprises are autonomous units cooperating toward a shared goal.

Agility Pattern 2 Plug compatibility: The components of agile enterprises are
reusable and multiply replicable, that is, depending on requirements mul-
tiple instances of the same component can be invoked concurrently.

Agility Pattern 3 Facilitated reuse: The components of agile enterprises
share well-defined interaction and interface standards and can be inserted,
removed, and replaced easily and noninvasively.

22.1.3.2 Reconfigurable

Agility Pattern 4 Flat interaction: The components of agile enterprises com-
municate, coordinate, and cooperate with other components concurrently
and in real-term sharing of current, complete, and consistent information
on interactions with individual customers.

Agility Pattern 5 Deferred commitment: The components of agile enter-
prises establish relationships with other components in the real term to
enable deferment of customer commitment to as late a stage as possible
within the sales cycle, coupled with the corresponding ability to postpone
the point of product differentiation as close as possible to the point of pur-
chase by the customer.

Agility Pattern 6 Distributed control and information: The components
of agile enterprises are defined declaratively rather than procedurally;

474 Guide to Cloud Computing for Business and Technology Managers

the network of components displays the defining characteristics of any
“small worlds” network, namely, local robustness and global accessibility.

Agility Pattern 7 Self-organization: The components of agile enterprises are
self-aware, and they interact with other components via on-the-fly integra-
tion, adjustment, or negotiation.

22.1.3.3 Scalable

Agility Pattern 8 Evolving standards (framework): The components of agile
enterprises operate within predefined frameworks that standardize inter-
component communication and interaction, determine component compat-
ibility, and evolve to accommodate old, current, and new components.

Agility Pattern 9 Redundancy and diversity: The components of agile
enterprises replicate components to provide the desired capacity, load bal-
ancing and performance, fault tolerance, as well as variations on the basic
component functionality and behavior.

Agility Pattern 10 Elastic capacity: The components of agile enterprises
enable dynamic utilization of additional or a reduced number of resources
depending on the requirements.

Chapter 3, Section 3.1.2 “Enterprise Component Architecture” presents con-
temporary view to enterprise agility and architecture.

22.1.4 Framework for Change Proficiency

How do we measure enterprise agility? This section establishes a metric
framework for proficiency at variation i.e. change; an enterprise’s change
proficiency may exist in one or more of dimensions of variations. And, these
dimensions of changes can form a structural framework for understanding
current capabilities and setting strategic priorities for improvement: how
does the agile enterprise know when it is improving its changeability or los-
ing ground; how does it know if it is less changeable than its competition;
and how does it set improvement targets? Thus, a practical measure of varia-
tion proficiency is needed before we can talk meaningfully about getting
more of it or even getting some of it.

It must be highlighted that measuring competency is generally not unidi-
mensional nor likely to result in an absolute and unequivocal comparative
metric. Change proficiency has both reactive and proactive modes. Reactive
change is opportunistic and responds to a situation that threatens viability.
Proactive change is innovative and responds to a possibility for leadership. An
organization sufficiently proficient at reactive change, when prodded, should
be able to use that competency proactively and let others do the reacting.

Would it be proficient if a short-notice variation was completed in the time
required, but at a cost that eventually bankrupted the company? Or if the

475Mobile Applications

changed environment, thereafter, required the special wizardry and con-
stant attention of a specific employee to keep it operational? Is it proficient
if the change is virtually free and painless, but out of synch with market
opportunity timing? Is it proficient if it can readily accommodate a broad
latitude of change that is no longer needed, or too narrow for the latest chal-
lenges thrown at it by the business environment? Are we change proficient if
we can accommodate any change that comes our way as long as it is within
a narrow 10% of where we already are?

Thus, change proficiency can be understood to be codetermined by four
parameters:

 1. Time: a measure of elapsed time to complete a change (fairly objective)
 2. Cost: a measure of monetary cost incurred in a change (somewhat

objective)
 3. Quality: a measure of prediction quality in meeting change time,

cost, and specification targets robustly (somewhat subjective)
 4. Range: a measure of the latitude of possible change, typically defined

and determined by mission or charter (fairly subjective)

22.1.5 Enhancing Enterprise Agility

22.1.5.1 E-Business Strategy

E-business refers to an enterprise that has reengineered itself to conduct its
business via the Internet and Web. Successful enterprises need to reconcep-
tualize the very nature of their business.

As customers begin to buy via Internet and enterprises rush to use the
Internet to create new operational efficiencies, most enterprises seek to
update their business strategies. Enterprises survey the changing envi-
ronment and then modify their company strategies to accommodate these
changes. This involves major changes in the way companies do business,
including changes in marketing, sales, service, product delivery, and even
manufacturing and inventory. Changed strategies will entail changed busi-
ness processes that, in turn, imply changed software systems or, better still,
software systems that are changeable!

22.1.5.2 Business Process Reengineering (BPR)

Although, BPR has its roots in information technology (IT) management, it
is basically a business initiative that has a major impact on the satisfaction of
both the internal and external customers. Michael Hammer, who triggered
the BPR revolution in 1990, considers BPR as a radical change for which IT is
the key enabler. BPR can be broadly termed as the rethinking and change of busi-
ness processes to achieve dramatic improvements in the measures of performances
such as cost, quality, service, and speed.

476 Guide to Cloud Computing for Business and Technology Managers

Some of the principles advocated by Hammer are as follows:

• Organize around outputs, not tasks.
• Put the decisions and control, and hence all relevant information,

into the hands of the performer.
• Have those who use the outputs of a process to perform the process,

including the creation and processing of the relevant information.
• The location of user, data, and process information should be imma-

terial; it should function as if all were in a centralized place.

When perusing the aforementioned points, it will become evident that the
implementation of SAP CRM possesses most of the characteristics mentioned.

The most important outcome of BPR has been viewing business activi-
ties as more than a collection of individual or even functional tasks; it has
engendered the process-oriented view of business. However, BPR is different
from quality management efforts like TQM and ISO 9000, which refer to pro-
grams and initiatives that emphasize bottom-up incremental improvements
in existing work processes and outputs on a continuous basis. In contrast,
BPR usually refers to top-down dramatic improvements through redesigned
or completely new processes on a discrete basis. In the continuum of meth-
odologies ranging from ISO 9000, TQM, ABM, and so on, at one end and BPR
on the other, SAP CRM implementation definitely lies on the BPR side of the
spectrum when it comes to corporate change management efforts.

22.1.5.3 Mobilizing Enterprise Processes

This strategy entails replacing the process or process segment under consid-
eration by a mobile-enabled link. In the next subsection, we discuss an over-
view of business processes before discussing the characteristics of mobilized
processes.

Mobility offers new opportunities to dramatically improve business mod-
els and processes and will ultimately provide new, streamlined business
processes that never would have existed if not for this new phenomenon.

22.1.5.3.1 Extending Web to Wireless

The first step in the evolution of mobility is to extend the Web to wireless;
this is also known as webifying. For the most part, business processes are
minimally affected in this phase. The goal is to provide value-added ser-
vices through mobility with minimal disruption to existing processes. An
example might be creating a new company website accessible through WAP
(Wireless Application Protocol) phones or Palm OS–based personal digital
assistants (PDAs). Firms attain immediate value through realizing addi-
tional exposure and market presence, and customers realize value through
additional services.

477Mobile Applications

22.1.5.3.2 Extending Business Processes with Mobility

The next step in the evolution of mobility is to extend existing business pro-
cesses. New opportunities to streamline company business processes emerge
and evolve to produce new revenue opportunities. One example is the way
that mobility extends business processes through a supply chain optimiza-
tion model. New business processes emerge through these new mechanisms
that ultimately shorten the supply chain cycle, thus minimizing error and
maximizing efficiency and realizing the utmost customer satisfaction. Real-
time tracking and alert mechanisms provide supply chain monitors with the
capability to monitor shipments and product line quality in ways that tradi-
tional business models were not capable of doing.

22.1.5.3.3 Enabling a Dynamic Business Model

The final phase in the evolution of mobility is the one that has only been
touched upon in today’s world. The unique attributes of mobility will pro-
vide new and exciting ways of managing processes and allow for efficiencies
never before attainable. The convergence of wireless technologies with exist-
ing business models will result in fully dynamic business processes.

22.1.6 Network Enterprises

Agile companies produce the right product, at the right place, at the right time,
at the right price for the right customer. As pointed out by Jagdish Sheth in
these times of market change and turbulence, the half-life (i.e., the time within
which it loses currency by 50%) of customer knowledge is getting shorter
and shorter. The difficult challenges facing businesses today require orga-
nizations to transition into flexible, agile structures that can respond to new
market opportunities quickly with a minimum of new investment and risk.

As enterprises have experienced the need to be simultaneously efficient,
flexible, responsive, and adaptive, they have turned increasingly to the net-
work form of organization with the following characteristics:

• Networks rely more on market mechanisms rather than on admin-
istrative processes to manage resource flows. These mechanisms are
not simple arms-length relationships usually associated with inde-
pendently owned economic entities. Instead, to maintain the posi-
tion within the network, members recognize their interdependence
and are willing to share information, cooperate with each other, and
customize their product or service.

• While a network of sub-contractors have been common for many
years, recently formed networks expect members to play a much
more proactive role in improving the final product or service.

• Instead of holding all assets required to produce a given product or
service in-house, networks use the collective assets of several firms
located along the value chain.

478 Guide to Cloud Computing for Business and Technology Managers

The agile organization is composed of small, autonomous teams or sub-
contractors who work concurrently and reconfigure quickly to thrive in an
unpredictable and rapidly changing customer environment. Each constitu-
ent has the full resources of the company or the value chain at its disposal
and has a seamless information exchange between the lead organization and
the virtual partners.

Thus, a network enterprise is a coalition of enterprises that work col-
lectively and collaboratively to create value for the customers of a focal
enterprise. Sometimes, the coalition is loosely connected; at other times, it
is tightly defined, as in the relationship between Dell and its component
suppliers. An enterprise network consists of a wide range of companies—
suppliers, joint venture (JV) partners, contractors, distributors, franchisees,
licensees, and so on—that contribute to the focal enterprise’s creation and
delivery of value to its customers. Each of these enterprises in turn will
have their own enterprise networks focused around themselves. Thus, rela-
tionships between enterprises in the network both enable and constrain
focal companies in the achievement of their goals. Therefore, liberating the
potential value in customer relationships hinges on enterprises effectively
managing their non-customer-network relationships.

Though they appear similar, there are fundamental differences
between the agile and lean approaches for running a business.
Lean production is at heart simply an enhancement of mass
production methods, whereas agility implies breaking out of

the mass production mold and into mass customization. Agility
focuses on economies of scope rather than economies of scale, ideally
serving ever-smaller niche markets—even quantities of one—without
the high cost traditionally associated with customization. A key
element of agility is an enterprise-wide view, whereas lean produc-
tion is usually associated with the efficient use of resources on the
operations floor.

22.2 Process-Oriented Enterprise

Enterprise systems (ESs) enable an organization to truly function as an inte-
grated organization, integration across all functions or segments of the tradi-
tional value chain—sales order, production, inventory, purchasing, finance
and accounting, personnel and administration, and so on. They do this by
modeling primarily the business processes as the basic business entities
of the enterprise rather than by modeling data handled by the enterprise
(as done by the traditional IT systems). However, every ES might not be

479Mobile Applications

completely successful in doing this. In a break with the legacy enterprise-
wide solutions, modern ES treats business processes as more fundamental
than data items.

Collaborations or relationships manifest themselves through the various
organizational and interorganizational processes. A process may be gener-
ally defined as the set of resources and activities necessary and sufficient to
convert some form of input into some form of output. Processes are inter-
nal, external, or a combination of both; they cross functional boundaries;
they have starting and ending points; and they exist at all levels within the
organization.

The significance of a process to the success of the enterprise’s business is
dependent on the value, with reference to the customer, of the collaboration
that it addresses and represents. In other words, the nature and extent of the
value addition by a process to a product or services delivered to a customer
is the best index of the contribution of that process to the company’s over-
all customer satisfaction or customer collaboration. Customer knowledge by
itself is not adequate; it is only when the organization has effective processes
for sharing this information and integrating the activities of frontline work-
ers and has the ability to coordinate the assignment and tracking of work
that organizations can become effective.

Thus, Management by Collaboration (MBC) not only recognizes inherently
the significance of various process-related techniques and methodologies
such as process innovation (PI), business process improvement (BPI), busi-
ness process redesign (BPRD), business process re-engineering (BPR), and
business process management (BPM) but also treats them as fundamental,
continuous, and integral functions of the management of a company itself.
A collaborative enterprise enabled by the implementation of an ES is inher-
ently amenable to business process involvement, which is also the essence of
any total quality management (TQM)-oriented effort undertaken within an
enterprise.

22.2.1 Value-Add Driven Enterprise

Business processes can be seen as the very basis of the value addition
within an organization that was traditionally attributed to various func-
tions or divisions in an organization. As organizational and environmental
conditions become more complex, global, and competitive, processes pro-
vide a framework for dealing effectively with the issues of performance
improvement, capability development, and adaptation to the changing
environment.

Along a value stream (i.e., a business process), analysis of the absence or
creation of added value or (worse) destruction of value critically determines
the necessity and effectiveness of a process step. The understanding of value-
adding and non-value-adding processes (or process steps) is a significant
factor in the analysis, design, benchmarking, and optimization of business

480 Guide to Cloud Computing for Business and Technology Managers

processes leading to BPM in the companies. As discussed in “Implementing
SAP CRM”, Chapter 7, “SAP and Business Process Re-engineering,” SAP pro-
vides an environment for analyzing and optimizing business processes.

