

SMASHING

CSS

A John Wiley and Sons, Ltd, Publication

SMASHING

CSS
PROFESSIONAL TECHNIQUES FOR
MODERN LAYOUT

Eric A. Meyer

PUBLISHER’S ACKNOWLEDGMENTS

Some of the people who helped bring this book to market include the following:

Editorial and Production
VP Consumer and Technology Publishing Director: Michelle Leete
Associate Director- Book Content Management: Martin Tribe
Associate Publisher: Chris Webb
Publishing Assistant: Ellie Scott
Project Editor: Brian Herrmann
Copy Editor: Debbye Butler
Editorial Manager: Jodi Jensen
Sr. Project Editor: Sara Shlaer
Editorial Assistant: Leslie Saxman

Marketing
Senior Marketing Manager: Louise Breinholt
Marketing Executive: Kate Parrett

Composition Services
Compositor: Jennifer Mayberry
Proofreader: Susan Hobbs
Indexer: Potomac Indexing, LLC

Th is edition fi rst published 2011
© 2011 John Wiley & Sons, Ltd.

Registered offi ce
John Wiley & Sons Ltd, Th e Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ,
United Kingdom

For details of our global editorial offi ces, for customer services and for information about
how to apply for permission to reuse the copyright material in this book please see our
website at www.wiley.com.

Th e right of the author to be identifi ed as the author of this work has been asserted in
accordance with the Copyright, Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, except as permitted by the UK Copyright,
Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that
appears in print may not be available in electronic books.

Content reproduced from Meyerweb.com is copyright material and cannot be repro-
duced without permission ©1995-2010 Eric A. and Kathryn S. Meyer. All Rights
Reserved. ©1995-2010 Eric A. and Kathryn S. Meyer. All Rights Reserved.

Designations used by companies to distinguish their products are oft en claimed as
trademarks. All brand names and product names used in this book are trade names,
service marks, trademarks or registered trademarks of their respective owners. Th e
publisher is not associated with any product or vendor mentioned in this book. Th is
publication is designed to provide accurate and authoritative information in regard to
the subject matter covered. It is sold on the understanding that the publisher is not
engaged in rendering professional services. If professional advice or other expert
assistance is required, the services of a competent professional should be sought.

978-0-470-68416-0

Set in 10/12 Minion Pro Regular by Wiley Composition Services

Printed in the US by CJK

http://www.wiley.com

Kathryn, Carolyn, and Rebecca

Who look like all my dreams

viii

About the Author

Eric A. Meyer is an internationally recognized expert on the subjects of HTML, CSS, and
Web standards, and has been working on the web since late 1993. He is the founder of
Complex Spiral Consulting, which counts among its clients America On-Line, Apple, Adobe,
Microsoft , Progressive Insurance, Sherwin-Williams, and more; a co-founder of the micro-
formats movement; and co-founder (with Jeff rey Zeldman) of An Event Apart, the conference
series for people who make web sites. He is the author of fi ve top-selling books on CSS and
web design.

ix

Acknowledgements

Th anks to Chris Webb for bringing me aboard and then patiently suff ering through all the
delays, setbacks, and stumbles. Th ere were times when it looked like the project might grind
to a halt, and every time Chris was there to prod it forward with good humor and infi nite
calm. Much respect, and one of these years we’ll schedule our summer vacations to coincide
so we can hoist a few daiquiris by the pool.

Th anks also to Debbye Butler and Brian Herrmann for shepherding me through the editorial
review process and spotting the places I went off into the weeds, fumbled my explanations,
and was generally unclear.

To everyone who keeps reading what I write, whether on paper or on the web: thank you,
thank you, a hundred thousand times thank you.

To my wife and daughters, more thanks than I could begin to enumerate, let alone express.

Eric A. Meyer
Cleveland Heights, Ohio
13 August 2010

01_684160-ffirs.indd ix01_684160-ffirs.indd ix 10/5/10 7:37 PM10/5/10 7:37 PM

Contents

PART I: FUNDAMENTALS 3

Chapter 1: Tools 5
Firebug 6
Web Developer Toolbar 13
Internet Explorer Developer Toolbar (or Tools) 17
Dragonfl y (for Opera) 22
Web Inspector (Safari) 26
XRAY 29
SelectORacle 30
Diagnostic Style Sheet 31
Reboot Styles 33
IE9.js 36

Chapter 2: Selectors 39
Pseudo What? 40
Targets with Style 41
Specifi city 43
Importance 44
What Happens when You omit Shorthand Value Keywords 45
Selectively Overriding Shorthands 47
Universal Selection 49
ID vs. Class 50
ID with Class 52
Multiclassing 53
Simple Attribute Selection 54
Attribute Selection of Classes 56
ID vs. Attribute Selector 57
Substring Attribute Selection 58
More Substring Attribute Selection 60
Child Selection 62
Simulated Partial Child Selection 63
Sibling Selection 65
Generating Content 67

xii

CONTENTS

PART II: ESSENTIALS 71

Chapter 3: Tips 73
Validate! 74
Ordering Your Font Values 75
Rolling in Line-Height 75
Unitless Line-Height Values 76
Avoid Style-less Border Values 78
Controlling Border Appearance with Color 78
Suppressing Element Display 80
Suppressing Element Visibility 82
Th rowing Elements Off -screen 83
Image Replacement 84
Print Styles 87
Developing Print Styles 87
Block-level Links 89
Margin or Padding? 90
Outdenting Lists 92
Bulleting Lists 93
Background Bullets 95
Generating Bullets 98
You Have More Containers than You Th ink 100
Document Backgrounds 103
Server-specifi c CSS 104

Chapter 4: Layouts 107
Outlines Instead of Borders 108
Centering Block Boxes 110
Float containment: overfl ow 113
Float containment: fl oating 115
Clearfi xing 117
Adjacent Clearing 118
Two Simple Columns 120
Th ree Simple Columns 121
Faux Columns 124
Liquid Bleach 127
Th e One True Layout 131
Th e Holy Grail 135
Fluid Grids 140
Em-Based Layout 144
Negative Margins in Flow 147
Positioning Within a Context 150
Pushing out of the Containing Block 152
Fixed headers and footers 155

CONTENTS

xiii

Chapter 5: Eff ects 159
Complexspiral 160
CSS Pop-ups 165
CSS Menus 167
Boxpunching 169
Pre-CSS 3 Rounded Corners 172
CSS 3 Rounded Corners 177
CSS Sprites 179
Sliding Doors 182
Clipped Sliding Doors 185
CSS Parallax 187
Ragged Floats 190
Better Ragged Floats 194
Boxing Your Images 198
Constrained Images 200

PART III: CUTTING EDGE 203

Chapter 6: Tables 205
Head, Body, Foot 206
Row Headers 208
Column-oriented Styling 210
Table Mapping 215
Table Graphs 222

Chapter 7: Th e (Near) Future 231
Styling HTML 5 232
Classing like HTML 5 234
Media Queries 235
Styling Occasional Children 240
Styling Occasional Columns 243
RGB Alpha Color 246
HSL and HSL Alpha Color 248
Shadowy Styles 250
Multiple Backgrounds 251
2D Transforms 256

Index 269

Introduction

CSS has become so phenomenally successful—almost as successful as HTML itself—that it is
sometimes hard to grasp. It’s everywhere now, from Web browsers to app stores to chat clients,
and it doesn’t show any signs of fading away. As the language’s use continues to spread, its
capabilities continue to advance.

Th is book contains close to 100 tips, techniques, tools, and tricks for making great Web sites
using CSS. Each of them is meant to stand on its own: you can fl ip to any random page and
just read what you fi nd there and not worry you’ve missed something crucial earlier in the
chapter. What that means is that the text assumes you are at least somewhat familiar with CSS
and how it’s used. Th e assumed level of profi ciency is best described as “advanced beginner to
intermediate.” So if you’re just starting out, or if you typically know more about CSS than the
people writing the specifi cations, you’re not likely to get much out of this book. For everyone
else, there’s a fair amount to learn and enjoy.

In part 1 of the book, there’s an overview of handy tools and fundamental techniques,
including some of the more obscure CSS selectors. Part 2 presents a variety of things you can
do with CSS including interesting eff ects, diff erent routes to the same goal, layouts, and more.
Th en in part 3 are the advanced, cutting-edge techniques that might not be ready to use on
every project you get this month but will become more and more central to your work as time
progresses.

Please visit the book's companion web site at www.wiley.com/go/smashingcss to download
code samples.

Little more than a decade ago, you might have been forgiven for thinking CSS was on its
deathbed, but as of 2010 it’s more vibrantly alive and compelling than ever. I hope you’ll enjoy
what’s found between the covers of this book as much as I enjoyed assembling it!