Values are characterized by both value determinants such as

• Time (cycle time and so on)
• Flexibility (options, customization, composition, and so on)
• Responsiveness (lead time, number of hand-offs, and so on)
• Quality (rework, rejects, yield, and so on)
• Price (discounts, rebates, coupons, incentives, and so on)

We must hasten to add that we are not disregarding cost (materials, labor,
overhead, and so forth) as a value determinant. However, the effect of cost
is truly a result of a host of value determinants such as time, flexibility, and
responsiveness.

The nature and extent of a value addition to a product or service is the
best measure of that addition’s contribution to the company’s overall goal for
competitiveness. Such value expectations are dependent on the following:

• The customer’s experience of similar product(s) and/or service(s)
• The value delivered by the competitors
• The capabilities and limitations of locking into the base technologi-

cal platform

However, value as originally defined by Michael Porter in the context of
introducing the concept of the value chain is meant more in the nature of the
cost at various stages. Rather than a value chain, it is more of a cost chain!
Porter’s value chain is also a structure-oriented and hence a static concept.
Here, we mean value as the satisfaction of not only external but also internal
customers’ requirements, as defined and continuously redefined, as the least
total cost of acquisition, ownership, and use.

Consequently, in this formulation, one can understand the company’s
competitive gap in the market in terms of such process-based, customer-
expected levels of value and the value delivered by the company’s process
for the concerned products or services. Customer responsiveness focuses on
costs in terms of the yield. Therefore, we can perform market segmentation
for a particular product or services in terms of the most significant customer
values and the corresponding value determinants or what we term as critical
value determinants (CVDs).

Strategic planning exercises can then be understood readily in terms of
devising strategies for improving on these process-based CVDs based on
the competitive benchmarking of these collaborative values and processes
between the enterprise and customers. These strategies and the tactics result-
ing from analysis, design, and optimization of the process will in turn focus

481Mobile Applications

on the restrategizing of all relevant business process at all levels. This can
result in the modification or deletion of the process or creation of a new one.

22.2.2 Business Process Management (BPM)

Business Process Management (BPM) addresses the following two impor-
tant issues for an enterprise:

 1. The strategic long-term positioning of the business with respect to the
current and envisaged customers, which will ensure that the enter-
prise would be competitively and financially successful, locally and
globally

 2. The enterprise’s capability/capacity that is the totality of all the internal
processes that dynamically realize this positioning of the business

Traditionally, positioning has been considered as an independent set of
functional tasks split within the marketing, finance, and strategic plan-
ning functions. Similarly, capability/capacity has usually been considered
the preserve of the individual operational departments that may have
mutually conflicting priorities and measures of performances (see book
“Implementing SAP CRM”, Chapter 2, Section “CRM System Reflects and
Mimics the Integrated Nature of an Enterprise”).

The problem for many enterprises lies in the fact that there is a funda-
mental flaw in the organizational structure—organizational structures are
hierarchical, while the transactions and workflows that deliver the solutions
(i.e., products and services) to the customers are horizontal. Quite simply, the
structure determines who the customer really is. The traditional manage-
ment structures condition managers to put functional needs above those
of the multifunctional processes to which their functions contribute. This
results in

• Various departments competing for resources
• Collective failure in meeting or exceeding the customers’ expectations
• Inability to coordinate and collaborate on multifunctional customer-

centric processes that would truly provide the competitive differen-
tiation in future markets

The traditional mass marketing type of organization works well for
researching market opportunities, planning the offering, and schedul-
ing all of the steps required to produce and distribute the offering to the
marketplace (where it is selected or rejected by the customer). It takes a
very different kind of organization, namely, the customized marketing
type organization to build long-term relationships with customers so that
they call such organizations first when they have a need because they trust

482 Guide to Cloud Computing for Business and Technology Managers

that such enterprises will be able to respond with an effective solution.
This is customer-responsive management, which we will discuss in the sec-
tion that follows.

BPM is the process that manages and optimizes the inextricable linkage
between the positioning and the capability/capacity of an enterprise. A com-
pany cannot position the organization to meet a customer need that it cannot
fulfill without an unprofitable level of resources nor can it allocate enhanced
resources to provide a cost-effective service that no customer wants!

Positioning leads to higher levels of revenue through increasing the size of
the market, retaining the first-time customers, increasing the size of the wal-
let share, and so on. Positioning has to do with factors such as

• Understanding customer needs
• Understanding competitor initiatives
• Determining the businesses’ financial needs
• Conforming with legal and regulatory requirements
• Conforming with environmental constraints

The capability/capacity has to be aligned with the positioning or else it has
to be changed to deliver the positioning. Capability/capacity has to do with
internal factors such as

• Key business processes
• Procedures and systems
• Competencies, skills, training, and education

The key is to have a perceived differentiation of being better than the compe-
tition in whatever terms the customers choose to evaluate or measure and to
deliver this at the lowest unit cost.

In practice, BPM has developed a focus on changing capability/capac-
ity in the short term to address current issues. This short-term change in
capability/capacity is usually driven by the need to

• Reduce the cycle time to process customer orders
• Improve quotation times
• Lower variable overhead costs
• Increase product range to meet an immediate competitor threat
• Rebalance resources to meet current market needs
• Reduce work-in-progress stocks
• Meet changed legislation requirements
• Introduce short-term measures to increase market share (e.g.,

increased credit limit from customers hit by recessionary trends)

483Mobile Applications

22.2.3 Business Process Reengineering (BPR) Methodology

An overview of a seven-step methodology is as follows:

 1. Develop the context for undertaking the BPR and in particular reen-
gineer the enterprise’s business processes. Then identify the reason
behind redesigning the process to represent the value perceived by
the customer.

 2. Select the business processes for the reengineering effort.
 3. Map the selected processes.
 4. Analyze the process maps to discover opportunities for

reengineering.
 5. Redesign the selected processes for increased performance.
 6. Implement the reengineered processes.
 7. Measure the implementation of the reengineered processes.

Outsourcing is distancing the company from noncore but criti-
cal functions; as against this, reengineering is exclusively about
the core.

The BPR effort within an enterprise is not a one-time exercise but an ongo-
ing one. One could also have multiple BPR projects in operation simulta-
neously in different areas within the enterprise. The BPR effort involves
business visioning, identifying the value gaps, and hence, selection of the
corresponding business processes for the BPR effort. The reengineering of
the business processes might open newer opportunities and challenges,
which in turn triggers another cycle of business visioning followed by BPR
of the concerned business processes.

The competitive gap can be defined as the gap between the customer’s
minimum acceptance value (MAV) and the customer value delivered by the
enterprise. Companies that consistently surpass MAVs are destined to thrive,
those that only meet the MAVs will survive, and those that fall short of the
MAVs may fail. Customers will take their business to the company that can
deliver the most value for their money. Hence, the MAVs have to be charted
in detail. MAV is dependent on several factors, such as

• The customer’s prior general and particular experience base with an
industry, product, and/or service

• What competition is doing in the concerned industry, product, or
service

• What effect technological limitations have on setting the upper limit

484 Guide to Cloud Computing for Business and Technology Managers

As mentioned earlier, MAVs can be characterized in terms of the CVDs; only
four to six value determinants may be necessary to profile a market segment.
CVDs can be defined by obtaining data through

 1. The customer value survey
 2. Leaders in noncompeting areas
 3. The best-in-class performance levels
 4. Internal customers

A detailed customer value analysis analyzes the value gaps and helps in
further refining the goals of the process reengineering exercise. The value
gaps are as follows:

• Gaps that result from different value perceptions in different cus-
tomer groups

• Gaps between what the company provides and what the customer
has established as the minimum performance level

• Gaps between what the company provides and what the competi-
tion provides

• Gaps between what the organization perceives as the MAV for the
identified customer groups and what the customer says are the cor-
responding MAVs

It must be noted that analyzing the value gaps is not a one-time exer-
cise; neither is it confined to the duration of a cycle of the breakthrough
improvement exercise. Like the BPR exercise itself, it is an activity that
must be done on an ongoing basis. Above all, selecting the right processes
for an innovative process reengineering effort is critical. The processes
should be selected for their high visibility, relative ease of accomplishing
goals, and at the same time, their potential for great impact on the value
determinants.

22.3 Mobile-Enabling Business Processes

This section explores the motivations behind mobile enabling business pro-
cesses. The key motivation for mobile enabling business processes is the
need to serve customers faster and reduce costs. Globalization and intense
competition demand that businesses respond faster to changing market and
customer needs, by reducing time-to-market for products and services and

485Mobile Applications

serving their customers in a near instantaneous fashion. Businesses are con-
tinuing basic drivers for addressing process mobility:

 1. Process efficiency: A set of factors that demand cost reduction and
improved customer service and response time. An example of
mobile enabling a process for efficiency is sales staff being able to
create online quotations and orders at the customer site using their
mobile devices.

 2. Increased personal productivity of employees: Time and travel manage-
ment are some of the common processes for mobile enabling and
achieving significant productivity improvements.

In some areas of business, the benefits of enterprise systems cannot be fully
realized, as a large number of mobile workers cannot access wire-bound sys-
tems. As a result, many organizations cannot realize the expected return on
investments in expensive enterprise systems. In addition to that, most busi-
ness processes and supporting systems are designed around office-based
employees and are not friendly to mobile workers. A good example is an
expense claim form, which is typically made available on company intranets
and cannot be accessed by sales staff when they are away from the office.
Mobility of processes supported by systems can help achieve additional
return on investments in enterprise systems such as ERP, CRM, and SCM.
Business managers do not introduce new technologies into the business pro-
cesses to become technology leaders; they are interested in the added busi-
ness value and how technology contributes to it; in how they can achieve
the goals of streamlining their processes. From the point of view of mobility,
managers are interested in what value mobile enabling can add to the busi-
ness processes.

22.4 Mobile Enterprise

Businesses that aim to support mobile workers and enhance process effec-
tiveness will need to consider extending their process and systems beyond
the workplace. In order to achieve this, they will have to change their
processes and systems in line with the objectives of process mobility. An
enterprise that can transform its processes to make its mobile workers and
processes more effective can be considered a mobile enterprise.

Smart organizations will aim to leverage process mobility for strategic
advantages. Such businesses derive tactical and strategic value from mobile
enabling processes. In order to gain maximum benefits from mobility, orga-
nizations should have a mobility strategy defined—aligned to its business
strategy—and it should complement the IT strategy.

486 Guide to Cloud Computing for Business and Technology Managers

22.4.1 Mobile Business Processes

Processes can be decomposed to smaller subprocesses and viewed at lower
levels of detail. The lowest level subprocess is an activity with a well-defined
input and output. Mobile business process, according to which mobility is
given for a business process, when at least for one of the process activities
there is externally determined uncertainty of location and the process needs
cooperation with external resources for its execution. I will discuss this in
more detail in one of the later sections of this chapter. To simplify the afore-
mentioned definition, a mobile business process is one that consists of one
or more activities being performed at an uncertain location and requiring
the worker to be mobile. Such a process can be supported by mobile systems
to increase process efficiency. For processes that are supported by mobile
systems, the term mobile-enabled business process is more appropriate to
differentiate from a mobile business process.

22.4.2 Mobile Enterprise Systems

Mobile systems can be beneficial across a number of processes in most busi-
ness areas. Large corporations are embracing mobile systems in almost all
major areas of business such as sales, procurement, warehouse management,
and so on. A number of mobile solutions available in the market are truly
enterprise encompassing in nature as they fully integrate with the exist-
ing enterprise systems and bridge across major processes of the enterprise.
Companies like SAP and Oracle offer mobile solutions that build on their
existing enterprise systems offerings, primarily ERP, CRM, and SCM appli-
cations. These solutions address mobility in areas such as sales, field service,
procurement, supply chain, and asset management.

Mobile applications can be used to redesign or improve processes at a spe-
cific activity level (e.g., e-mail) or can be used to mobile enable large end-
to-end processes that cut across functions (e.g., procure-to-pay processes).
Similarly, mobile applications can be utilized for most processes in sales,
supply chain, asset management, and plant maintenance. Systems that
mobile enable core processes and key activities across multiple functions in
an organization can be seen as mobile enterprise systems. Mobile enterprise
systems can either be enterprise systems extended to support process mobil-
ity or separate mobile systems integrated with existing enterprise systems.
There are two key aspects to a mobile enterprise system. First, the mobile
system should support one or more core business processes, and second, it
works on the existing enterprise data.

As discussed earlier, the drivers for process mobility are location uncer-
tainty and user mobility.

As most sales and service staffs are highly mobile with activities carried
out at external (uncertain) locations, these areas make a strong case for
mobile systems. With mobile systems, the sales and field service staff can

487Mobile Applications

access business information wherever they like and capture data wherever
it is generated. For example, sales personnel can view order status from
a customer site and create new orders online using their mobile devices;
service engineers can input job completion details on handheld comput-
ers that update centralized databases in real time. With the effective use
of mobile systems, sales teams can spend more time with customers and
prospects.

Other high-potential areas are asset management, plant maintenance, and
materials management. Mobility of workers in these processes is usually
within a limited area but requires movement around that area—for exam-
ple, capturing technical measurements of equipment around the plant and
updating equipment repair history on a handheld device. Mobile technol-
ogies, when combined with other technologies such as bar code and more
recently RFID (radio frequency identification), can offer more appealing
solutions and bring about substantial efficiency improvements. For instance,
radio frequency (RF) tags can be used to store maintenance and service data
pertaining to equipment. With the help of mobile devices, users can instantly
view the equipment maintenance information and repair history stored on
the RF tag attached on the equipment. Supply chain management and pro-
curement management processes can also benefit from mobile enabling.
Mobile enabling employee-oriented processes such as filling and approving
time sheets, travel expense forms, and leave requests can increase employee
efficiency by making effective use of unproductive time such as travel by
train, taxi, or air, as well as waiting periods.

With the growing use of mobile systems, mobile technologies are find-
ing their place in enterprises systems’ architecture and technology strategy.
Organizations considering mobile systems for their core processes are view-
ing mobility as a strategic and not just technological element. From a systems
perspective, mobile systems can be seen as a virtual mobile layer around
the enterprise architecture. Similarly, the business process architecture can
be understood to have a mobility layer that represents the mobility of busi-
ness processes and supporting systems. Business organizations striving to
be competitive will have to address mobility requirements and capture the
opportunities arising from mobile enabling business processes. Such organi-
zations will require not only a mobile layer in their technology stack but also
a corporate-level strategy for mobility. Figure 22.1 shows an architectural
view of the enterprise systems of an engineering business. The figure shows
typical business areas using mobile systems as an extension of the enterprise
systems. The mobile systems in the diagram are shown as a virtual layer
around the enterprise systems.

22.4.3 Redesigning for Mobility

In order to leverage the capabilities of mobile systems, the design of business
processes needs to be assessed from a mobility perspective and, if required,

488 Guide to Cloud Computing for Business and Technology Managers

to be redesigned to maximize the advantage of mobile enabling. Mobile
applications should not just be utilized to extend business processes onto
handheld or mobile devices. Instead, mobile systems should be tightly
integrated with enterprise systems to streamline processes. Thus, technol-
ogy innovation can be a stepping stone to achieve business process innova-
tion. The ultimate objective of mobility in business can be seen as providing
the power of a desktop computer in the hands of the mobile worker with
the ability to connect to a network or the Internet from virtually anywhere.
However, this may not be required or even feasible in all situations—techni-
cally or economically. Thus, it is important to identify and assess processes
and aspects of processes that would benefit from mobile enabling to make a
sound business case.

22.5 Mobile Web Services

Web Services are the cornerstone toward building a global distributed
information system, in which many individual applications will take part;
building a powerful application whose capability is not limited to local
resources will unavoidably require interacting with other partner appli-
cations through Web Services across the Internet. The strengths of Web

Intermittent
(dial-up, user activated)

Co
ns

ta
nt

(r
ea

l-t
im

e p
ro

ce
ss

in
g

an
d

di
st

rib
ut

io
n)

Pe
rio

di
c

(b
at

ch
 o

r i
rr

eg
ul

ar
pr

oc
es

sin
g)

Ubiquitous
(global, always on)

Connectivity

Extending
web-to-wireless

Enabling a dynamic
business model

Extending business
processes with mobility

In
fo

rm
at

io
n

cu
rr

en
cy

FIGURE 22.1
The evolution of mobile business models.

489Mobile Applications

Services come from the fact that Web Services use XML and related tech-
nologies connecting business applications based on various computers
and locations with various languages and platforms. The counterpart of
the WSs in the context of mobile business processes would be mobile Web
Services (MWS).

The proposed MWS are to be the base of the communications between the
Internet network and wireless devices such as mobile phones, PDAs, and so
forth. The integration between wireless device applications with other appli-
cations would be a very important step toward global enterprise systems.
Similar to WS, MWS is also based on the industry-standard language XML
and related technologies such as SOAP, WSDL, and UDDI.

Many constraints make the implementation of WSs in a mobile envi-
ronment very challenging. The challenge comes from the fact that mobile
devices have smaller power and capacities as follows:

• Small power limited to a few hours
• Small memory capacity
• Small processors not big enough to run larger applications
• Small screen size, especially in mobile phones, which requires devel-

oping specific websites with suitable size
• Small keypad that makes it harder to enter data
• Small hard disk
• The speed of the data communication between the device and the

network, and that varies

The most popular MWS is a proxy-based system where the mobile device
connects to the Internet through a proxy server. Most of the processing of
the business logic of the mobile application will be performed on the proxy
server that transfers the results to the mobile device that is mainly equipped
with a user interface to display output on its screen. The other important
advantage a proxy server provides in MWS is, instead of connecting the cli-
ent application residing on the mobile device to many service providers and
consuming most of the mobile processor and the bandwidth, the proxy will
communicate with service providers, do some processing, and send back
only the final result to the mobile device. In the realistic case where the num-
ber of mobile devices becomes in the range of tens of millions, the proxy
server would be on the cloud and the service providers would be the cloud
service providers.

Mobile Web Services use existing industry-standard XML-based Web
Services architecture to expose mobile network services to the broadest audi-
ence of developers. Developers will be able to access and integrate mobile
network services such as messaging, location-based content delivery, syn-
dication, personalization, identification, authentication, and billing services

490 Guide to Cloud Computing for Business and Technology Managers

into their applications. This will ultimately enable solutions that work seam-
lessly across stationary networks and mobile environments. Customers will
be able to use mobile Web Services from multiple devices on both wired and
wireless networks.

The aim of the mobile Web Services effort is twofold:

 1. To create a new environment that enables the IT industry and the
mobile industry to create products and services that meet customer
needs in a way not currently possible within the existing Web
Services practices. With Web Services being widely deployed as the
SOA of choice for internal processes in organizations, there is also an
emerging demand for using Web Services enabling mobile working
and e-business. By integrating Web Services and mobile computing
technologies, consistent business models can be enabled on a broad
array of endpoints: not just on mobile devices operating over mobile
networks but also on servers and computing infrastructure operat-
ing over the Internet. To make this integration happen at a techni-
cal level, mechanisms are required to expose and leverage existing
mobile network services. Also, practices for how to integrate the
various business needs of the mobile network world and their asso-
ciated enablers such as security must be developed. The result is a
framework, such as the Open Mobile Alliance, that demonstrates
how the Web Service specifications can be used and combined with
mobile computing technology and protocols to realize practical and
interoperable solutions.

 Successful mobile solutions that help architect customers’ ser-
vice infrastructures need to address security availability and scal-
ability concerns both at the functional level and at the end-to-end
solution level, rather than just offering fixed-point products. What
is required is a standard specification and an architecture that tie
together service discovery, invocation, authentication, and other
necessary components—thereby adding context and value to Web
Services. In this way, operators and enterprises will be able to lever-
age the unique capabilities of each component of the end-to-end
network and shift the emphasis of service delivery from devices
to the human user. Using a combination of wireless, broadband,
and wireline devices, users can then access any service on demand,
with a single identity and single set of service profiles, personal-
izing service delivery as dictated by the situation. There are three
important requirements to accomplish user (mobile-subscriber)-
focused delivery of mobile services: federated identity, policy, and
federated context.

 Integrating identity, policy, and context into the overall mobile ser-
vices architecture enables service providers to differentiate the user

491Mobile Applications

from the device and deliver the right service to the right user on
virtually any device:

 a. Federated identity: In a mobile environment, users are not seen
as individuals (e.g., mobile subscribers) to software applications
and processes who are tied to a particular domain, but rather as
entities that are free to traverse multiple service networks. This
requirement demands a complete federated network identity
model to tie the various personas of an individual without com-
promising privacy or loss of ownership of the associated data.
The federated network identity model allows the implementa-
tion of seamless single sign-on for users interacting with appli-
cations (Nokia 2004). It also ensures that user identity, including
transactional information and other personal information, is not
tied to a particular device or service, but rather is free to move
with the user between service providers. Furthermore, it guaran-
tees that only appropriately authorized parties are able to access
protected information.

 b. Policy: User policy, including roles and access rights, is an impor-
tant requirement for allowing users not only to have service
access within their home network but also to move outside it and
still receive the same access to services. Knowing who the user
is and what role they fulfill at the moment they are using a par-
ticular service is essential to providing the right service at the
right instance. The combination of federated identity and policy
enables service providers and users to strike a balance between
access rights and user privacy

 c. Federated context: Understanding what the user is doing, what they
ask, why it is being requested, where they are, and what device
they are using is an essential requirement. The notion of feder-
ated context means accessing and acting upon a user’s current
location, availability, presence, and role, for example, at home, at
work, on holiday, and other situational attributes. This requires
the intelligent synthesis of information available from all parts of
the end-to-end network and allows service providers and enter-
prises to deliver relevant and timely applications and services to
end users in a personalized manner. For example, information
about the location and availability of a user’s device may reside
on the wireless network, the user’s calendar may be on the enter-
prise intranet, and preferences may be stored in a portal.

 2. To help create Web Services standards that will enable new busi-
ness opportunities by delivering integrated services across station-
ary (fixed) and wireless networks. Mobile Web Services use existing
industry-standard XML-based Web Services architecture to expose
mobile network services to the broadest audience of developers.

492 Guide to Cloud Computing for Business and Technology Managers

Developers will be able to access and integrate mobile network
services such as messaging, location-based content delivery, syn-
dication, personalization, identification, authentication, and billing
services into their applications. This will ultimately enable solutions
that work seamlessly across stationary networks and mobile envi-
ronments. Customers will be able to use mobile Web Services from
multiple devices on both wired and wireless networks.

Delivering appealing, low-cost mobile data services, including ones that
are based on mobile Internet browsing and mobile commerce, is proving
increasingly difficult to achieve. The existing infrastructure and tools as well
as the interfaces between Internet/Web applications and mobile network
services remain largely fragmented, characterized by tightly coupled, costly,
and close alliances between value-added service providers and a complex
mixture of disparate and sometimes overlapping standards (WAP, MMS,
Presence, Identity, etc.) and proprietary models (e.g., propriety interfaces).
This hinders interoperability solutions for the mobile sector and at the same
time drives up the cost of application development and ultimately the cost of
services offered to mobile users. Such problems have given rise to initiatives
for standardizing mobile Web Services. The most important of these initia-
tives are the Open Mobile Alliance and the mobile Web Services frameworks
that are examined below.

The Open Mobile Alliance (www.openmobilealliance.org). The OMA is
a group of wireless vendors, IT companies, mobile operators, and applica-
tion and content providers, who have come together to drive the growth
of the mobile industry. The objective of OMA is to deliver open technical
specifications, based on market requirements, for the mobile industry, that
enable interoperable solutions across different devices, geographies, ser-
vice providers, operators, and networks. OMA includes all key elements
of the wireless value chain and contributes to the timely availability of
mobile service enablers. For enterprises already using a multitiered net-
work architecture based on open technologies, such as Web Services, which
implement wireless services, OMA is a straightforward extension of exist-
ing wireline processes and infrastructures. In this way, wireless services
become simply another delivery channel for communication, transactions,
and other value-added services. Currently, the OMA is defining core ser-
vices such as location, digital rights, and presence services and using cases
involving mobile subscribers, mobile operators, and service providers; an
architecture for the access and deployment of core services; and a Web
Services framework for using secure SOAP.

The technical working groups within OMA address the need to support
standardized interactions. To achieve this, the OMA is currently addressing
how mobile operators can leverage Web Services and defines a set of common
protocols, schemas, and processing rules using Web Services technologies

493Mobile Applications

that are the elements that can be used to create or interact with a number of
different services. The OMA Web Services Enabler (OWSER) specification
capitalizes on all the benefits of Web Services technologies to simplify the
task of integrators, developers, and implementers of service enablers by pro-
viding them with common mechanisms and protocols for interoperability of
service enablers. Examples of functionality common across service enablers
range from transport and message encoding definitions to security concerns,
service discovery, charging, definition, and management of SLAs, as well as
management, monitoring, and provisioning of the service enablers that exist
within a service provider’s network.

The OMA Web Service interfaces are intended to enhance a service pro-
vider’s data for a particular mobile subscriber. A common scenario starts
with a data request from some application (perhaps a mobile browser) to
a service provider. The service provider then uses Web Services to interact
with a subscriber’s mobile operator to retrieve some relevant data about the
subscriber such as location or presence. These data can be used to enhance
the service provider’s response to the initial request. Mobile Web Services
are envisioned to support server-to-server, server-to-mobile terminal, mobile
terminal-to-server, and mobile terminal-to-mobile terminal (or peer-to-peer)
interactions.

Similarly, the objective of the mobile Web Services framework is to meet
the requirements for bridging stationary enterprise infrastructure and the
mobile world, and it enables the application of Web Services specifications,
SOA implementations, and tools to the problem of exposing mobile network
services in a commercially viable way to the mass market of developers. The
focus of the work concentrates on mechanisms to orchestrate the calls to
mobile Web Services.

The mobile Web Services framework places particular emphasis on core
mechanisms such as security, authentication, and payment. Core security
mechanisms are offered that apply WS-Security to mobile network secu-
rity services, such as the use of a GSM-style SIM security device within a
Web Services end point to provide a means for authentication. In addition,
a set of core payment mechanisms within the WSs architecture have been
proposed that understand how to interact with the participating WS end
points. It is expected that a number of services dependent on the mobile
Web Services framework and that rely on its core mechanisms will be
developed. SMS services, MMS services, and location-based services have
been identified as common services that are candidates for specification
activity. Specification work will include profiling and optimization of the
core Web Services protocols so that they can easily be realized over any
bearer, on any device, or both. This addresses the inefficiencies that current
Web Services specifications exhibit when used over a narrowband and pos-
sibly intermittent bearer or when being processed by a low-performance
mobile device.