PA
R

T

I

I FUNDAMENTALS

Chapter 1: Tools

Chapter 2: Selectors

SMASHING CSS

C
H

A
P

T
E

R

1

TOOLS1
THE PROCESS OF building Web pages (or
even applications), like anything else, is greatly
helped by the use of tools. When it comes to CSS,
there are both tools to help us write the CSS and
the use of CSS to construct tools that help us out.

Th ere are even tools out there that make browsers
support more CSS than their native code base
can bear. You’re a builder, a craft er, a maker—this
chapter details some things that will really fl esh
out your toolbox.

6

PART I: FUNDAMENTALS

FIREBUG

Firebug (see Figure 1-1) is one of two utterly essential tools in any Web creator’s toolbox. (For
the other one, jump ahead to the “Web Developer Toolbar” section.) It’s a completely free
extension to the completely free Firefox. If you’re using another browser, keep reading: You
can get in on the Firebug action too!

Figure 1-1: The Firebug home page.

To get your copy, go to getfirebug.com in Firefox. Click the Install button (it’s on the
upper-right as of this writing) and let it install. Relaunch Firefox and prepare to be amazed.

Th ere’s no way I can cover everything Firebug is capable of doing in this single tip; in fact, a
whole chapter would not be enough. Here are some highlights.

Th e HTML tab (see Figure 1-2) shows you the document structure on the left (with twisty
arrows to expand or collapse subtree of the document). Note that when you hover over an
element name in the HTML tab, that element is highlighted in the page itself. Th is includes
showing you the content area and padding and margins of the element via color-coded
regions, which is just fantastic. As of this writing, the content area is light blue, padding light
purple, and margins light yellow, but the colors aren’t as important as the fact that you can just
see them right there on the page.

CHAPTER 1: TOOLS

7
Figure 1-2: Element layout visualization with Firebug.

On the right side of the HTML tab, you can see the CSS that applies to the currently inspected
element by clicking the Style tab (see Figure 1-3). Th is not only can be the stuff you, the
author, have written, but also the things that the browser itself is applying from its built-in
styles. If you see styles from html.css or quirk.css, for example, those are the built-in styles.
(Th ese are called “UA styles,” for user agent styles. You can change whether or not they’re
displayed via a pop-up menu from the Style tab.)

One thing to note is that sometimes Firebug will show you properties you didn’t specify, like
-moz-background-clip. Unless you’re sure you declared those explicitly, you can more or less
ignore them. Also, if you use a shorthand property, it will be expanded out into the individual
properties. Th at is to say, something like this:

font: 1em "Andale Mono", "Courier New", Courier, monospace;

...will be represented in Firebug like this:

font-family: "Andale Mono","Courier New",Courier, monospace;

font-size: 1em;

font-size-adjust: none;

font-stretch: normal;

font-style: normal;

font-variant: normal;

font-weight: normal;

line-height: normal;

8

PART I: FUNDAMENTALS

Figure 1-3: Firebug split to a separate window with the Style tab in full effect.

While this representation isn’t necessarily bad—it does remind you that there’s oft en more
said in using a shorthand property than what you actually say—it can be confusing at fi rst.
(For more on shorthand properties, see Chapter 2.)

Another thing to note is that the rules shown in the Style tab are listed in reverse-specifi city
order; that is, the fi rst one is the most specifi c rule that applies to the inspected element, the
second is the next-most specifi c, and so on. (For more on specifi city, see “Specifi city” in
Chapter 2.)

You can inspect any element just by right-clicking on it and selecting Inspect Element from
the contextual menu that comes up (see Figure 1-4). You can also click the little pointer-and-
box icon next to the Firebug icon in order to switch into inspection mode. As you move
around the page, elements will outline, and clicking on one will inspect it.

You can click just to the left of any declaration to disable it via Firebug. Th is can be very useful
when you’re trying to see how properties interact by testing the eff ects of turning them off one
at a time. As shown in Figure 1-5, you can also see a little box of whatever color a given color
declaration means by hovering the mouse pointer over the value.

CHAPTER 1: TOOLS

9
Figure 1-4: The Inspect Element contextual menu option.

Figure 1-5: Disabled styles and hovered color box.

05_684160-ch01.indd 905_684160-ch01.indd 9 10/5/10 7:38 PM10/5/10 7:38 PM

10

PART I: FUNDAMENTALS

You can also have Firebug’s Style tab show you the computed styles for the element (Figure
1-6), which means it will show you the values that the browser has applied for every CSS
property it knows, whether anyone said anything about them or not. Remember, all CSS
properties have default values; here you can see them all. Th is view can be useful when you
want to know, for example, exactly how many pixels of line-height the browser is
applying to a heading.

Figure 1-6: Computed styles.

You can also get a look at the exact dimensions and sizes of an element’s box model compo-
nents, like height, width, padding, margins, and so on (see Figure 1-7). Th ese are shown in
pixels. Even cooler: When you hover over the box shown in this panel, pixel rulers appear in
the page itself, placed along the top and left edges of the element’s outer border edge.

Th ere’s tons more: As evident in Figure 1-8, you can edit element attribute values (like
class) or the element content itself, add or edit CSS properties and values, and much more.
Explore the interface by clicking or right-clicking just about anything in the Firebug interface
to see what you can do.

CHAPTER 1: TOOLS

11Figure 1-7: The Layout tab.

Figure 1-8: Editing CSS on the fl y in the Style tab.

12

PART I: FUNDAMENTALS

One word of warning: When you’re inspecting an element’s CSS in the Style tab, you will not
see any pseudo-element–driven rules that aff ect that element. As an example, if you have a
rule using the selector p:first-letter, that rule won’t appear when you’re inspecting a p
element. Pseudo-classes will show up, but pseudo-elements won’t. Th is can be especially
challenging if you’re using a clearfi x solution that involves generated content (see “Clearfi xing,”
in Chapter 4, for more).

If you aren’t using Firefox for development but want to get Firebug’s essential goodness, go to
getfirebug.com/lite.html (shown in Figure 1-9) and follow the instructions for
enabling it in Internet Explorer, Opera, or Safari, as fi ts your situation. You can link it into a
page that you’re testing, or add it to your bookmark bar as a bookmarklet (which I
recommend).

Figure 1-9: Firebug Lite running in Internet Explorer.

Th is version of Firebug isn’t as full-featured as the Firefox extension—thus the “Lite”
moniker—but it’s still quite powerful and useful.

CHAPTER 1: TOOLS

13

WEB DEVELOPER TOOLBAR

In addition to Firebug, the Web Developer Toolbar (WDT) is the other essential tool in any
Web creator’s toolbox. It’s a completely free extension to the completely free Firefox.

To get your copy, go to chrispederick.com/work/web-developer and install it.
Alternatively, you can go to addons.mozilla.org, search for Web Developer Toolbar, and
install it from the WDT page there (see Figure 1-10).

Figure 1-10: The Web Developer toolbar page at addons.mozilla.org.

As with Firebug, there’s no way I can cover everything the WDT is capable of doing; in fact, a
whole chapter would not be enough. Here are some highlights from selected menus, but of
course you should take the time to explore all the menus and options available to you aft er
you’ve installed WDT.

You can disable caching of the page, which is useful if you’re doing a lot of tiny updates and
the browser cache is getting sticky. You can also turn off JavaScript (see Figure 1-11), which is
useful for fi nding out what happens to a page when all the scripted goodness breaks, or your
JavaScript framework doesn’t load.

14

PART I: FUNDAMENTALS

Figure 1-11: The Disable menu.

Several things in the CSS menu are covered by Firebug, but one thing that’s pretty nice is the
capability to switch off just the embedded styles, or just the linked styles (as shown in Figure
1-12), or just the inline styles. (Not that you should be using inline styles!) You can even kill
off most of the browser’s built-in styles, if you want to see things get freaky.

Th e Information menu (Figure 1-13) contains tons of interesting tidbits, including showing
the class and ID information in the document; an accounting of the page’s div order; a
summary of the colors used in the page; and more. You can also invoke an element informa-
tion mode that lets you click on any element to view a summary of its attributes and their
values, its position on the page, font information, its ancestor and descendant elements, and
so on. Th e Information menu is fairly similar to XRAY in what it tells you; more on XRAY
later in this chapter.

CHAPTER 1: TOOLS

15Figure 1-12: Disabling linked style sheets via the CSS menu.

Figure 1-13: Displaying class and ID values via the Information menu.

16

PART I: FUNDAMENTALS

With the Outline menu, depicted in Figure 1-14, you can outline classes of elements—all
blocks, all inlines, all links, all positioned elements, all table cells, and so forth—as well as set
up your own customized collection of elements and colors. You can also choose whether the
elements’ names will be displayed on the page while they’re outlined. Th is is a much more
powerful menu than it might fi rst seem. I think of it as the Layout Diagnostic menu, because I
can quickly outline sets of elements in order to quickly see how they’re laying out in relation
to each other and where things might have gone wrong.

Figure 1-14: Outlining and identifying block elements via the Outline menu.

Th e Tools menu gives you quick access to a number of validators, error checkers, and debug-
ging consoles. One of its best features, though, is the presence of the Validate Local HTML
and Validate Local CSS items (see Figure 1-15). In both cases, the page you’re currently
viewing is packed into a serialized string and shipped off to the relevant validator. So, if you
select Validate Local HTML, the markup of the page will be sent to the HTML validator, and
you’ll get back a report. Th is is great for validating pages being served from behind a fi rewall,
or off your machine’s hard drive—that is, pages that are not on the public Web, and therefore
unreachable by the validator service. With local validation, that’s no longer an issue.

CHAPTER 1: TOOLS

17Figure 1-15: The Tools menu.

As I said at the outset, this is only a taste of what the WDT is capable of doing, so take the
time to really dig in and fi nd the tools that will make your life easier.

INTERNET EXPLORER DEVELOPER TOOLBAR (OR
TOOLS)

If you’re doing your primary Web development in Internet Explorer 7, then you can’t install
the Web Developer Toolbar (see preceding entry). Instead, you can install the Internet
Explorer Developer Toolbar (IEDT).

Th e URL for the IEDT is one of those classically indecipherable Microsoft URLs, so go to your
favorite search engine (use Google for extra irony) and type Internet Explorer Developer
Toolbar. It should be the fi rst result. Go ahead and install it if you’re using IE7. Th e IEDT
doesn’t work in IE8; we’ll get to what IE8 off ers in a moment.

Once you’ve gone through the installation, you go to the Tools menu in the far upper-right
corner of the browser chrome near the Pages menu (see Figure 1-16), not the Tools menu
over toward the left between Favorites and Help. In that menu, choose Toolbars, then
Explorer Bar, and then (at last!) IE Developer Toolbar.

18

PART I: FUNDAMENTALS

Figure 1-16: Finding the IE Developer Toolbar in IE7.

Once you’ve reached the IE Developer Toolbar, you get a Firebug-ish panel opening at the
bottom of the browser window, as shown in Figure 1-17. Th ere are also some Web Developer
Toolbar–like menus across the top of the panel. You can spawn the whole thing into its own
window by clicking the little “two windows” icon in the upper-right corner of the panel, next
to the close button. Expanding the panel in this manner can be particularly valuable in
low-resolution settings like netbook displays and overhead projectors.

CHAPTER 1: TOOLS

19
Figure 1-17: The IE Developer Toolbar in action.

One nice feature of the Toolbar is that you can easily toggle between showing computed styles
and just the declared styles using the Show Default Style Values check box (Figure 1-18).
Similarly, you can use Show Read-Only Properties to show you every last aspect of an
inspected element’s DOM (Document Object Model) properties. If you aren’t comfortable
with JavaScript and DOM scripting, this probably isn’t for you. (It certainly isn’t for me.)

05_684160-ch01.indd 1905_684160-ch01.indd 19 10/5/10 7:38 PM10/5/10 7:38 PM

20

PART I: FUNDAMENTALS

Figure 1-18: The IE Developer Toolbar with Show Default Styles disabled.

Th e IE Developer Toolbar includes a subset of the Web Developer Toolbar’s features, but most
of the really useful ones , like outlining elements and validating local HTML and CSS, appear
on the fi rst layer. View also has a nift y entry called CSS Selector matches (see Figure 1-19).
Th is will pop up a window that shows you all the rules in the CSS and how many times each
one matches elements in the document. Any rule that says “0 match(es) for:” isn’t matching
anything on the page, and you should consider removing that rule.

CHAPTER 1: TOOLS

21
Figure 1-19: The Selector Matches report.

IE8 includes built-in Developer Tools, so you don’t have to install anything extra. Th e
documentation is online and, as of this writing, housed at a URL only slightly less indecipher-
able than that for the Toolbar. So, just type Discovering Internet Explorer Developer Tools
into your favorite search engine and you should get there via the top result.

To fi re up the Tools, select Developer Tools in IE’s Tools menu (visible in Figure 1-20), or
press F12 on your keyboard. Yep, that’s it. What you get is something very similar to the IE
Developer Toolbar, which is to say a hybrid of Firebug and the Web Developer Toolbar. Th e
menus are mostly the same as the IE7 Toolbar’s, but the tabs below that are more like Firebug
than they are the IE7 Toolbar.

22

PART I: FUNDAMENTALS

Figure 1-20: The Developer Tools in IE8.

One thing that I personally fi nd confusing about the Developer Tool’s Style tab is that the
styles it lists are in an order that doesn’t really make sense to me. It certainly isn’t in order of
specifi city. Th e listing does show which declarations are being overridden by others, which is
nice, but without a sensible ordering like that in Firebug, it’s harder to work with.

Still, even though the Toolbar and Tools don’t capture the full range of features found in the
Firebug/Web Developer Toolbar, they are quite useful and should be a part of any Web
developer’s Internet Explorer install. Th ey can be quite useful in tracking down the source of
layout and other oddities in Explorer.

DRAGONFLY (FOR OPERA)

If your primary development browser is Opera, then you’ll want to make use of Dragonfl y
(Figure 1-21), a development environment that comes built into Opera 9.5 and later. Go to
opera.com/dragonfly to get more information.

CHAPTER 1: TOOLS

23Figure 1-21: The Dragonfl y page.

To bring up Dragonfl y, the default path is to pull down the Tools menu, and then under
Advanced, select Developer Tools. However, you can install a Debug menu by going to
opera.com/dragonfly and fi nding the install link. Once you’ve installed it, there’s easy
access to Dragonfl y and several features in that menu. Either way, you can also press
Option+Command+I (for Mac users) or Option+Control+I (for Windows) to bring it up. An
oddity is that this keyboard shortcut isn’t a toggle: If Dragonfl y is already open, you can’t use
the keyboard to close it. For that, you’ll need the mouse, or else Command+W (Control+W)
to close it. Th is works great if Dragonfl y is open in a separate window. If Dragonfl y is docked
in the browser window, though, Command+W only closes Dragonfl y if it’s been focused by
clicking on something in it. Otherwise, it closes the whole window.

A great feature of the Debug menu is that it has links straight to HTML, CSS, and other
specifi cations. Another fun area is the Layout submenu, which lets you set Opera into layout
modes like Emulate Text Browser and Show Structural Elements. Th ere’s even a Nostalgia
layout mode (shown in Figure 1-22) that will warm the heart of any veteran of 1980s-era
computing.

24

PART I: FUNDAMENTALS

Figure 1-22: The Dragonfl y page in Nostalgia view.

Th o ugh Dragonfl y’s layout bears a strong resemblance to Firebug’s, there are some notable
diff erences. In the fi rst place, the Styles tab on the right can show you the computed styles along
with the declared styles (see Figure 1-23), and each grouping can be expanded or contracted. As
with Firebug, what you see here is not exactly what was declared, with shorthand properties
being expanded out to individual properties. One nice touch is that Dragonfl y will show you the
shorthand properties if you want to see them—at least in the computed styles.

Another, less welcome diff erence from Firebug is that any declaration that is overridden by
another is grayed out with [overwritten] in orange-yellow text next to it (shown in
Figure 1-24). Th is clutters things up and makes it harder to see the values in the overridden
declarations.

CHAPTER 1: TOOLS

25Figure 1-23: Dragonfl y with the Computed Style grouping expanded.

Figure 1-24: Overwritten styles shown in the Styles tab.

26

PART I: FUNDAMENTALS

Figure 1-25 depicts the Layout tab, which shows you the layout box for the element being
inspected. In addition to showing you the dimensions of the layout box, it will also tell you the
pixel values for various properties like offsetTop and scrollLeft.

Figure 1-25: Dragonfl y’s comprehensive Layout tab.

WEB INSPECTOR (SAFARI)

If your primary development browser is Safari, then you’ll want to call up the Web Inspector.

To activate the Web Inspector, go to Safari’s Preferences, select Advanced, and then check the
box next to Show Develop menu in menu bar (shown in Figure 1-26). Once you’ve done that,
you can call up the Web Inspector by selecting Show Web Inspector in the Develop menu, or
else pressing Option+Command+I. As with Dragonfl y, the keyboard shortcut isn’t a toggle: If
Web Inspector is already open, you can’t use the keyboard to close it. For that, you need the
mouse. Command+W doesn’t work unless the Web Inspector is in its own window; try that
when it’s docked in the main window and you’ll close the whole window.

CHAPTER 1: TOOLS

27Figure 1-26: Enabling the Develop menu.

Th ough the layout of Web Inspector bears a strong resemblance to Firebug, there are some
notable diff erences. For instance, the panel on the right has computed styles as a grouping
(see Figure 1-27). As with Firebug, what you see in here is not exactly what was declared, with
shorthand properties being expanded out to individual properties as well as showing the
shorthands. Also, if you select the Show Inherited box, expect a very long list.