494 Guide to Cloud Computing for Business and Technology Managers

22.6 Mobile Field Cloud Services

Companies that can outfit their employees with devices like PDAs, laptops,
multifunction smartphones, or pagers will begin to bridge the costly chasm
between the field and the back office. For example, transportation costs for
remote employees can be significantly reduced, and productivity can be sig-
nificantly improved by eliminating needless journeys back to the office to file
reports, collect parts, or simply deliver purchase orders.

Wireless services are evolving toward the goal of delivering the right cloud
service to whoever needs it, for example, employees, suppliers, partners, and
customers, at the right place, at the right time, and on any device of their
choice. The combination of wireless handheld devices and cloud service
delivery technologies poses the opportunity for an entirely new paradigm
of information access that in the enterprise context can substantially reduce
delays in the transaction and fulfillment process and lead to improved cash
flow and profitability.

A field cloud services solution automates, standardizes, and streamlines
manual processes in an enterprise and helps centralize disparate systems
associated with customer service life-cycle management including customer
contact, scheduling and dispatching, mobile workforce communications,
resource optimization, work order management, time, labor, material track-
ing, billing, and payroll. A field Web Services solution links seamlessly all
elements of an enterprise’s field service operation—customers, service engi-
neers, suppliers, and the office—to the enterprise’s stationary infrastructure,
wireless communications, and mobile devices. Field Web Services provide
real-time visibility and control of all calls and commitments, resources, and
operations. They effectively manage business activities such as call taking
and escalation, scheduling and dispatching, customer entitlements and
SLAs, work orders, service contracts, time sheets, labor and equipment track-
ing, preinvoicing, resource utilization, reporting, and analytics.

Cloud service optimization solutions try to automatically match
the most cost-effective resource with each service order based
on prioritized weightings assigned to every possible schedule
constraint. To accommodate evolving business priorities, most

optimization solutions allow operators to reorder these weightings and
to execute ad hoc what-if scenario analyses to test the financial and per-
formance impacts of scheduling alternatives. In this way, they help
enhance supply chain management by enabling real-time response to
changing business conditions.

495Mobile Applications

Of particular interest to field services are location-based services, noti-
fication services, and service disambiguation as these mechanisms enable
developers to build more sophisticated cloud service applications by pro-
viding accessible interfaces to advanced features and intelligent mobile
features:

 1. Location-based services provide information specific to a location
using the latest positioning technologies and are a key part of the
mobile Web Services suite. Dispatchers can use GPS or network-
based positioning information to determine the location of field
workers and optimally assign tasks (push model) based on geo-
graphic proximity. Location-based services and applications enable
enterprises to improve operational efficiencies by locating, track-
ing, and communicating with their field workforce in real time.
For example, location-based services can be used to keep track of
vehicles and employees, whether they are conducting service calls or
delivering products. Trucks could be pulling in or out of a terminal,
visiting a customer site, or picking up supplies from a manufactur-
ing or distribution facility. With location-based services, applications
can get such things such as real-time status alerts, for example, esti-
mated time of approach, arrival, departure, duration of stop, current
information on traffic, weather, and road conditions for both home-
office and en route employees.

 2. Notification services allow critical business to proceed uninterrupted
when employees are away from their desks, by delivering notifica-
tions to their preferred mobile device. Employees can thus receive
real-time notification when critical events occur, such as when inci-
dent reports are completed. The combination of location-based and
notification services provides added value by enabling such ser-
vices as proximity-based notification and proximity-based actua-
tion. Proximity-based notification is a push or pull interaction model
that includes targeted advertising, automatic airport check-in, and
sightseeing information. Proximity-based actuation is a push–pull
interaction model, whose most typical example is payment based on
proximity, for example, toll watch.

 3. Service instance disambiguation helps distinguish between many
similar candidate service instances, which may be available inside
close perimeters. For instance, there may be many on-device pay-
ment services in proximity of a single point of sale. Convenient and
natural ways for identifying appropriate service instances are then
required, for example, relying on closeness or pointing rather than
identification by cumbersome unique names.

496 Guide to Cloud Computing for Business and Technology Managers

22.7 Summary

This chapter described mobile-based cloudware applications. It discusses the
need and characteristics of agile enterprises. It presents various strategies for
enabling enterprise agility ranging from eBusiness transformations to mobi-
lizing the business processes. It provides an introduction to the mobilization
of business processes and consequently the enterprises. It describes mobile
Web Services and how they can be provisioned via cloud services.

497

23
Context-Aware Applications

Most mobile applications are location-aware systems. Specifically, tourist
guides are based on users’ locations in order to supply more information
on the city attraction closer to them or the museum exhibit they are see-
ing. Nevertheless, recent years have seen many mobile applications trying to
exploit information that characterizes the current situation of users, places,
and objects in order to improve the services provided.

The principle of context-aware applications (CAA) can be explained using
the metaphor of the Global Positioning System (GPS). In aircraft navigation,
for example, a GPS receiver derives the speed and direction of an aircraft by
recording over time the coordinates of longitude, latitude, and altitude. This
contextual data is then used to derive the distance to the destination, com-
municate progress to date, and calculate the optimum flight path.

For a GPS-based application to be used successfully, the following activi-
ties are a prerequisite:

 1. The region in focus must have been GPS-mapped accurately.
 2. The GPS map must be superimposed with the relevant information

regarding existing landmarks, points of civic and official signifi-
cance, and, facilities and service points of interest in the past to the
people—this is the context in this metaphor.

 3. There must be a system available to ascertain the latest position per
the GPS system.

 4. The latest reported position must be mapped and transcribed on to
the GPS-based map of the region.

 5. This latest position relative to the context (described in the 2nd activ-
ity) is used as the point of reference for future recommendation(s)
and action(s).

It should be noted that the initial baseline of the context (described in
the 2nd activity) is compiled and collated separately and then uploaded
into the system to be accessible by the CAA. However, with passage of
time, this baseline gets added further with the details of each subsequent
transaction.

498 Guide to Cloud Computing for Business and Technology Managers

We can also imagine an equivalent of the Global Positioning
System for calibrating the performance of enterprises. The coor-
dinates of longitude, latitude, and altitude might be replaced by
ones of resource used, process performed, and product pro-

duced. If we designed a GPS for an enterprise, we could measure its
performance (e.g., cost or quality) in the context of the resource used,
the process performed, and the product delivered as compared with its
own performance in the past (last month or one year back) or in par-
ticular cases that of another target organization. Such an approach
could help us specify our targets, communicate our performance, and
signal our strategy.

Most of the current context-aware systems have been built in an ad hoc
approach and are deeply influenced by the underlying technology infra-
structure utilized to capture the context. To ease the development of
context-aware ubicomp (ubiquitous computing) and mobile applications, it
is necessary to provide universal models and mechanisms to manage con-
text. Even though significant efforts have been devoted to research methods
and models for capturing, representing, interpreting, and exploiting con-
text information, we are still not close to enabling an implicit and intuitive
awareness of context nor efficient adaptation to behavior at the standards of
human communication practice.

Context information can be a decisive factor in mobile applications in
terms of selecting the appropriate interaction technique. Designing inter-
actions among users and devices, as well as among devices themselves, is
critical in mobile applications. Multiplicity of devices and services calls for
systems that can provide various interaction techniques and the ability to
switch to the most suitable one according to the user’s needs and desires.
Current mobile systems are not efficiently adaptable to the user’s needs. The
majority of ubicomp and mobile applications try to incorporate the users’
profile and desires into the system’s infrastructure either manually or auto-
matically observing their habits and history. According to our perspective,
the key point is to give them the ability to create their own mobile applica-
tions instead of just customizing the ones provided.

Thus, mobile applications can be used not only for locating users and pro-
viding them with suitable information but also for

• Providing them with a tool necessary for composing and creating
their own mobile applications

• Supporting the system’s selection of appropriate interaction
techniques

499Context-Aware Applications

• A selection of recommendation(s) and consequent action(s) conform-
ing with the situational constraints judged via the business logic and
other constraints sensed via the context

• Enabling successful closure of the interaction (answering to a query,
qualifying an objection, closing an order, etc.)

23.1 Decision Patterns as Context

This chapter discusses location-based services applications as a particu-
lar example of context-aware applications. But, context-aware applications
can significantly enhance the efficiency and effectiveness of even routinely
occurring transactions. This is because most end-user applications’ effective-
ness and performance can be enhanced by transforming them from a bare
transaction to a transaction clothed by a surround of a context formed as an
aggregate of all relevant decision patterns utilized in the past.

The decision patterns contributing to a transaction’s context include the
following:

• Characteristic and sundry details associated with the transaction
under consideration

• Profiles of similar or proximate transactions in the immediately
prior week or month or 6 months or last year or last season

• Profiles of similar or proximate transactions in same or adjacent or
other geographical regions

• Profiles of similar or proximate transactions in same or adjacent or
other product groups or customer groups

To generate the context, the relevant decision patterns can either be dis-
cerned or discovered by mining the relevant pools or streams of primarily
the transaction data. Or they could be augmented or substituted by conjec-
turing or formulating decision patterns that explain the existence of these
characteristic pattern(s) (in the pools or streams of primarily the transaction
data). In the next subsection we look at function-specific decision patterns
with particular focus on financial decision patterns.

Thus, generation of context itself is critically dependent on
employing big data and mobilized applications, which in turn
needs cloud computing as a prerequisite.

500 Guide to Cloud Computing for Business and Technology Managers

23.1.1 Concept of Patterns

The concept of patterns used in this book originated from the area of real
architecture. Alexander gathered architectural knowledge and best prac-
tices regarding building structures in a pattern format. This knowledge was
obtained from years of practical experience. A pattern according to Alexander
is structured text that follows a well-defined format and captures nuggets
of advice on how to deal with recurring problems in a specific domain. It
advises the architect on how to create building architectures, defines the
important design decisions, and covers limitations to consider. Patterns can
be very generic documents, but may also include concrete measurements
and plans. Their application to a certain problem is, however, always a man-
ual task that is performed by the architect. Therefore, each application of a
pattern will result in a differently looking building, but all applications of
the pattern will share a common set of desired properties. For instance, there
are patterns describing how eating tables should be sized so that people can
move around the table freely, get seated comfortably, find enough room for
plates and food, while still being able to communicate and talk during meals
without feeling too distant from people seated across the table. While the
properties of the table are easy to enforce once concrete distances and sizes
are specified, they are extremely hard to determine theoretically or by pure
computation using a building’s blueprint.

In building architecture, pattern-based descriptions of best practices and
design decisions proved especially useful, because many desirable prop-
erties of houses, public environments, cities, streets, etc., are not formally
measurable. They are perceived by humans and, thus, cannot be computed
or predicted in a formal way. Therefore, best practices and well-perceived
architectural styles capture a lot of implicit knowledge how people using
and living in buildings perceive their structure, functionality, and general
feel. Especially, the indifferent emotion that buildings trigger, such as awe,
comfort, coziness, power, cleanness, etc., are hard to measure or explain and
are also referred to as the quality without a name or the inner beauty of a building.
How certain objectives can be realized in architecture is, thus, found only
through practical experience, which is then captured by patterns. For exam-
ple, there are patterns describing how lighting in a room should be real-
ized so that people feel comfortable and positive. Architects capture their
knowledge gathered from existing buildings and feedback they received
from users in patterns describing well-perceived building design. In this
scope, each pattern describes one architectural solution for an architectural
problem. It does so in an abstract format that allows the implementation in
various ways. Architectural patterns, thus, capture the essential proper-
ties required for the successful design of a certain building area or function
while leaving large degrees of freedom to architects.

Multiple patterns are connected and interrelated resulting in a pattern
language. This concept of links between patterns is used to point to related

501Context-Aware Applications

patterns. For example, an architect reviewing patterns describing different
roof types can be pointed to patterns describing different solutions for win-
dows in these roofs and may be advised that some window solutions, thus,
the patterns describing them cannot be combined with a certain roof pattern.
For example, a flat rooftop cannot be combined with windows that have to
be mounted vertically. Also, a pattern language uses these links to guide an
architect through the design of buildings, streets, cities, etc., by describing
the order in which patterns have to be considered. For example, the size of
the ground on which a building is created may limit the general architecture
patterns that should be selected first. After this, the number of floors, the
aforementioned roofing style, etc., can be considered.

23.1.1.1 Patterns in Information Technology (IT) Solutions

In a similar way, the pattern-based approach has been used in IT to cap-
ture best practices in how applications and systems of applications should
be designed. Examples are patterns for fault-tolerant software, general-
application architectures, object-oriented programming, enterprise applica-
tions, or message-based application integration. Again, these patterns are
abstract and independent of the programming language or runtime infra-
structure used to form timeless knowledge that can be applied in various IT
environments. In the domain of IT solutions, the desirable properties are
portability, manageability, flexibility to make changes, and so on. The prop-
erties of IT solutions become apparent over time while an application is pro-
ductively used, evolves to meet new requirements, has to cope with failures,
or has to be updated to newer versions. During this lifecycle of an applica-
tion, designers can reflect on the IT solution to determine whether it was well
designed to meet such challenges.

23.1.2 Domain-Specific Decision Patterns

In the following, we discuss as illustrations, decision patterns for two
domains or functional areas, namely, finance and customer relationship
management (CRM). While the former is a formalized area to a large degree
because of the statutory and regulatory requirements, the latter is defined
and fine-tuned, across an extended period of operational experience, by the
specific requirements of the business, offerings, and geographic region(s) in
which the company operates.