Just below that, each rule that applies to the inspected element is shown as its own separate
grouping. You can expand or contact each grouping. Below those is a Metrics subpanel that
shows the dimensions of the layout box for the element being inspected (see Figure 1-28).

28

PART I: FUNDAMENTALS

Figure 1-27: The computed styles.

Figure 1-28: The regular styles and layout groupings.

CHAPTER 1: TOOLS

29

XRAY

If you’re looking for a lightweight cross-browser element inspector, then XRAY, shown in
Figure 1-29, is right up your alley. It has a very limited scope, but its focus is actually a
strength as long as limited scope is what you want.

Figure 1-29: The XRAY page.

Head to westciv.com/xray and drag the big XRAY box to your bookmarks toolbar (or
the menu, if you want to hide it away). Th en, whenever you’re on a page and want to inspect
an element, call up XRAY and select the element that interests you.

Once you’ve selected an element, it will be highlighted and show dimensional information to
the sides, and the XRAY box, visible in Figure 1-30, will provide some extra information
regarding its place in the document tree, any ID or class values, and a core set of CSS property
values. If you select any of the elements under the inheritance hierarchy, XRAY will switch to
inspecting that element. To get rid of XRAY until the next time you need it, just click the close
icon at the top-right corner of the box.

05_684160-ch01.indd 2905_684160-ch01.indd 29 10/5/10 7:39 PM10/5/10 7:39 PM

30

PART I: FUNDAMENTALS

Figure 1-30: XRAY in action.

A similar tool with a diff erent purpose is MRI (westciv.com/mri), which lets you enter a
selector and then be shown which elements on the page that selector will select.

SELECTORACLE

Th e name SelectORacle (see Figure 1-31) sounds like an advertisement for a database product,
but it isn’t: Instead, it’s an online tool that translates valid selectors into something resembling
regular English. (Th e name comes from mashing “Selector” and “Oracle” together.)

Go to gallery.theopalgroup.com/selectoracle and enter one or many valid CSS
selectors, no matter how complex. Stick with English or switch the language to Spanish, and
then click the Explain Th is! button. You’ll get back an explanation of each selector you
entered. For example:

ul li:nth-child(2n+3):not(:last-child)

...will get back the explanation:

Selects any li element that is an odd numbered child starting with the third child and that is
not a last child that is a descendant of a ul element.

CHAPTER 1: TOOLS

31Figure 1-31: The SelectORacle page.

Okay, that might be a little confusing at fi rst glance, but if you read it slowly it comes (mostly)
clear. Also, as of this writing, no browser in the world supported everything in that selector, so
don’t be too concerned about it. Just know that, should you come across a selector whose
purpose is unclear, the SelectORacle may be able to help.

Ever wanted your browser to scream at you when it loads a page with outdated, icky elements
like font? Now it can—visually, anyway—with diagnostic style sheet.

DIAGNOSTIC STYLE SHEET

With a diagnostic style sheet, you can have a quick visual cue as to when things have gone
wrong with the page’s markup. One example of a diagnostic style sheet can be found at
meyerweb.com/eric/tools/css/diagnostic (in both CSS3 and IE7-friendly
versions), and a similar resource is at accessites.org/site/2006/07/
big-red-angry-text.

What’s the point? As an example, one line of the meyerweb diagnostic style sheet says:

*[style], font, center {outline: 5px solid red;}

32

PART I: FUNDAMENTALS

Th is will put a thick, solid red line around any element with a style attribute, any font
element, and any center element. You could spice it up even further with something like
background-color: lime to really drive home the point. Th e idea is to catch places
where dodgy markup has appeared, whether through entry via a CMS or some other means.

You might think that validation would catch any markup problems, but that’s not always true.
Sure, it will warn you if you’re using font, but there are other problems you may encounter
that a validator won’t catch. Consider the common example of a JavaScript link:

Next

Th is will all look fi ne to a validator, because the markup is correct. Th e problem is that for
anyone without JavaScript, the link will do nothing. Th ere should be some kind of non-JS
fallback, and it should be handled with an href value. So another line of the meyerweb
diagnostic styles says:

a[href="#"] {background: lime;}

Th at will punch up any link that lacks a non-JS fallback value for its href attribute. (It works
using an attribute selector; for more, see “Simple Attribute Selection” in Chapter 2.)

How would you use diagnostic CSS? Either by importing it into your development site’s CSS
and then removing it before going live, or by setting it up as a user style sheet in your browser
so that you can apply it to any page you visit.

Here’s a full diagnostic style sheet which does things like fi nd elements that have no content,
call out images without alt or title attributes as well as those that are empty, fi nd tables
without summary attributes and table headers that have invalid scope values, and links that
have broken or empty title and href attributes. Note that this version will not work in IE7
because of the attribute selectors. Th is version won’t work in IE8, either, because of the :not()
and :empty() pseudo-classes. Figure 1-32 shows a test page for this diagnostic CSS.

div:empty, span:empty,

li:empty, p:empty,

td:empty, th:empty {padding: 0.5em; background: yellow;}

*[style], font, center {outline: 5px solid red;}

*[class=""], *[id=""] {outline: 5px dotted red;}

img[alt=""] {border: 3px dotted red;}

img:not([alt]) {border: 5px solid red;}

img[title=""] {outline: 3px dotted fuchsia;}

img:not([title]) {outline: 5px solid fuchsia;}

table:not([summary]) {outline: 5px solid red;}

table[summary=""] {outline: 3px dotted red;}

th {border: 2px solid red;}

th[scope="col"], th[scope="row"] {border: none;}

a[href]:not([title]) {border: 5px solid red;}

a[title=""] {outline: 3px dotted red;}

a[href="#"] {background: lime;}

a[href=""] {background: fuchsia;}

CHAPTER 1: TOOLS

33Figure 1-32: A test page for the diagnostic CSS.

REBOOT STYLES

One thing you may not have considered about CSS is that it’s always applied to documents,
even if you create an HTML document and don’t write a single line of CSS for it. In fact,
there’s a whole lot of CSS being applied to an “unstyled” document (like the one in Figure
1-33), all of it coming from the browser itself. Th e default size and font weight of headers, the
separation between elements and lines of text, the bullets next to list items, and even the
distinction between box and inline boxes are all driven by a set of default styles.

And, of course, the default styles vary slightly between browsers. Th is is not necessarily a
failing of browsers, because there is no specifi cation saying exactly how documents should be
styled by default. Given that, most browsers do their best to simulate what Mosaic did with
documents. Yes, Mosaic—because that’s what Netscape 1.0 tried to simulate, which is what
IE3 tried to simulate, and so on. If you dig far enough into the default styles, you’ll fi nd things
that are exactly replicated from the early Mosaic betas, right down to the pixel.

In response, a number of people developed reset styles (see Figure 1-34), which were meant to
reduce as many inconsistencies as possible by explicitly setting common properties. Th e
simplest of these is:

* {margin: 0; padding: 0;}

34

PART I: FUNDAMENTALS

Figure 1-33: An “unstyled” (but actually greatly styled) document.

Figure 1-34: A document with basic reset CSS applied.

CHAPTER 1: TOOLS

35

A lot of people use this, mostly because it’s simple. Th e problem for others is that this applies
to all elements in the document, including form elements like text inputs and select boxes.
Since browsers currently handle CSS on form elements in very diff erent ways (and some won’t
apply it at all), the “all elements” approach means that forms get very inconsistent as a result
of trying to make the browsers more consistent with the reset.

So more complicated resets were developed. One fairly popular reset is available at meyer-
web.com/eric/tools/css/reset. It starts out like this:

html, body, div, span, applet, object, iframe,

h1, h2, h3, h4, h5, h6, p, blockquote, pre,

a, abbr, acronym, address, big, cite, code,

del, dfn, em, font, img, ins, kbd, q, s, samp,

small, strike, strong, sub, sup, tt, var,

b, u, i, center,

dl, dt, dd, ol, ul, li,

fieldset, form, label, legend,

table, caption, tbody, tfoot, thead, tr, th, td {

 margin: 0;

 padding: 0;

 border: 0;

 outline: 0;

 font-size: 100%;

 vertical-align: baseline;

}

body {

 line-height: 1;

}

Wow! Th at’s a lot of elements. Th e reason to do it that way is to select all of the elements that
aren’t form inputs (input, select, textarea) and make them act in similar ways. Th e
fi rst rule explicitly sets margin, padding, border, and outline to zero, and forces all elements to
the same font size and text vertical alignment. Th e second rule sets the body element to a
reduced line height, and that value is inherited by all of the elements that descend from the
body element.

Th ere are more rules in the meyerweb reset, including some that remove list bullets and
auto-generated quote marks around the blockquote and q elements, among others. Again,
the underlying point is to get all browsers as much on the same page as possible before
starting to write the CSS that will make the page look pretty.

At this point you might be thinking, “Wait a minute, that means I have to undo all the stuff I
just did! I never want the page to have a line-height of one—that’s too cramped! And I
never want to mess with the vertical alignment of superscripts and subscripts either!”