23.1.2.1 Financial Decision Patterns

Financial management focuses on both the acquisition of financial
resources on as favorable terms as possible and the utilization of the assets
that those financial resources have been used to purchase, as well as look-
ing at the interaction between these two activities. Financial planning and

502 Guide to Cloud Computing for Business and Technology Managers

control is an essential part of the overall financial management process.
Establishment of precisely what the financial constraints are and how the
proposed operating plans will impact them are a central part of the finance
function. This is generally undertaken by the development of suitable
aggregate decision patterns like financial plans that outline the financial
outcomes that are necessary for the organization to meet its commitments.
Financial control can then be seen as the process by which such plans are
monitored and necessary corrective action proposed when significant
deviations are detected.

Financial plans are constituted of three decision patterns:

 1. Cash flow planning: This is required to ensure that cash is available
to meet the payments the organization is obliged to meet. Failure to
manage cash flows will result in technical insolvency (the inability
to meet payments when they are legally required to be made). Ratios
are a set of powerful tools to report these matters. For focusing on
cash flows and liquidity, a range of ratios based on working capital
are appropriate; each of these ratios addresses a different aspect of
the cash collection and payment cycle.

 The five key ratios that are commonly calculated are
• Current ratio, equal to current assets divided by current liabilities
• Quick ratio (or acid test), equal to quick assets (current assets less

inventories) divided by current liabilities
• Inventory turnover period, equal to inventories divided by cost of

sales, with the result being expressed in terms of days or months
• Debtors to sales ratio, with the result again being expressed as an

average collection period
• Creditors to purchases ratio, again expressed as the average pay-

ment period
 There are conventional values for each of these ratios (for exam-

ple, the current ratio often has a standard value of 2.0 mentioned,
although this has fallen substantially in recent years because of
improvements in the techniques of working capital management,
and the quick ratio a value of 1.0), but in fact these values vary
widely across firms and industries. More generally helpful is a com-
parison with industry norms and an examination of the changes in
the values of these ratios over time that will assist in the assessment
of whether any financial difficulties may be arising.

 2. Profitability: This is the need to acquire resources (usually from
revenues acquired by selling goods and services) at a greater rate
than using them (usually represented by the costs of making pay-
ments to suppliers, employees, and others). Although, over the life

503Context-Aware Applications

of an enterprise, total net cash flow and total profit are essentially
equal, in the short term, they can be very different. In fact, one of the
major causes of failure for new small business enterprises is not that
they are unprofitable but that the growth of profitable activity has
outstripped the cash necessary to resource it. The major difference
between profit and cash flow is in the acquisition of capital assets
(i.e., equipment that are bought and paid for immediately, but that
have likely benefits stretching over a considerable future period) and
timing differences between payments and receipts (requiring the
provision of working capital).

 For focusing on longer-term profitability with short-term cash flows,
profit to sales ratios can be calculated (although different ratios can
be calculated depending whether profit is measured before or after
interest payments and taxation). Value added (sales revenues less the
cost of bought-in supplies) ratios can also be used to give insight into
operational efficiencies.

 3. Assets: Assets entail the acquisition and, therefore, the provision of
finance for their purchase. In accounting terms, the focus of atten-
tion is on the balance sheet, rather than the profit and loss (P/L)
account or the cash flow statement.

 For focusing on the raising of capital as well as its uses, a further set
of ratios based on financial structure can be employed. For example,
the ratio of debt to equity capital (gearing or leverage) is an indica-
tion of the risk associated with a company’s equity earnings (because
debt interest is deducted from profit before obtaining profit distrib-
utable to shareholders). It is often stated that fixed assets should be
funded from capital raised on a long-term basis, while working capi-
tal should fund only short-term needs.

It is necessary to be aware that some very successful companies
flout this rule to a considerable extent. For example, most super-
market chains fund their stores (fixed assets) out of working
capital because they sell their inventories for cash several times

before they have to pay for them—typical inventory turnover is three
weeks, whereas it is not uncommon for credit to be granted for three
months by their suppliers.

 There is, therefore, no definitive set of financial ratios that can be
said to measure the performance of a business entity. Rather, a set
of measures can be devised to assess different aspects of financial

504 Guide to Cloud Computing for Business and Technology Managers

performance from different perspectives. Although some of these
measures can be calculated externally, being derived from annual
financial reports, and can be used to assess the same aspect of finan-
cial performance across different companies, care needs to be taken
to ensure that the same accounting principles have been used to pro-
duce the accounting numbers in each case. It is not uncommon for
creative accounting to occur so that acceptable results can be reported.
This draws attention especially to the interface between manage-
ment accounting (which is intended to be useful in internal deci-
sion making and control) and financial accounting (which is a major
mechanism by which external stakeholders, especially shareholders,
may hold managers accountable for their oversight).

Financial scandals, such as Enron and WorldCom have high-
lighted that a considerable amount of such manipulation is pos-
sible palpably within generally acceptable accounting principles
(GAAPs). There is clear evidence that financial numbers alone

are insufficient to reveal the overall financial condition of an enterprise.
Part of the cause has been the rules-based approach of US financial
reporting, in contrast to the principles-based approach adopted in United
Kingdom. One result of the reforms that have followed these scandals
has been a greater emphasis on operating information. In addition, leg-
islation such as the Sarbanes–Oxley Act (SOX) in the United States has
required a much greater disclosure of the potential risks surrounding
an enterprise, reflected internally by a much greater emphasis on risk
management and the maintenance of risk registers.

The finance function serves a boundary role; it is an intermediary between
the internal operations of an organization and the key external stakeholders
who provide the necessary financial resources to keep the organization via-
ble. Decision patterns like financial ratios allow internal financial managers
to keep track of a company’s financial performance (perhaps in comparison
with that of its major competitors), and to adjust the activities of the com-
pany, both operating and financial, so as to stay within acceptable bounds.
A virtuous circle can be constructed whereby net cash inflows are suffi-
cient to pay adequate returns to financiers and also contribute towards new
investment; given sound profitability, the financiers will usually be will-
ing to make additional investment to finance growth and expansion beyond
that possible with purely internal finance. Conversely, a vicious cycle can
develop when inadequate cash flows preclude adequate new investment,
causing a decline in profitability, and so the company becomes unable to
sustain itself.

505Context-Aware Applications

23.1.3 CRM Decision Patterns

This section describes an overview of the statistical models–based decision
patterns used in CRM applications as the guiding concept for profitable cus-
tomer management. The primary objectives of these systems are to acquire
profitable customers, retain profitable customers, prevent profitable custom-
ers from migrating to competition, and winning back lost profitable custom-
ers. These four objectives collectively lead to increasing the profitability of
an organization.

CRM strategies spanning the full customer lifecycle are constituted of four
decision patterns or models:

 1. Customer acquisition: This involves decisions on identifying the
right customers to acquire, forecasting the number of new custom-
ers, the response of promotional campaigns, and so on. The objec-
tives of customer acquisition modeling includes identifying the right
customers to acquire, predicting whether customers will respond to
company promotion campaigns, forecasting the number of new cus-
tomers, and examining the short- and long-run effects of marketing
and other business variables on customer acquisition.

This is a conscious move from mass marketing of products to one that is
focused on the end consumer. This is a direct result of increases in data
collection and storage capabilities that have uncovered layer upon layer of
customer differentiation. Differentiating and segmenting with regards to
demographic, psychographic, or purchasing power-related characteristics
became more affordable and possible, and eventually became necessary in
order to keep up with competing firms. Although segment-level acquisition
did not take this theory to the extent that one-to-one customer acquisition
has, it reinforced a growing trend of subsets or groups of customers within
a larger target market. Being able to collect, store, and analyze customer data
in more practical, affordable, and detailed ways has made all of this pos-
sible. As firms have become more capable and committed with data analyses,
offerings have become more specific, thus increasing the amount of choice
for customers. This has in turn spurred customers to expect more choice and
customization in their purchases. This continuous firm–customer interac-
tion has consistently shaped segment-level marketing practices in the pro-
cess to better understand customers.

The decision patterns would incorporate

• Differences between customers acquired through promotions and
those acquired through regular means

• Effect of marketing activities and shipping and transportation costs
on acquisition

• Impact of the depth of price promotions

506 Guide to Cloud Computing for Business and Technology Managers

• Differences in the impact of marketing-induced and word-of-mouth
customer

• Acquisition on customer equity

 2. Customer retention: This involves decisions on who will buy, what
the customers will buy, when they will buy, and how much they will
buy, and so on. During a customer’s tenure with the firm, the firm
would be interested in retaining the customer for a longer period
of time. This calls for investigating the role of trust and commit-
ment with the firm, metrics for customer satisfaction, and the role
of loyalty and reward programs, among others. The objective of
customer retention modeling includes examining the factors influ-
encing customer retention, predicting customers’ propensity to
stay with the company or terminate the relationship, and predict-
ing the duration of the customer–company relationship. Customer
retention strategies are used both in contractual (where customers
are bound by contracts, such as cell (mobile) phone subscription or
magazine subscription) and noncontractual settings (where custom-
ers are not bound by contracts, such as grocery purchases or apparel
purchases).

Who to retain can often be a difficult question to answer. This is because the
cost of retaining some customers can exceed their future profitability and
thus make them unprofitable customers. When to engage in the process of
customer retention is also an important component. As a result, firms must
monitor their acquired customers appropriately to ensure that their loyalty is
sustained for a long period of time. Finally, identifying how much to spend
on a customer is arguably the most important piece of the customer retention
puzzle. It is very easy for firms to overcommunicate with a customer and
spend more on his/her retention than the customer will ultimately give back
to the firm in value.

The decision patterns would incorporate

• Explaining customer retention or defection
• Predicting the continued use of the service relationship through

the customer’s expected future use and overall satisfaction with the
service

• Renewal of contracts using dynamic modeling
• Modeling the probability of a member lapsing at a specific time

using survival analysis
• Use of loyalty and reward programs for retention
• Assessing the impact of a reward program and other elements of the

marketing mix

507Context-Aware Applications

 3. Customer attrition or churn: This involves decisions on whether the
customer will churn or not, and, if so, what will be the probability of
the customer churning, and when. The objective of customer attri-
tion modeling includes churn with time-varying covariates, media-
tion effects of customer status and partial defection on customer
churn, churn using two cost-sensitive classifiers, dynamic churn
using time-varying covariates, factors inducing service switching,
antecedents of switching behavior, and impact of price reductions
on switching behavior.

Engaging in active monitoring of acquired and retained customers is the
most crucial step in being able to determine which customers are likely to
churn. Determining who is likely to churn is an essential step. This is pos-
sible by monitoring customer purchase behavior, attitudinal response, and
other metrics that help identify customers who feel underappreciated or
underserved. Customers who are likely to churn do demonstrate symptoms of
their dissatisfaction, such as fewer purchases, lower response to marketing
communications, longer time between purchases, and so on. The collection
of customer data is therefore crucial in being able to identify and capture
such symptoms and that would help in analyzing the retention behavior and
the choice of communication medium. Understanding who to save among
those customers who are identified as being in the churn phase is again a
question of cost vs. future profitability.

The decision patterns would incorporate

• When are the customers likely to defect
• Can we predict the time of churn for each customer
• When should we intervene and save the customers from churning
• How much do we spend on churn prevention with respect to a par-

ticular customer

 4. Customer win-back: This involves decisions on reacquiring the cus-
tomer after the customer has terminated the relationship with the
firm. The objective of customer win-back modeling includes cus-
tomer lifetime value, optimal pricing strategies for recapture of lost
customers, and the perceived value of a win-back offer.

Identifying the right customers to win back depends on factors such as the
interests of the customers to reconsider their choice of quitting, the product
categories that would interest the customers, and the stage of customer life
cycle and so on. If understanding what to offer customers in winning them
back is an important step in the win-back process, measuring the cost of
win-back is as important as determining who to win back and what to offer
them. The cost of win-back, much like the cost of retention or churn, must
be juxtaposed with the customer’s future profitability and value to the firm.

508 Guide to Cloud Computing for Business and Technology Managers

23.2 Context-Aware Applications

Context is understood as “the location and identities of nearby people and
objects, and changes to those objects.” Initially, the term context was equivalent
to the location and identity of users and objects. Very soon, though, the term
expanded to include a more refined view of the environment assuming either
three major components—computing, user, and physical environment—or
four major dimensions, system, infrastructure, domain, and physical context.
The interaction between the user and application was added by Dey (2001)*;
according to them, a context is “any information that can be used to character-
ize the situation of an entity.” An entity should be treated as anything relevant
to the interaction between a user and an application, such as a person, a place,
or an object, including the user and the application themselves and, by exten-
sion, the environment the user and applications are embedded in. Thus, a sys-
tem is context-aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task.

An ontology is a formal, explicit specification of a shared conceptualization,
that is, an abstract model of some phenomenon in the world that identifies the
relevant concepts of that phenomenon (explicit means that the type of concepts
used and the constraints on their use are explicitly defined, and formal refers to
the fact that the ontology should be machine readable). Given that ontologies
are a promising instrument to specify concepts and their interrelations, they
can provide a uniform way for specifying a context model’s core concepts
as well as an arbitrary amount of subconcepts and facts, altogether enabling
contextual knowledge sharing and reuse in a ubicomp system. Ontologies are
developed to provide a machine-processable semantics of information sources
that can be communicated between different agents (software and humans). It
is a necessity to decouple the process of context acquisition and interpretation
from its actual use, by introducing a consistent, reliable, and secure context
framework that can facilitate the development of context-aware applications.