Th ose are all valid concerns. What you do is modify a style sheet to meet your preferences.
Let’s say you always start with a line-height of 1.4, to get that nice airy feel to your text.
Just modify that line of the reset:

36

PART I: FUNDAMENTALS

body {

 line-height: 1.4;

}

While you’re there, you might also feel like adding your standard page background and text
colors along with your favorite body font:

body {

 font: smaller/1.4 Helvetica, sans-serif;

 background: #ABACAB;

 color: #444;

}

You can pull the rule that strips off list bullets because you know you’ll never want to change
those. (Which is not actually the case for me, but hey, we’re all diff erent.) Add in rules that
defi ne exactly how and how far lists are indented, the separation between paragraphs and list
items, the way you prefer to style strong, and so on.

By this point, what you have is not a reset style sheet, it’s a reboot style sheet. You’re rebooting
the browser into your preferred baseline for styling a document, establishing a customized
starting point on which you can build any project. With that rebooter in hand, you can get a
jump-start on each new project, making it the kernel around which each fi nal style sheet
grows.

Not only can you reboot browsers with CSS, you also can upgrade some of them with
JavaScript. Seriously.

IE9.JS

With Dean Edwards’s IE9.js, you can make IE5 through IE8 act much more like (the still
unreleased, as of this writing) IE9 when it comes to handling CSS and HTML. You can fi nd
this at code.google.com/p/ie7-js—yes, the ie7 part is correct (see Figure 1-35). (It’s
because this project started as IE7.js, and when IE8 and IE9 came out, new versions were
needed.)

IE9.js is a set of JavaScript routines that, if the browser is a version of Internet Explorer before
IE9, will scan through the CSS and HTML of a page and fi gure out which parts aren’t sup-
ported by the version of IE being used to view the page. It then does a bunch of fancy back-
end juggling to make that support happen transparently.

As an example, IE5 and IE6 did not support attribute selectors. Th us, if you have a rule like
this:

a[href] {text-decoration: none; color: red;}

CHAPTER 1: TOOLS

37Figure 1-35: The IE7.js page.

...IE5 and IE6 will ignore it completely, and your links will be left untouched. (While this
would make Jakob Neilsen happy, the project’s designer will be considerably less impressed.)
With IE9.js, though, the fancy script juggling will set things up so that IE5 and IE6 can apply
those styles to links, and so it Just Works. All you need is a link to IE9.js from any page that
needs it, and you’re set.

Of course, none of this will have any eff ect if JavaScript is disabled, which means you have to
weigh the benefi ts of this script against what you expect of your site’s audience. Do a lot of
them even use IE6? Are they likely to have disabled JavaScript? And so on. Of course, those
are the same things we have to weigh with any site design, so at least it’s a familiar process.

Th e usual usage recommendation is to enclose the script element linking to the JavaScript
fi le in a conditional comment, like so:

<!--[if lt IE 9]>

<script src="/code/IE9.js" type="text/javascript"></script>

<![endif]-->

38

PART I: FUNDAMENTALS

Th e script itself will make sure it’s only run when needed, so you could skip the conditional
comments. Doing that, though, means that every visitor ends up downloading it whether the
browsers will ever run it or not. With the conditional comments, you make sure that only
those browsers that have any chance of running the script will bother loading it.

As noted, there are also earlier versions of the script meant to bring previous versions of IE up
to the level of IE7 or IE8. If you fi nd that IE9.js doesn’t suit your needs, try one of the earlier
versions.

SMASHING CSS

C
H

A
P

T
E

R

2

SELECTORS2
IN A VERY real sense, selectors are the heart of
CSS. Without them, we’d have no way of assign-
ing styles to elements short of embedding them
into the attributes of every element, and that
would be awful. By granting us the power to
select whole types or families of elements to be

styled, we can accomplish a great deal of styling
with just a few lines of CSS.

In this chapter, we delve into the details of using
selectors smartly as well as survey a broad sweep
of widely supported and used selector types.

40

PART I: FUNDAMENTALS

PSEUDO WHAT?

Th ere are two types of pseudo-thingies in CSS: pseudo-classes and pseudo-elements. Th e
CSS2.1 pseudo-classes are:

 :link: An unvisited link
 :visited: A visited link
 :hover: A hovered element
 :focus: A focused element
 :active: An active element (such as a link while it’s being clicked)
 :first-child: An element that is the fi rst child of another element
 :lang(): An element based on the value of its lang attribute

Th e CSS2.1 pseudo-elements are:

 ::first-line

 ::first-letter

 ::before

 ::after

So what’s the diff erence? It comes down to the way the pseudo-things aff ect the document.
Pseudo-classes act kind of like they add classes to the document. Pseudo-elements have eff ects
as though they caused elements to be inserted into the document.

Take ::first-letter as an example. Suppose you want to make the fi rst letter of every h1
twice as big as the rest (see Figure 2-1). Easy:

h1::first-letter {font-size: 250%;}

Th is happens as though the CSS and markup were changed to be:

h1 first-letter {font-size: 250%;}

<h1><first-letter>H</first-letter>owdy, y’all!</h1>

Is that what really happens inside the guts of the browser? Who knows? All you know is that it
works as if that’s what happened. Th us the name “pseudo-element.”

Similarly, pseudo-classes work as if they cause classes to be attached to elements within the
document. For example, imagine that a browser attached a class of “fi rst-child” to every
element that was the fi rst child of another element. You could then style any of them by saying
things like:

li.first-child {border-left: none;}

CHAPTER 2: SELECTORS

41

Figure 2-1: Enlarging the fi rst letter of an h1.

Simply by changing the dot to a colon, thus yielding li:first-child, you have the same
end result without the need to go sprinkling classes all over the markup.

You may also have picked up on the double-colon syntax used with pseudo-elements. Th is
was introduced aft er CSS2.1. As of this writing, no browser requires that you use the double-
colons before pseudo-elements: A single colon works just fi ne.

As a side note, CSS3 adds the following pseudo-classes, most of which are not widely sup-
ported as of this writing:

 :target

 :root

 :nth-child()

 :nth-of-type()

 :nth-last-of-type()

 :first-of-type

 :last-of-type

 :only-of-type

 :only-child

 :last-child

 :empty

 :not()

 :enabled

 :disabled

 :checked

TARGETS WITH STYLE

It can be very useful to point to a fragment identifi er within a document. What’s that, you say?
It’s as simple as this:

Section 2.7

42

PART I: FUNDAMENTALS

Anyone following that link will (if the browser gets it right) land not only on the targeted
page, but also at the point in the page where that fragment identifi er (the #sec2-7 part)
appears. Th is is sometimes done with an anchor, but it’s better to just use an ID. Here are the
two scenarios:

<h3>Exceptions</h3>

<h3 id="sec2-7">Exceptions</h3>

In either case, while the browser will jump to that point in the document, there’s no visual cue
to show that you’ve gone there. With the :target pseudo-class, you can provide a cue. For
example, if you wanted to give a particular cue to any h3 that is the target of a fragment
identifi er (see Figure 2-2), you could say:

h3:target {color: maroon;

 background: #FFA;}

Figure 2-2: Highlighting a targeted element.

Of course, you might just want to apply that style to any element that’s a target, no matter
what element it is, so just drop the h3 part and add a universal selector at the front, like so:

*:target {color: maroon;

 background: #FFA;}

CHAPTER 2: SELECTORS

43

(And technically the universal selector is optional in that case; you can write simply :target
for the selector.)

If you’re looking to go a little more Web 2.0 with the targeting style, you could set up a
fading-background eff ect. You know, that whole “you’ve done something, so a piece of the
page’s background will go from yellow to white to let you know you’ve done it” thing. You can
do that fairly easily with :target and an animated GIF. Just create an animation that’s a fade
from yellow to white (if that’s your site’s background color) and use it as a background image.

*:target {background: url(/pix/yellow-fade.gif);}

SPECIFICITY

It’s hard to say three times quickly and can be even harder to thoroughly grasp, but it’s the key
to understanding how CSS rules interact with each other.

Specifi city is a numeric representation of the “specifi c-ness” of a selector. Th ere are three
things that are used to determine a selector’s specifi city:

 Every element descriptor contributes 0,0,0,1.
 Every class, pseudo-class, or attribute descriptor contributes 0,0,1,0.
 Every ID descriptor contributes 0,1,0,0.

Don’t freak out (yet)! Take a look at a few examples fi rst.

div ul ul li 0,0,0,4 Four element descriptors

div.aside ul li 0,0,1,3 One class descriptor, three element descriptors

a:hover 0,0,1,1 One pseudo-class descriptor, one element descriptor

div.navlinks

a:hover
0,0,2,2 One pseudo-class descriptor, one class descriptor, two element

descriptors

#title em 0,1,0,1 One ID descriptor, one element descriptor

h1#title em 0,1,0,2 One ID descriptor, two element descriptors

Hopefully, this begins to give you an idea of how specifi city values are built up. Now, why the
commas? Because each “level” of specifi city value stands on its own, so to speak. Th us, a
selector with a single class descriptor has more specifi city than a selector with 13 element
descriptors. Th eir values would be:

.aside /* 0,0,1,0 */

div table tbody tr td div ul li ol li ul li pre /* 0,0,0,13 */

Th e “1” in the third position of the fi rst selector beats the “0” in the third position of the
second selector. Given that fact, the “13” in the fourth position of the second selector means

44

PART I: FUNDAMENTALS

nothing at all (in this very limited example). Th e comma separators help keep this clear;
otherwise, the selectors might be written “10” and “13,” leading to the erroneous impression
that the latter is more specifi c. (Th is actually was a common misapprehension in the early
days of CSS, before the comma-separated notation was settled upon.)

Th ere’s another common misconception, which is that structural proximity matters to
specifi city. For example, suppose you write the following:

ul li {font-style: normal;}

html li {font-style: italic;}

Which will win? Th ey both have two element descriptors, which means they both have
specifi city of 0,0,0,2. Th erefore, the last one written wins. Th e fact that the ul element is closer
to the li element in the document structure than the html element does not matter in the
slightest. Specifi city is a straight numeric value. It does not evaluate the page structure in any
way. Th us, the list items all get to be italic, because the last rule wins when specifi cities are
equal.

You’re probably wondering what the fi rst zero in the specifi city notation is for, given that I said
three things contribute to specifi city. Th at fi rst zero is used for inline styles, and only inline
styles. Th erefore, given the following style and markup, the div’s background will be blue.

div#header {background: purple;} /* 0,1,0,0 */

<div id="header" style="background: blue;"> <!-- 1,0,0,0 -->

IMPORTANCE

Th ere is something that overrides specifi city, and that’s !important. If you’re a programmer,
I need to disabuse you of a misunderstanding right now: that does not mean “not important.”

Th e way this works is that you can mark any individual declaration as important. Here’s a
basic example:

a:hover {color: red !important; text-decoration: none;}

In that example, color: red has been marked important, but text-decoration:
none has not. Every declaration you want to mark as being important needs its own separate
!important.

Basically, any important declaration will override any non-important declaration, period—
end of story. Given the following, the result will be a green link:

div#gohome a#home {color: red;}

div a {color: green !important;}

<div id="gohome">Home</div>

CHAPTER 2: SELECTORS

45

Th e very high specifi city of the fi rst rule (0,2,0,2) is irrelevant to resolving this confl ict of
colors, because the !important trumps it.

Of course, if we add an indication of importance to the fi rst rule, then the situation turns out
diff erently.

div#gohome a#home {color: red !important;}

div a {color: green !important;}

Because both color declarations are important, the confl ict is resolved using the usual rules of
the cascade. In other words, specifi city matters again, so the link will be red.

Th is points to the need to be very careful with !important. If you start using it to override
rules, then you might fi nd yourself having to override that important rule with other
!important declarations, which then necessitate other !important declarations, and
eventually you end up with all of your declarations being important—which means none of
them are.

WHAT HAPPENS WHEN YOU OMIT SHORTHAND VALUE
KEYWORDS

We’re all familiar with shorthand properties: background, border, font, margin, and
padding are among the most commonly used. Th ey’re a nice, compact way to express a
bunch of things all at once. But what happens if you leave out some of those things? Consider:

strong {font: bold italic small-caps medium/1.2 Verdana, sans-serif;}

Th at will, as illustrated in Figure 2-3, yield bold italicized small-caps medium-size Verdana
(or other sans-serif) text with a line height of 1.2 for strong elements.

Figure 2-3: Crazy strong!

Suppose we pare that value back, though:

strong {font: medium Verdana, sans-serif;}

46

PART I: FUNDAMENTALS

Th e end result is medium-size Verdana (or other sans-serif if Verdana is not available) text
with normal weight. Th e boldfacing is gone (see Figure 2-4).

Th e reason is that when you leave off bits of a shorthand property’s value, the missing bits are
fi lled in with the default values of the corresponding properties. Th erefore, by leaving off the
values for the font’s weight, style, and variant, you’re saying:

strong {font: normal normal normal small/normal Verdana, sans-serif;}

Yes, even the line-height is fi lled in with its default, which can override any inherited
value for the line’s height.

Figure 2-4: Un-bolding by mistake.

Th is can become a problem if you aren’t careful about how you set up your styles. Consider
the following two rules, the fi rst coming from a sitewide style sheet and the second from a
page’s embedded styles.

body {background: #FCC url(/i/pagebg.gif) 10px 25% no-repeat fixed;}

body {background: url(i/body-bg.gif);}

Given those two rules, the page in question will have a new image tiled all over the back-
ground starting from the top left that scrolls when the page is scrolled. Th at’s because the
second rule shown is exactly equivalent to saying:

body {background: transparent url() 0 0 repeat scroll;}

Now, if you wanted to have that happen, then this is the way to go. It’s more likely that the
goal was to swap out one image for another. In that case, you just want to set the specifi c
property, like so:

body {background-image: url(i/body-bg.gif);}

CHAPTER 2: SELECTORS

47

Th at is how things work with most shorthands, anyway. Th e exceptions are margin, pad-
ding, border-style, border-width, and border-color. In those cases, you have the
eff ect where missing values are “copied” from supplied values. Here’s a list of some function-
ally identical declarations.

margin: 1em; margin: 1em 1em 1em 1em;

padding: 10px 25px; padding: 10px 25px 10px 25px;

border-color: red green blue; border-color: red green blue green;

And of course those values are in the order top-right-bottom-left , or TRBL (which keeps you
out of TRouBLe).

SELECTIVELY OVERRIDING SHORTHANDS

Just because shorthand properties fi ll in undeclared defaults, that doesn’t mean we have to
avoid them. In fact, it can be useful to declare 80% of what you want with a shorthand, and
override it in one place to get the other 20%.

Suppose you’re trying to get a border that’s three pixels wide, dotted, and black on three sides
with red on the fourth side (see Figure 2-5). You could write it out one side at a time, but that
would get repetitive. Instead, you can declare:

border: 3px dotted black;

border-left-color: red;

Th at way, you tweak only the one little piece that needs to be diff erent than the rest. Even
better, you can do it all within the same rule.

Figure 2-5: Reddening one side of a border.

48

PART I: FUNDAMENTALS

Another common example of selectively overriding shorthands would be with headings,
which might have a great deal in common except for the font sizes. If you’re satisfi ed with the
browser-default font sizes, then you can just do this:

h1, h2, h3, h4, h5, h6 {font-weight: normal;

font-style: italic;

font-family: Helvetica, sans-serif;

line-height: 1.5;}

If, on the other hand, you’re going to be setting your own heading sizes, as in Figure 2-6, then
fl ip it around:

h1, h2, h3, h4, h5, h6 {font: italic 100%/1.5 Helvetica, sans-serif;}

h1 {font-size: 225%;}

h2 {font-size: 185%;}

h3 {font-size: 140%;}

/* …and so on */

Whenever you do this kind of selective overriding, it’s a good idea to make sure the overrides
come aft er the shorthand. Th at way, if (as is oft en the case) the selectors have equal specifi city,
then the overrides will win out over the shorthands.

Figure 2-6: Quick header sizes with selective overriding.

CHAPTER 2: SELECTORS

49

UNIVERSAL SELECTION

I’m going to show you the use of the asterisk symbol (*) in selectors. Don’t get overexcited:
Th is isn’t as wild a card as you might think. Here’s a basic example:

* {color: blue;}

Th at asterisk is called the universal selector. What that does is directly select every element in
the document and apply those styles to them.

Th is looks like a wildcard, and in one way it is, because you can use it to select a whole lot of
elements without directly naming them. As an example, suppose I wanted to select all of the
elements inside this div.

<div>

<h1>Hey-ho!</h1>

<p>I’m a paragraph.</p>

Uno

Deux

Drei

</div>

Th at’s as simple as:

div * {border: 1px solid red;}

Th e result is exactly the same as if I’d written:

div h1, div p, div em, div ol, div li {border: 1px solid red;}

Well, almost exactly the same. Th e visual result is the same, as evident in Figure 2-7, but
there’s a very slight diff erence, which is in the specifi city. You see, the universal selector has a
specifi city contribution of 0,0,0,0. Th at means that div * has specifi city 0,0,0,1 and div h1
(as well as all the others in that grouped selector) has a specifi city of 0,0,0,2. Other than that,
though, the results are the same.

You might be hoping that this enables you to select all of your headings with h* instead of h1,
h2, h3, h4, h5, h6. Sorry, but no. It doesn’t work that way. You can use it as a wildcard match
only for elements as shown before. Th at’s as far as it goes.