Context-aware features include using context to

 1. Present information and services to a user
 2. Automatically execute a service for a user
 3. Tag information to support later retrieval

In supporting these features, context-aware applications can utilize numer-
ous different kinds of information sources. Often, this information comes
from sensors, whether they are software sensors detecting information about
the networked, or virtual, world or hardware sensors detecting information
about the physical world. Sensor data can be used to recognize the usage

* Dey, A.K. Understanding and using context. Personal and Ubiquitous Computing Journal, (1),
4–7, 2001.

509Context-Aware Applications

situation, for instance, from illumination, temperature, noise level, and device
movements. A context-aware application can make adaptive decisions based
on the context of interaction in order to modulate the information presented
to the user or to carry out semantic transformation on the data, like convert-
ing text to speech for an audio device. The promise and purpose of context
awareness are to allow computing systems to take action autonomously and
enable systems to sense the situation and act appropriately. For example, in
context-aware mobile applications, location is the most commonly used vari-
able in context recognition as it is relatively easy to detect. User activity is
much more difficult to identify than location, but some aspects of this activ-
ity can be detected by placing sensors in the environment.

Location is the most commonly used piece of context information, and
several different location detection techniques have been utilized in con-
text-awareness research. Global positioning system (GPS) is a commonly
used technology when outdoors, utilized, for example, in car navigation
systems. Network cellular ID can be used to determine location with mobile
phones. Measuring the relative signal strengths of Bluetooth and WLAN
hotspots and using the hotspots as beacons are the frequently used tech-
niques for outdoor and indoor positioning. Other methods used indoors
include ultrasonic or infrared-based location detection. Other commonly
used forms of context are time of day, day of week, identity of the user,
proximity to other devices and people, and actions of the user.

Context-aware device behavior may not rely purely on the physical envi-
ronment. While sensors have been used to directly provide this physical
context information, sensor data often need to be interpreted to aid in the
understanding of the user’s goals. Information about a user’s goals, prefer-
ences, and social context can be used for determining context-aware device
behavior as well. Knowledge about a user’s goals helps prioritize the device
actions and select the most relevant information sources. A user’s personal
preferences can offer useful information for profiling or personalizing ser-
vices or refining information retrieval. The user may also have preferences
about the quality of service issues such as cost efficiency, data connection
speed, and reliability, which relate closely to mobile connectivity issues deal-
ing with handovers and alternative data transfer mediums.

Finally, social context forms an important type of context as mobile devices
are commonly used to support communication between two people and
used in the presence of other people.

Challenges of context-aware systems include the following:

• A main issue regarding context-aware computing is the fear that con-
trol may be taken away from the user. Apart from control issues, pri-
vacy and security issues arise. The main parameters of context are user
location and activity, which users consider as part of their privacy.
Users are especially reluctant to exploit context-aware systems, when
they know that private information may be disclosed to others.

510 Guide to Cloud Computing for Business and Technology Managers

• There is a gap between how people understand context and what
systems consider as context. The environment in which people live
and work is very complex; the ability to recognize the context and
determine the appropriate action requires considerable intelligence.

• A context-aware system cannot decide with certainty which actions
the user may want to be executed; as the human context is inacces-
sible to sensors, we cannot model it with certainty.

• A context-aware system cannot be developed to be so robust that it
will rarely fail, as ambiguous and uncertain scenarios will always
occur and even for simple operations exceptions may exist.

• A context-aware system can add more and more rules to support the
decision-making process; unfortunately, this may lead to large and
complex systems that are difficult to understand and use.

• A context-aware application is based on context information that
may be imperfect. The ambiguity over the context soundness arises
due to the speed at which the context information changes and the
accuracy and reliability of the producers of the context, like sensors.

It is a challenge for context-aware systems to handle context, which may be
nonaccurate or ambiguous, in an appropriate manner—more information is
not necessarily more helpful; context information is useful only when it can
be usefully interpreted.

23.3 Context-Aware Mobile Applications

A mobile application is context aware if it uses context to provide relevant
information to users or to enable services for them; relevancy depends on a
user’s current task (and activity) and profile (and preferences). Apart from
knowing who the users are and where they are, we need to identify what
they are doing, when they are doing it, and which object they focus on. The
system can define user activity by taking into account various sensed param-
eters like location, time, and the object that they use. In outdoor applications,
and depending on the mobile devices that are used, satellite-supported tech-
nologies, like GPS, or network-supported cell information, like GSM, IMTS,
and WLAN, is applied. Indoor applications use RFID, IrDA, and Bluetooth
technologies in order to estimate the users’ position in space. While time
is another significant parameter of context that can play an important role
in order to extract information on user activity, the objects that are used in
mobile applications are the most crucial context sources.

In mobile applications, the user can use mobile devices, like mobile phones
and PDAs and objects that are enhanced with computing and communication

511Context-Aware Applications

abilities. Sensors attached to artifacts provide applications with informa-
tion about what the user is utilizing. In order to present the user with the
requested information in the best possible form, the system has to know the
physical properties of the artifact that will be used (e.g., artifact screen’s dis-
play characteristics), the types of interaction interfaces that an artifact pro-
vides to the user need to be modeled (e.g., whether artifact can be handled
by both speech and touch techniques), and the system must know how it is
designed. Thus, the system has to know the number of each artifact’s sen-
sors and their position in order to gradate context information with a level
of certainty. Based on information on the artifact’s physical properties and
capabilities, the system can extract information on the services that they can
provide to the user.

In the context-aware mobile applications, artifacts are considered as con-
text providers. They allow users to access context in a high-level abstracted
form, and they inform other application’s artifacts so that context can be used
according to the application needs. Users are able to establish associations
between the artifacts based on the context that they provide; keep in mind
that the services enabled by artifacts are provided as context. Thus, users
can indicate their preferences, needs, and desires to the system by determin-
ing the behavior of the application via the artifacts they create. The set of
sensors attached to an artifact measure various parameters such as location,
time, temperature, proximity, and motion—the raw data given by its sensors
determine the low-level context of the artifact. The aggregation of such low-
level context information from various homogenous and nonhomogenous
sensors results into a high-level context information.

23.3.1 Ontology-Based Context Model

This ontology is divided into two layers: a common one that contains the
description of the basic concepts of context-aware applications and their
interrelations representing the common language among artifacts, and a
private one that represents an artifact’s own description as well as the new
knowledge or experience acquired from its use. The common ontology defines
the basic concepts of a context-aware application; such an application con-
sists of a number of artifacts and their associations. The concept of artifact
is described by its physical properties and its communication and compu-
tational capabilities; the fact that an artifact has a number of sensors and
actuators attached is also defined in our ontology. Through the sensors, an
artifact can perceive a set of parameters based on which the state of the arti-
fact is defined; an artifact may also need these parameters in order to sense
its interactions with other artifacts as well as with the user. The ontology also
defines the interfaces via which artifacts may be accessed in order to enable
the selection of the appropriate one. The common ontology represents an
abstract form of the concepts represented, especially of the context param-
eters, as more detailed descriptions are stored into each artifact’s private

512 Guide to Cloud Computing for Business and Technology Managers

ontology. For instance, the private ontology of an artifact that represents a
car contains a full description of the different components in a car as well as
their types and their relations.

The basic goal of the proposed ontology-based context model is to support
a context management process, based on a set of rules that determine the way
in which a decision is made and are applied to existing knowledge repre-
sented by this ontology. The rules that can be applied during such a process
belong to the following categories: rules for an artifact’s state assessment that
define the artifact’s state based on its low- and high-level contexts, rules for
local decisions that exploit an artifact’s knowledge only in order to decide the
artifact’s reaction (like the request or the provision of a service), and finally
rules for global decisions that take into account various artifacts’ states and
their possible reactions in order to preserve a global state defined by the user.

23.3.2 Context Support for User Interaction

The ontology-based context model that we propose empowers users to
compose their own personal mobile applications. In order to compose their
applications, they first have to select the artifacts that will participate and
establish their associations. They set their own preferences by associating
artifacts, denoting the sources of context that artifacts can exploit, and defin-
ing the interpretation of this context through rules in order to enable various
services. As the context acquisition process is decoupled from the context
management process, users are able to create their own mobile applications
avoiding the problems emerging from the adaptation and customization of
applications like disorientation and system failures.

The goal of context in computing environments is to improve interac-
tion between users and applications. This can be achieved by exploiting
context, which works like implicit commands and enables applications
to react to users or surroundings without the users’ explicit commands.
Context can also be used to interpret explicit acts, making interaction much
more efficient. Thus, context-aware computing completely redefines the
basic notions of interface and interaction. In this section, we present how
our ontology-based context model enables the use of context in order to
assist human–computer interaction in mobile applications and to achieve
the selection of the appropriate interaction technique. Mobile systems have
to provide multimodal interfaces so that users can select the most suit-
able technique based on their context. The ontology-based context model
that we presented in the previous section captures the various interfaces
provided by the application’s artifacts in order to support and enable such
selections. Similarly, the context can determine the most appropriate inter-
face when a service is enabled. Ubiquitous and mobile interfaces must be
proactive in anticipating needs, while at the same time working as a spatial
and contextual filter for information so that the user is not inundated with
requests for attention.

513Context-Aware Applications

Context can also assist designers to develop mobile applications and
manage various interfaces and interaction techniques that would enable
more satisfactory and faster closure of transactions. Easiness is an impor-
tant requirement for mobile applications; by using context according to our
approach, designers are abstracted from the difficult task of context acquisi-
tion and have merely defined how context is exploited from various artifacts
by defining simple rules. Our approach presents an infrastructure capable
of handling, substituting, and combining complex interfaces when neces-
sary. The rules applied to the application’s context and the reasoning process
support the application’s adaptation. The presented ontology-based context
model is easily extended; new devices, new interfaces, and novel interaction
techniques can be exploited into a mobile application by simply incorporat-
ing their descriptions in the ontology.

23.4 Location-Based Service (LBS) Applications

Location-based services are services that are sensitive to and take advantage
of the location of the service user. Any service that makes use of the location
of the user can be called an Location-based service. The location of a person
can be determined using a GPS receiver or other technologies, now available
in many mobile phone platforms. This position determination technology
(PDT) is generally carried by the person, from which the location must be
provided to the Location-based service provider. Today, the Location-based
services are generally hosted in the network, which may pose performance
and scalability issues.

The uptake of mobile phones with PDT capabilities continues to grow, and
most mobile phone users have a phone that can be traced with good accuracy
and a lower cost. This new technology has given the Location-based service
market a greater push. LBSs can be divided into four categories:

 1. Business to business
 2. Business to consumer
 3. Consumer to business
 4. Consumer to consumer

The business-to-business services include fleet tracking and courier track-
ing. Business-to-consumer services include pushed ads based on the loca-
tion, where a user will receive ads most relevant to the location. Consumer
to business services include location-based search, where a user is search-
ing for the nearest restaurant, petrol pump, and so forth. A consumer-to-
consumer service is the friend finder service where the user will be alerted if
his friend is within a few meters (see Table 23.1).

514 Guide to Cloud Computing for Business and Technology Managers

23.4.1 LBS System Components

LBS is an intersection of the three technologies, namely, new information
and communication technologies (NICTSs) such as the mobile telecommuni-
cation system and handheld devices, the Internet, and Geographic informa-
tion systems (GIS) with spatial databases.

LBS gives the possibility of a two-way communication and interaction.
Therefore, the user tells the service provider his actual context, like the kind
of information he needs, his preferences, and his position. This helps the
provider of such location services to deliver information tailored to the user
needs. If the user wants to use an Location-based service, different infra-
structure elements are necessary.

Here are the basic components in LBS:

 1. Mobile devices: A tool for the user to request the needed information.
The results can be given by speech, using pictures, text, and so on.
Possible devices are PDAs, mobile phones, laptops, and so on, but
the device can also be a navigation unit of car or a toll box for road
pricing in a truck.

 2. Communication network: The second component is the mobile net-
work, which transfers the user data and service request from the
mobile terminal to the service provider and then the requested
information back to the user.

 3. Positioning determination technology (PDT) component: For the process-
ing of a service, the user position usually has to be determined. The
user position can be obtained either by using the mobile commu-
nication network or by using the global positioning system (GPS).
Further possibilities to determine the position are WLAN stations,
active badges, or radio beacons. The latter positioning methods can

TABLE 23.1

Location-Based Services (LBSs) Classification

B2B B2C C2C C2B

Fleet and freight,
tracking, etc.

Discounts, ads,
special events, etc.

Find a friend, primary
schools, etc.

Find a gas station,
community events, etc.

Trigger Services Tracking and
Monitoring

Location-Based
Information

Assistance Services

E-commerce,
payment
information,
advertising, etc.

Fleet management,
telematics, asset
tracking, etc.

Traffic and navigation,
entertainment,
mapping, etc.

Personal/vehicle
emergency, roadside
assistance, alarm
management, etc.

Push Services Pull Services
Travel directions, taxi hailing,
m-commerce, etc.

Zone alerts, traffic alerts, etc.

515Context-Aware Applications

be especially used for indoor navigation, like in a museum. If the
position is not determined automatically, it can be also specified
manually by the user.