06_684160-ch02.indd 4906_684160-ch02.indd 49 10/5/10 7:45 PM10/5/10 7:45 PM

50

PART I: FUNDAMENTALS

Figure 2-7: Redboxing the descendants of a div.

ID VS. CLASS

One of the fi rst big dilemmas faced by any aspiring Web stylist is: Should I use class or id?

As with many things in life, this question has a simple answer, and then there’s a much more
complicated answer. Th e simple answer is this: Use class for any “label” that might show up
more than once in a page, and id for anything that will appear only once. By “label,” I mean a
descriptive word you might want to attach to an element, which is what class and id get
used for 99.44% of the time.

Two classic examples of id values are header and footer, on the expectation that any
given page will have only one header and footer. class values are a little more scattered,
since they could be anything from more for links to more information to tabs for any
collection of navigation tabs to odd for every other row in a table.

Th e more complicated answer requires weighing not only the expected uniqueness of a label,
but also the specifi city eff ects of id and class. Since selectors containing ids have higher
specifi city than those with just classes, you run into situations where it’s impossible to
override a given rule.

Here’s a simple example. Suppose you’ve written in your site styles:

#header {background: black;}

#header a {color: white;}

Th en later on you decide that your contact page should be less forbidding, so you want to
make your header a nice light gray and all of your navigation links a nice soothing medium
green. Since that contact page has a few collections of navigation links, you write:

#header {background: #BBB;}

.navlinks a {color: #257000;}

CHAPTER 2: SELECTORS

51

Unfortunately, the header’s navigation links will all stay white, thanks to the higher specifi c ity
of #header a, as shown in Figure 2-8.

Figure 2-8: Unattractive links in the header.

You can work around the problem by saying this:

#header a, .navlinks a {color: #257000;}

Or even:

#header .navlinks a, .navlinks a {color: #257000;}

Either way works, but they seem a little clumsy, don’t they? (Not as clumsy as slamming an
!important on the .navlinks a rule, but still.) Another way to handle this situation is
to convert the id containing header to a class in the markup. So you’d have:

<div class="header">

... where an id="header" used to be. Th en you can be a lot less worried about IDs creating
specifi city confl icts that are diffi cult to resolve. To wit, in your site styles you have:

.header {background: black;}

.header a {color: white;}

Th en, in your contact page’s styles, you have:

.header {background: #BBB;}

.navlinks a {color: #257000;}

Th e end result is nice green link text, as shown in Figure 2-9.

52

PART I: FUNDAMENTALS

Figure 2-9: Attractive links in the header.

Th at’s all it takes. So that’s a rationale for making most or all of your labels classes.

Another rationale is that you can never be quite certain when a label will shift from being
unique to being repetitive. header is actually a great example, because it’s possible a page
could have multiple headers. If that seems weird, think of a news site or other portal. Every
subsection and sidebar box could have its own little header—and, for that matter, footer.
Classing them all consistently makes a lot of sense.

Now, you might well argue that those aren’t real headers and footers like those on a page—
they’re headlines or additional information or what-have-you. Th at’s a semantic argument,
and not one that can be defi nitively resolved. What you call a topline, I might call a header.
Th e point is that a word you use to label a unique feature of your page might one day not be
unique. Th e best way to future-proof yourself against that happening is to use all classes in
the fi rst place.

So is there any point to using id? Of course. Th ere are situations where you can be certain a
given element will be unique within the page, and will never be duplicated. Th ere are also
situations where you want the increased specifi city an id selector confers, because it lets you
trump other selectors very easily. And ids can be crucial for scripting, link targeting, and
other things beyond CSS. You just have to use them with a bit of care when it comes to
writing your CSS.

(Th ere’s also an alternate way to address IDs that doesn’t carry the same concerns about
specifi city with it; see “ID vs. Attribute Selector" later in this chapter.)

ID WITH CLASS

Th ere may occasionally be situations where you have an element that is unique, and yet is part
of a broader class of elements. For example, suppose you have a bunch of little panels in your
site’s sidebar. Each one gets a box around it, and has a certain color and font combination, but
each one is also unique in its own way, such as each getting a diff erent background image.

CHAPTER 2: SELECTORS

53

In such cases, you can associate both class and id with the elements, like so:

<div class="panel" id="weather">

<div class="panel" id="stocks">

<div class="panel" id="latest">

Th en, in CSS, you can address each bit as needed.

.panel {

 border: 1px solid silver;

 background: #EEE top left no-repeat;

 color: #333;

 font: x-small sans-serif;}

#weather {

 background-image: url(/pix/panel-weather.jpg);}

#stocks {

 background-image: url(/pix/panel-stocks.jpg);}

#latest {

 background-image: url(/pix/panel-latest.jpg);}

You can even combine the two in a single selector, like so:

.panel#weather {font-weight: bold;}

#latest.panel {color: #511;}

Th e order you write them in doesn’t matter, as you can see there, and so doesn’t have to refl ect
the order you put them in the HTML.

MULTICLASSING

An oft en-overlooked capability of the class attribute is that you can have a space-separated
list of as many words as you like. In other words, you can attach multiple classes to an
element.

As an example, let’s take the markup from the preceding entry and modify it to use no id
attributes. It would look like this:

<div class="panel weather">

<div class="panel stocks">

<div class="panel latest">

Th en the CSS would just need to be adjusted to deal with classes instead of IDs.

.panel {

 border: 1px solid silver;

 background: #EEE top left no-repeat;

 color: #333;

 font: x-small sans-serif;}

54

PART I: FUNDAMENTALS

.weather {

 background-image: url(/pix/panel-weather.jpg);}

.stocks {

 background-image: url(/pix/panel-stocks.jpg);}

.latest {

 background-image: url(/pix/panel-latest.jpg);}

.panel.weather {font-weight: bold;}

.latest.panel {color: #511;}

Th e order you write the classes in the HTML source doesn’t matter to the order you write
them in the style sheet; .panel.weather has exactly the same eff ect as .weather.
panel, right down to the specifi city, and no matter which order the two are listed in the
HTML source. It also doesn’t matter if they’re separated by other class names in the source,
like so:

<div class="weather alert tornado watch panel">

Th at element will still be selected by both .panel.weather and .weather.panel.

One slowly fading note of caution: IE6 (and earlier) gets confused by multiclassing in your
style sheet. Where you write .panel.weather, it only sees .weather. You can still have
multiple class names in the HTML and address them from your CSS, but you can only do it
one class name at a time. So .weather and .panel will work just fi ne in IE6, correctly
matching the example markup from before. It will just assume that .weather.panel
applies to any element with a class value containing the word panel, which probably isn’t
what you want.

SIMPLE ATTRIBUTE SELECTION

Attribute selectors were introduced in CSS2 and expanded upon in CSS3, and are as of this
writing supported by all major browsers. (Th ey were not supported in IE6; if that’s a concern,
see the section "IE9.js" in Chapter 1.)

Th e basic idea is that you can select elements based on their having an attribute, or based on
some aspect of the value of an element’s attribute. So you can select all a elements that are
actually hyperlinks, like this:

a[href]

Th at selects any a element that has an href attribute. Th erefore, it does not select any a
element that lacks an href attribute, named anchors (for example,)
being the most obvious example. It’s basically a more compact version of a:link,
a:visited. For example:

a[href] {color: green;}

… produces the screen shown in Figure 2-10.

CHAPTER 2: SELECTORS

55

Figure 2-10: Selecting links with an attribute selector.

Note that it doesn’t matter in the slightest what value the href attribute holds. In fact, it
doesn’t even matter if the value is a valid URI or other resource. You’ll select
just the same as .

Now, what if you wanted to, say, select all of the hyperlinks that point to a specifi c address?
If you have an exact URI you want to pick out, then you could do it just like this (see Figure
2-11):

a[href="http://w3.org/"] {font-style: italic;}

Figure 2-11: Selecting links with a specifi c URL with an attribute selector.

Th at will select only a elements whose href attributes have the value http://w3.org/.
Notice how I phrased that? I didn’t say “hyperlinks that point to the W3C site,” because that’s
not the deal. Th e deal is that you must have an exact match, character for character. If you
have , the selector shown just now will not select
that link. Th e match must be exact.

Th is might not be so useful with hyperlinks, but it could help you with picking specifi c images
to be styled—say, your company logo. If your CMS always spits out this for your top-of-page
logo:

56

PART I: FUNDAMENTALS

... then you can always select that image, like so:

img[src="/img/2010/mainlogo.png"]

You don’t need to class or ID it or anything else: You can just style it based on the src value.
Assuming, as I say, that you know it will always have exactly that value, and no other. (For
adventures in less exact value matching, see “Substring Attribute Selection” later in this chapter.)

One thing to note is that, per the CSS specifi cation, “the case-sensitivity of attribute names
and values in selectors depends on the document language” (www.w3.org/TR/CSS2/
selector.html#matching-attrs). In other words, some markup languages might treat
attribute names case-sensitively, and others might not. XHTML does, and in general you’re
better off assuming that both attribute names and values are case-sensitive.