 4. Service and application provider: The service provider offers a number
of different services to the user and is responsible for the service
request processing. Such services offer the calculation of the posi-
tion, finding a route, searching yellow pages with respect to posi-
tion, or searching specific information on objects of the user interest
(e.g., a bird in wild life park).

 5. Data and content provider: Service providers will usually not store
and maintain all the information that can be requested by users.
Therefore, geographic base data and location information data will
usually be requested from the maintaining authority (e.g., mapping
agencies) or business and industry partners (e.g., yellow pages, traf-
fic companies).

Based on the information delivery method, we identify three types of LBS:
pull, push, and tracking services. In the case of a pull service, the user
issues a request in order to be automatically positioned and to access the
LBS he or she wants. A use-case scenario demonstrating a pull service
is the following. A tourist roams in a foreign city and wants to receive
information about the nearest restaurants to his or her current location.
Using a mobile device, the tourist issues an appropriate request (e.g., via
SMS [short message service] or WAP [wireless application protocol]), and
the network locates his or her current position and responds with a list of
restaurants located near it. On the contrary, in the case of a push service,
the request is issued by the service provider and not the user. A repre-
sentative example of push services is location-based advertising, which
informs users about products of their interest located at nearby stores. In
this service, users submit their shopping preference profiles to the service
provider and allow the provider to locate and contact them with adver-
tisements, discounts, and/or e-coupons for products of interest at nearby
stores. So, in this case, the service provider is the one who pushes informa-
tion to the user. Finally, in a tracking service, the basic idea is that some-
one (user or service) issues a request to locate other mobile stations (users,
vehicles, fleets, etc.).

From a technological point of view, LBSs are split into two major cat-
egories depending on the positioning approach they use to locate mobile
stations. There is the handset-based approach and the network-based
approach. The former approach requires the mobile device to actively par-
ticipate in the determination of its position, while the latter relies solely
on the positioning capabilities of elements belonging to the mobile net-
work. For both of these approaches, several positioning techniques have
been developed or are under development. What distinguish them from

516 Guide to Cloud Computing for Business and Technology Managers

one another are the accuracy they provide and the cost of their imple-
mentation. The most popular network-based positioning techniques are
cell-global-identity (CGI) methods, timing advance (TA), uplink time of
arrival (TOA), and angle of arrival (AOA), while the most popular hand-
set-based positioning techniques are observed time difference of arrival
(OTDOA), enhanced observed time difference (E-OTD), and assisted
Global Positioning System (A-GPS). The accuracy provided by some of
these techniques in different coverage areas of the mobile network is pre-
sented in Tables 23.2 and 23.3.

23.4.2 LBS System Challenges

Despite the appealing idea of using user location information to provide
highly personalized and intelligent services, there are certain challenges
that should be addressed in order for LBS to succeed.

We can divide these challenges into three categories:

 1. Technological challenge for LBS is the capability to create easy-to-use
and satisfying services. There is much talk concerning what would
be the most suitable user interface and type of service (pull or push)
in terms of user satisfaction. For example, in the case of push-based
services, a user is not required to manually issue queries in order
to get the information he or she seeks. The system automatically
informs him or her based on the current location and a list of prefer-
ences listed in the user’s profile. The problem is that in this way, user
intent cannot be perfectly captured and the user may be frequently
disturbed by out-of-context information. So, despite the easiness of
usage (no or minimal interface), user satisfaction is not assured. On
the other hand, in pull-based LBS, in which clients have to poll the
server for updates, the users may experience difficulties in using
these services because cell phones, PDAs, and wearable computers
are less suitable for browsing and query-based information retrieval
due to their limited input device capabilities. All these restrictions
along with the unpredictability in mobile environments (disconnec-
tions, frequent context differentiations, etc.) have to be taken very
carefully into account when designing LBSs.

 Some of the implied requirements are the following:
 a. A less intensive use of the mobile network and a minimal vol-

ume of transmitted data
 b. The possibility of off-line operation
 c. Simple and user-friendly interfaces and limited and well-

specified amounts of presented information content
 Therefore, it becomes apparent that LBS will not succeed in attract-

ing users without implementing sophisticated techniques based on

517Context-Aware Applications

TABLE 23.2

Location Enablement Technologies

Technology Description Advantages Disadvantages

Network based
Cell of
origin
(COO)

Information generated
about the cell
occupied by a user

RF technology
Inexpensive—uses
existing network

No handset
modification

Fast implementation
No consumer behavior
change

Low resolution

Angle of
Arrival
(AOA)

Measures angle of
signal from mobile
device to cell towers
Minimum of two cell
sites required

FF technology
No handset
modification

No consumer behavior
change

Expensive network
modifications required

Resistance toward more
antennas in
neighborhoods

Line-of-sight constraint
Medium resolution (not
less than 150 m)

Time
Distance of
Arrival
(TDOA)

Triangulates at least
three stations to
measure and compare
arrival time of signal
from a user

RF technology
No handset
modification

No consumer behavior
change

Line-of-sight constraint
Expensive
Medium resolution
Appropriate for CDMA

Enhanced
cell ID
(E-CID)

Software-based
solution that compares
list of cell sites
available to user and
checks for overlaps

RF technology
Line of sight not
required

Moderate cost to
upgrade

Works only with GSM
Some modification
required in handset
and network

Handset based
Global
Positioning
System
(GPS)

Radio navigation
system comprising
low-orbit satellites.
Triangulation by
measuring the time to
communicate with
three satellites

FF technology
Very accurate, 1–5 m,
95% precision

Not dependent on
network

Line-of-sight issues
Significant handset
Handset modification
May require consumer
behavior change
modifications

Hybrid technology
Enhanced
observed
time
difference
(E-OTD)

Similar to TDOA, but
handset calculates the
location

RF technology
Accuracy of 50–125 m
Some behavior change

Suited for GSM only
Network and handset
modification

Cell coverage necessary

Assisted
global
positioning
system
(A-GPS)

Processing done by
network while using
the satellites

RF technology
Moderate modification
to handset

Line-of-sight
constraint reduced

Significant changes to
network

518 Guide to Cloud Computing for Business and Technology Managers

carefully designed interfaces and/or detailed knowledge of cus-
tomer profiles, needs, and preferences. So, given existing technical
limitations such as device capabilities and access speeds combined
with human limitations such as reduced consideration sets and the
need for speed and convenience, in order for LBSs to succeed, they
will need to deliver relevant, targeted, and timely information to
consumers at the time and place of their choice.

 Also, from a database perspective, LBSs raise critical challenges
such as spatial and temporal query processing because the contin-
uous movement of users or objects leads to the need for fast and
frequent or continuous updates to the databases. Some of the most
important database research challenges brought to the surface by
LBS are the following:

 i. Support for nonstandard-dimension hierarchies: In LBS, the
geographical area may be divided into multidimensional
regions following the pattern of network coverage. Until
now, geographical area representation models used by data
warehouses were in the form of completely balanced trees
(strict hierarchies), which cannot capture irregularities like
those that frequently occur in mobile networks (e.g., the same
region covered by more than one base station).

 ii. Support for imprecision and varying precision: Varying precision
means that the location of the same user may be pinpointed
with different accuracies depending on the positioning tech-
nology used while he or she is roaming from network to net-
work. Imprecision means that the location data for the trace of
a specific user may be incomplete (e.g., a user may have gone
out of the network coverage or may have switched off the
device for some time). So, varying precision and imprecision

TABLE 23.3

Accuracy and TIFF for Several Location Techniques

Technique Network Impact Terminal Impact Accuracy TTFF

Cell ID None None 250 m–20 km <1 s
Signal strength None None 100 m–10 km <1 s
TOA/TDOA Medium Low/medium 40–150 m <1 s
AOA/DOA High None 50–150 m <1 s
Fingerprint High None 50–150 m Seconds
GPS Low Very high 3–50 m Seconds
Hybrid systems Depends on the

techniques hybridized
Depends on the
techniques
hybridized

3–100 m Seconds

Ultrawide baud Dedicated infrastructure Very high 10–50 cm <1 s

519Context-Aware Applications

should be carefully handled by employing intelligent query-
processing techniques, especially for queries on complete
user traces.

 iii. Support for movement constraints and transportation networks:
Most of the time, users move on certain routes as defined
by transportation networks (e.g., railways, roads), and their
movement is blocked depending on the morphology of the
land (e.g., mountains). The incorporation of such constraints
into query resolution may offer increased positioning accu-
racy to LBS despite the potentially low-accuracy positioning
technology used.

 iv. Support for spatial data mining on vehicle movement.
 v. Support for continuous location change in query-processing

techniques.

 2. Ethical challenges: From an ethical point of view, a critical challenge
is to protect user privacy. LBS can potentially intrude on customer
privacy. The adoption of LBS is highly dependent on the successful
confrontation of digital frauds, attempts of intrusion in customer
databases with sensitive data and profiles, and the threat of unauthor-
ized or uncontrolled resale of location information. It has also been
shown that a privacy-intruding service (e.g., an always-on tracking
service), despite its usability, is not desirable by users since it does not
allow them to switch it off whenever they want. So, when designing
an LBS and in order for the service to be adopted, the provider should
take into account very seriously the user’s concerns on privacy.

 3. Business challenges: Capitalizing on the promise of LBS requires
developing sustainable and viable business models for offering such
services. Unfortunately, until today, there has been little effort on
developing a framework with which to identify the most appropri-
ate business models for the large variety of LBSs. The major obsta-
cle for this arises from the fact that there is a multitude of players
participating in the provision of such services forming a complex
value network.

 The main categories under which these players are grouped are the
following:
• Application developers and content providers
• Service providers and network providers
• Hardware manufacturers

 The roles of all these different actors or players are many times con-
flicting if not competitive, and fairness in revenue sharing is viewed
differently by each actor. In this context, it is difficult to determine
which activities should be performed by which actor (e.g., should

520 Guide to Cloud Computing for Business and Technology Managers

the network operator develop its own services or outsource them
to more focused application providers) or to identify which actor
should be the dominant one in the business model (i.e., the operator
providing access to its customer base, the content or service provider
offering the actual service, or the location technology vendor offer-
ing the enabling positioning equipment).

23.5 Summary

Considering the tremendous growth in mobile-based services and applica-
tions, context-aware applications are envisaged to emerge as an area with
high-growth business potential in the future. None of these services and
applications will be viable without being enabled by cloud computing and
big data. This chapter introduces the fundamentals of context-aware systems
with specific context of the mobile-based applications that is presently wit-
nessing the highest growth in the consumer market space. Mobile services
and applications have the potential to be the killer apps for the coming boom
in the m-business. The later part of the chapter discusses aspects of location
based services (LBSs) and attendant challenges.

521

Appendix: Future of Moore’s Law

On April 19, 1965, Gordon Moore, the cofounder of Intel Corporation, pub-
lished an article in Electronics Magazine entitled “Cramming More Compo-
nents onto Integrated Circuits” in which he identified and conjectured a
trend that computing power would double every 2 years (this was termed as
Moore’s law in 1970 by the CalTech professor and VLSI pioneer, Calvin Mead).
This law has been able to predict reliably both the reduction in costs and the
improvements in computing capability of microchips, and those predictions
have held true (Figure A.1).

In 1965, the amount of transistors that fitted on an integrated circuit could
be counted in tens. In 1971, Intel introduced the 4004 microprocessor with
2300 transistors. In 1978, when Intel introduced the 8086 microprocessor, the
IBM PC was effectively born (the first IBM PC used the 8088 chip)—this chip
had 29,000 transistors. In 2006, Intel’s Itanium 2 processor carried 1.7 billion
transistors. In the next 2 years, we will have chips with over 10 billion tran-
sistors. What does this mean? Transistors are now so small that millions of
them could fit on the head of a pin. While all this was happening, the cost
of these transistors was also exponentially falling, as per Moore’s prediction
(Figure A.2).

In real terms, this means that a mainframe computer of the 1970s that cost
over $1 million had less computing power than your iPhone has today. The
next generation of smartphone we will be using in the next 2–3 years will
have 1 GHz processor chips. That is roughly one million times faster than
the Apollo Guidance Computer. Theoretically, Moore’s law will run out of
steam somewhere in the not too distant future. There are a number of pos-
sible reasons for this. Firstly, the ability of a microprocessor silicon-etched
track or circuit to carry an electrical charge has a theoretical limit.

At some point when these circuits get physically too small and can no lon-
ger carry a charge or the electrical charge bleeds, then we will have a design
limitation problem. Secondly, as successive generations of chip technol-
ogy are developed, manufacturing costs increase. In fact recently, Gordon
Moore said that each new generation of chips requires a doubling in cost
of the manufacturing facility as tolerances become tighter. At some point,
it will theoretically become too costly to develop the manufacturing plants
that produce these chips. The usable limit for semiconductor process tech-
nology will be reached when chip process geometries shrink to be smaller
than 20 nanometers (nm) to 18 nm nodes. At those nodes, the industry will
start getting to the point where semiconductor manufacturing tools are too
expensive to depreciate with volume production; that is, their costs will be so

522 Appendix

high that the value of their lifetime productivity can never justify it. Lastly,
the power requirements of chips are also increasing. More power being
equivalent to more heat equivalent to bigger batteries implies that at some
point, it becomes increasingly difficult to power these chips while putting
them on smaller platforms.

1975 1980 1985 1990 1995 2000 2005 2010
1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

10,000,000,000

1,000,000,000

Transistors

1970

4004
8008

8080

8086

286

Intel386TM Processor

Intel “Pentium” Processor
Intel486TM Processor

Intel “Pentium” II Processor

Dual-Core Intel “Itanium” 2 Processor

Intel “Itanium” 2 Processor
Intel “Itanium” Processor

Intel “Pentium” 4 Processor
Intel “Pentium” III Processor

Moore’s law

FIGURE A.1
Increase of the number of transistors on an Intel chip.

1990

Im
pr

ov
em

en
t

1

10

100

1,000

10,000

100,000

1,000,000
Disk capacity
Disk throughput
Network bandwidth
CPU speed

2000
Year

2010

FIGURE A.2
Hardware trends in the 90s and the current decade.

523Appendix

A.1 Cloudware and Moore’s Law

Deploying cloudware entails transferring processing to the cloud. What are
the economic issues of moving a task from one computer to another? A com-
putation task has four characteristic dimensions:

• Computation—transforming information to produce new
information

• Database Access—access to reference information needed by the
computation

• Database Storage—long-term storage of information (needed for
later access)

• Networking—delivering questions and answers

The ratios among these quantities and their relative costs are pivotal: it is
fine to send a GB over the network if it saves years of computation, but it is
not economical to send a kilobyte question if the answer could be computed
locally in a second. Consequently, on-demand computing is only economi-
cal for very CPU-intensive (100,000 instructions per byte or a CPU day-per
gigabyte of network traffic) applications; for most other applications, pre-
provisioned computing is likely to be more economical.

But considering the trends, one can conjecture that Moore’s law will con-
tinue to remain valid not for the processing chips per se, but for the cost of
cloudware: cloudware i.e Internet-accessible computing power would double every
2 years.

525

References

Akerkar, R. (Ed.), Big Data Computing (CRC Press, 2014).
Alexander, C., The Timeless Way of Building (Oxford University Press, 1979).
Alexander, C. et al., A Pattern Language (Oxford University Press, 1977).
Bean, J., SOA and Web Services Interface Design: Principles, Techniques and Standards

(San Francisco, CA: Morgan Kaufmann Press, 2010).
Berman, J.J., Principles of Big Data: Preparing, Sharing and Analyzing Complex Information

(Morgan Kaufman, 2013).
Bernstein, P. and E. Newcomer, Principles of Transaction Processing (Burlington,

MA: Morgan Kaufmann, 2nd edn., 2009).
Bessis, N. and C. Dobre, Big Data and Internet of Things: A Roadmap for Smart

Environments (Springer, 2014).
Bunker, G. and D. Thomson, Delivering Utility Computing: Business-Driven IT

Optimization (Wiley, 2006).
Burgess, M., In Search of Certainty: The Science of Our Information Infrastructure

(CreateSpace, 2013).
Buyya, R., J. Broberg, and A. Goscinski (Eds.), Cloud Computing: Principles and

Paradigms (Hoboken, NJ: Wiley, 2011).
Chappell, D., Enterprise Service Bus (Sebastopol, CA: O’Reilly, 2004).
Chatarjee, S. and J. Webber, Developing Enterprise Web Services: An Architect’s Guide

(Upper Saddle River, NJ: Prentice Hall, 2003).
Chin, A. and D. Zhang (Eds.), Mobile Social Networking: An Innovative Approach

(Springer, 2014).
Coulouris, G., J. Dollimore, T. Kindberg, and G. Blair, Distributed Systems: Concept and

Design (Boston, MA: Addison-Wesley, 2011).
Coyne, R., Logic Models of Design (University College of London, 1988).
Daconta, M.C., L.J. Obrst, and K.T. Smith, The Semantic Web: A Guide to the Future of

XML, Web Services, and Knowledge Management (Wiley, 2003).
Dey, A.K., Understanding and Using Context. Personal and Ubiquitous Computing Journal,

1, 4–7, 2001.
Domingue, J., D. Fensel, and J.A. Hendler (Eds.), Handbook of Semantic Web Technologies

(Springer, 2011).
Drogovtsev, S.N. and J.F.F. Mendes, Evolution of Networks—From Biological Nets to the

Internet and WWW (Oxford University Press, 2003).
Duggan, D., Enterprise Software Architecture and Design: Entities, Services, and Resources

(Hoboken, NJ: Wiley, 2012).
Finkelstein, C., Enterprise Architecture for Integration: Rapid Delivery Methods and

Technologies (Artech House, 2006).
Frischmann, B.M., Infrastructure: The Social Value of Shared Resources (Oxford University

Press, 2012).
Furht, B. and A. Escalante (Eds.), Handbook of Data Intensive Computing (Springer,

2011).
Gorton, I. and D.K. Gracio (Eds.), Data Intensive Computing: Architectures, Algorithms

and Applications (Cambridge University Press, 2013).

526 References

Graham, I., Requirements Modeling and Specification for Service Oriented Architecture
(Chichester, U.K.: Wiley, 2008).

Harney, J., Application Service Provider (ASPs): A Manager’s Guide (Boston, MA:
Addison-Wesley, 2003).

Hentrich, C. and U. Zdun, Process-Driven SOA: Patterns for Aligning Business and IT
(Boca Raton, FL: Auerbach Publications, 2011).

Hugos, M. and D. Hulitzky, Business in the Cloud: What Every Business Needs to Know
About Cloud Computing (Wiley, 2011).

Hwang, K. et al., Distributed and Cloud Computing: From Parallel Processing to the
Internet of Things (Morgan-Kaufmann, 2011).

Jackson, K., OpenStack Cloud Computing Cookbook (Birmingham, U.K.: PACKT
Publishing, 2012).

Juric, M., R. Nagappan, R. Leander, and S. Jeelani Basha, Professional J2EE EAI
(Birmingham, U.K.: Wrox Press, 2011).

Juric, M., P. Sarang, R. Loganathan, and F. Jennings, SOA Approach to Integration: XML,
Web Services, ESB, and BPEL in Real-World SOA Projects (Birmingham, U.K.:
PACKT Publishing, 2007).

Kale, V., Implementing SAP CRM: The Guide for Business and Technology Managers
(London, U.K.: Auerbach Publication, 2014).

Kupper, A., Location-Based Services: Fundamentals and Operation (Wiley, 2005).
Kwok, Y.-K.R., Peer-to-Peer Computing: Applications, Architecture, Protocols, and

Challenges (CRC Press, 2012).
Lewis, T.G., Network Science: Theory and Practice (Wiley, 2009).
Linthicum, D., David Linthicum’s Guide to Client Server and Intranet Development Guide

(New York: John Wiley, 1997).
Loke, S., Context-Aware Pervasive Systems: Architectures for a New Breed of Applications

(Boca Raton, FL: Auerbach Publications, 2006).
Luckham, D., Event Processing for Business: Organizing the Real Time Enterprise

(Hoboken, NJ: Wiley, 2012).
Mahmood, Z. and S. Saeed (Eds.), Software Engineering Frameworks for the Cloud

Computing Paradigm (Springer, 2013).
Maier, M.W. and E. Rechtin, The Art of Systems Architecting, 3rd ed. (CRC Press,

2009).
Manes, A.T., Web Services: A Manager’s Guide (Boston, MA: Addison-Wesley, 2003).
Marinescu, D., Cloud Computing: Theory and Practice (Boston, MA: Morgan Kaufmann,

2013).
Marino, J. and M. Rowley, Understanding SCA (Service Component Architecture)

(Addison-Wesley, 2010).
McGovern, J., O. Sims, A. Jain, and M. Little, Enterprise Service Oriented Architectures:

Concepts, Challenges, Recommendations (Dordrecht, the Netherlands: Springer,
2006).

Minoli, D., A Networking Approach to Grid Computing (Hoboken, NJ: Wiley, 2005).
Newcomer, E. and G. Lomow, Understanding SOA with Web Services (Upper Saddle

River, NJ: Addison-Wesley Professional, 2004).
Pacheco, P., An Introduction to Parallel Programming (Amsterdam, the Netherlands:

Morgan Kaufmann, 2011).
Palfrey, J. and U. Gasser, Interop: The Promise and Perils of Highly Interconnected Systems

(Basic Books, 2012).

527References

Pant, K. and M. Juric, Business Process Driven SOA Using BPMN and BPEL: From
Business Process Modeling to Orchestration and Service Oriented Architecture
(Birmingham, U.K.: PACKT Publishing, 2008).

Papazoglou, M.P. and P.M.A. Ribbers, E-Business: Organizational and Technical
Foundations (Wiley, 2006).

Puder, A., A. Romer, and F. Pilhofer, Distributed System Architecture: A Middleware
Approach (Amsterdam, the Netherlands: Morgan Kaufmann, 2005).

Renso, C., S. Spaccapietra, and E. Zimanyi (Eds.), Mobility Data: Modeling, Management,
and Understanding (Cambridge University Press, 2013).

Ruh, W., F. Maginnis, and W. Brown, Enterprise Application Integration: A Wiley
Technical Brief (New York: Wiley, 2001).

Sadasivam, G.S. and R. Shankarmani, Middleware & Enterprise Integration Technologies
(New Delhi, India: Wiley, 2010).

Sage, A.P. and W.B. Rouse, Handbook of Systems Engineering and Management
(Wiley, 2009).

Sarbazi-Azad, H. and A.Y. Zomaya, Large Scale Network-Centric Distributed Systems
(Wiley, 2013).

Schmidt, D., M. Stal, H. Rohnert, and F. Buschmann, Pattern-Oriented Software
Architecture Volume 2: Patterns for Concurrent and Networked Objects (Wiley, 2000).

Scoble, R. and S. Israel, Age of Context: Mobile, Sensors, Data and the Future of Privacy
(Patrick Brewester, 2014).

Sherif, M.H. (Ed.), Handbook of Enterprise Integration (Boca Raton, FL: Auerbach
Publications, 2010).

Smatani, G., B2B Integration: A Practical Guide to Collaborative E-Commerce (London,
U.K.: Imperial College Press, 2002).

Tapscott, D., D. Ticoll, and A. Lowy, Digital Capital: Harnessing the Power of Business
Webs (Boston, MA: Harvard Business School Press, 2000).

West, B.J. and P. Grigolini, Complex Webs: Anticipating the Improbable (Cambridge
University Press, 2011).

Yang, L., A. Waluyo, J. Ma, L. Tan, and B. Srinivasan, Mobile Intelligence (Hoboken, NJ:
Wiley, 2010).

Zhou, H., The Internet of Things in the Cloud: A Middleware Perspective (CRC Press, 2013).

“… a comprehensive study of the technical and business impacts and
implications of cloud computing.”
—Michael Hugos, Author of Business in the Cloud

“… defines a new cloudware paradigm for innovative applications of the
future.”
—Honbo Zhou, Author of The Internet of Things in the Cloud: A Middleware
Perspective

Guide to Cloud Computing for Business and Technology Managers:
From Distributed Computing to Cloudware Applications unravels the
mystery of cloud computing and explains how it can transform the operating
contexts of business enterprises. It provides a clear understanding of what
cloud computing really means, what it can do, and when it is practical to use.

Addressing the primary management and operation concerns of cloudware,
including performance, measurement, monitoring, and security, this
pragmatic book:

• Introduces the enterprise applications integration (EAI) solutions that
were a first step toward enabling an integrated enterprise

• Details service-oriented architecture (SOA) and related technologies
that paved the road for cloudware applications

• Covers delivery models like IaaS, PaaS, and SaaS, and deployment
models like public, private, and hybrid clouds

• Describes Amazon, Google, and Microsoft cloudware solutions and
services, as well as those of several other players

• Demonstrates how cloud computing can reduce costs, achieve
business flexibility, and sharpen strategic focus

Unlike customary discussions of cloud computing, Guide to Cloud
Computing for Business and Technology Managers: From Distributed
Computing to Cloudware Applications emphasizes the key differentiator—
that cloud computing is able to treat enterprise-level services not merely as
discrete stand-alone services, but as Internet-locatable, composable, and
repackageable building blocks for generating dynamic real-world enterprise
business processes.

K22152

w w w . c r c p r e s s . c o m

Information Technology

Guide to
Cloud Computing
for Business and

Technology Managers

G
uid

e to C
loud

 C
om

p
uting

 for
B

usiness and
 Technolog

y M
anag

ers

From Distributed Computing
to Cloudware Applications

Vivek Kale

K
ale

K22152_cover.indd 1 10/21/14 11:33 AM

	Front Cover
	Contents
	Preface
	Acknowledgments
	Author
	Chapter 1: Increasing Functional Specificity over Increasingly Commoditized Hardware
	Chapter 2: Networking and Internetworking
	Chapter 3: Distributed Systems
	Chapter 4: Enterprise Application Integration (EAI)
	Chapter 5: Integration Technologies
	Chapter 6: J2EE for Enterprise Integration
	Chapter 7: Service-Oriented Architecture
	Chapter 8: Web Services
	Chapter 9: Enterprise Service Bus (ESB)
	Chapter 10: Service Composition
	Chapter 11: Application Service Providers (ASPs)
	Chapter 12: Grid Computing
	Chapter 13: Cloudware Basics
	Chapter 14: Cloudware Economics
	Chapter 15: Cloudware Technologies
	Chapter 16: Cloudware Vendor Solutions
	Chapter 17: Cloudware Application Development
	Chapter 18: Cloudware Operations and Management
	Chapter 19: Cloudware Security
	Chapter 20: Migrating to Cloudware
	Chapter 21: Big Data Computing Applications
	Chapter 22: Mobile Applications
	Chapter 23: Context-Aware Applications
	Appendix: Future of Moore’s Law
	References
	Back Cover