ATTRIBUTE SELECTION OF CLASSES

If you read the preceding section, you may be thinking, “Hey, I could recreate the .class
notation with attribute selectors!” And you’re right, you can. Just not in any of the ways I
showed you earlier.

Here’s how to get an exact equivalent to div.panel with attribute selectors:

div[class~="panel"]

Did you spot the tilde? It’s right before the equal sign, and it’s absolutely critical in this
situation. Its presence means the attribute selector selects “the following word in a space-
separated list of words,” which is a lot for a little squiggle to shoulder.

To understand more clearly, let me show you what happens if the tilde is removed. Th en you’d
have:

div[class="panel"]

Th at selects any div element whose class attribute is panel—and only if it is exactly
panel. If the class is actually panel weather, then the preceding example will not
match it—because panel is not exactly the same as panel weather. On the other hand,
div.panel will match <div class="panel weather"> just fi ne.

By including the tilde, you get the exact same behavior as the dot-class syntax. So the follow-
ing two rules are exactly equivalent in all ways except the actual letters you use to type them:

div[class~="panel"]

div.panel

CHAPTER 2: SELECTORS

57

At this point you may be thinking, “Hey, awesome. I always wanted to know how I could
select classes with a longer and more complicated syntax.” Ah, but remember: Attribute
selectors are not confi ned to the paltry two attributes we’re used to selecting upon—namely,
class and id. You can select based on any attribute whose value can be a space-separated
list of words, where by “words,” I mean “strings of characters.”

Here are a few examples of other ways to use this kind of selector.

img[alt~="figure"] Any image whose alternate text contains the word “fi gure”

table[summary~="data"] Any table whose summary text contains the word “data”

*[title~="2009"] Any element whose title text contains the word “2009”

ID VS. ATTRIBUTE SELECTOR

You can use attribute selectors not only as a long-winded way to replace class selectors, but
also as ID selectors. Th e following two rules will select the same element:

p#lead-in {font-weight: bold;}

p[id="lead-in"] {font-weight: normal; font-style: italic;}

Okay, fi ne, but take a moment to contemplate the visual result of those two rules: Th e lead-in
paragraph will be both boldfaced and italicized, as in Figure 2-12.

Th is is because the specifi city contribution of an attribute selector is 0,0,1,0—the same as a
class or pseudo-class. So the fi rst rule’s specifi city is 0,1,0,1 and the second’s is 0,0,1,1. In this
fi ght over font-weight, the fi rst rule shown wins due to its higher specifi city.

Th is is one of those interesting little wrinkles in specifi city that can open the door to new
patterns of authoring. For example, you may remember the earlier discussion in “ID vs. Class”
about how IDs easily trump classes and so you might consider just labeling everything with
classes. If your user base is all on browsers that support attribute selectors, then you can go
back to a mixture of IDs and classes and then just use attribute selectors whenever you need
to reference an ID. Th at way, you don’t have to worry about an #ID selector pattern trumping
the specifi city of everything else you try to write.

58

PART I: FUNDAMENTALS

Figure 2-12: Combining styles due to differing specifi cities.

SUBSTRING ATTRIBUTE SELECTION

Aft er CSS2 was fi nished, work immediately started on the next version of CSS, which we may
as well call CSS3 even though there’s no single specifi cation any more. (It’s a long story.) One
of the areas that got the most attention was selectors, and attribute selectors were no excep-
tion. Th ey picked up a set of substring-match patterns, all of which are incredibly useful.

Th e most basic one is the substring matcher. To see how it’s useful, consider an old example.

a[href="http://w3.org/"]

Th at’s great for selecting any link to that exact URL. Suppose, though, that you have a lot of
links into the W3C’s Web site, not just the home page, and yet you want to style them all the
same way. A good way to do that would be to select on just the w3.org part of the URL (see
Figure 2-13). Here’s how:

a[href*="w3.org"] {font-weight: bold;}

CHAPTER 2: SELECTORS

59

Figure 2-13: Selecting all links that contain w3.org in the URL.

Th at’s it: Just include an asterisk before the equal sign. No, this is not a universal selector.
Neither can you put asterisks in the value to create UNIX- or grep-style wildcards. You just
put it before the equal sign, and that means “this character sequence appears somewhere
inside the attribute value.”

As always, this can be used on any element and attribute. To return to the example of uniquely
selecting the image of your company’s logo, you could write:

img[src*="mainlogo.png"]

Th at will select any img that points to a fi le named mainlogo.png, or indeed that has the
characters mainlogo.png anywhere within the src value. Th us it would select both of the
following:

You probably shouldn’t name your fi les and directories that way, though. I mean, I’m just
saying.

Th ere are a lot of creative ways to use this particular power. You could select any image that
happens to come from a particular directory just by selecting the part of their URLs that
corresponds to that directory. For that matter, you could style all the links into a certain area
of your site by the directory that appears in their href values.

a[href*="/contact"] {color: maroon;}

a[href*="/news"] {font-weight: bold;}

60

PART I: FUNDAMENTALS

Always remember that attribute values should be treated as case-sensitive. (It’s just easier that
way.) Th erefore, you’ll get a match on the fi rst two of the three examples to follow, but not the
third.

img[alt*="Figure"] {border: 1px solid gray;}

<img src="fig2.gif" alt="Figure 2. Mayor Quimby, a political figure of some note."

/>

Th e third image isn’t matched because “fi gure” isn’t the same as “Figure.” In this case, of course,
that might be seen as a good thing, since (based on the alt text) the third image doesn’t
appear to be a fi gure in the formal sense. It just happens to have the word “fi gure” in its alt
value. Th at’s okay, but realize that the following would also be matched by the shown rule:

Yep, there’s that “Figure.” It’s a match!

You can step around this limitation in cases where you know capitalization will vary by only
one letter. Th us, if you wanted to make sure you selected all instances of “Figure” and “fi gure,”
you would make the selector:

img[alt*="igure"] {border: 1px solid gray;}

Of course, that will match any instance of those characters, including “confi gure,” “disfi gure,”
and “oliguresis” (to name a few).

However, this isn’t the end of substring selection—nor the beginning, as it were. See the next
section for an explanation.

MORE SUBSTRING ATTRIBUTE SELECTION

While arbitrary attribute value substring matching is nice (see preceding section), sometimes
you want to restrict where you look to just the beginning or end of an attribute’s value.
Fortunately, there are ways to do just that.

If you want to select based on a substring at the beginning of an attribute value, use this
pattern:

a[href^="http"]

Th anks to the caret (^), that rule selects any a whose href attribute starts with http. Th is is
an easy way to select all the links that point to external sites, assuming that all of your internal
links are page- or site-relative and you never use the string http in your site’s fi le system. You
could do something simple, like this:

CHAPTER 2: SELECTORS

61

a[href^="http"] {font-weight: bold;}

Or something slightly more complicated, like this:

a[href^="http"] {padding-right: 18px;

 background: url(/pix/external.png) 100% 50% no-repeat;}

Th e result is that seen in Figure 2-14.

Figure 2-14: Adding icons to links that start with http.

In order to select based on a substring at the end of an attribute value, use this pattern:

a[href$=".pdf"]

Th anks to the dollar sign ($), that rule selects any a whose href attribute ends with .pdf.
Th is is a really simple way to call attention to your PDF-download links with ease (as in
Figure 2-15). For example:

a[href$=".pdf"] {padding-right: 18px;

 background: url(/pix/pdf.png) 100% 50% no-repeat;}

06_684160-ch02.indd 6106_684160-ch02.indd 61 10/5/10 7:45 PM10/5/10 7:45 PM

62

PART I: FUNDAMENTALS

Figure 2-15: PDF icons for links to PDF documents.

Pretty awesome! Here are some other ideas for using attribute selectors to style types of links.

a[href^="https"] Secure-server links

a[href^="mailto"] E-mail contact links

a[href^="aim"] AOL Instant Messenger service links

a[href$=".doc"] Microsoft Word documents

a[href$=".xls"] Microsoft Excel documents

a[href$=".zip"] Zip archives

As always, remember that you aren’t restricted to hyperlinks here. If you recall the “Figure”
examples from the preceding section, you will quickly realize that a lot of the problems that
came up can be solved with a simple caret:

img[alt^="Figure"] {border: 1px solid gray;}

Th ere: Now we’re selecting based on an image’s alt text beginning with that exact string, and
don’t have to worry about cases where it shows up later in the text. Th ey’ll be skipped.

CHILD SELECTION

One of the things we do most oft en with CSS is select elements based on their place in the
document’s hierarchy. Th is is most oft en done with a descendant selector, like this:

div#header a {color: #DEFACE;}

Th a t selects a elements that descend from (are contained within) any div with an id of
header.

In most cases, this is exactly what we want: to select the links within the header, no matter where
inside the header they may be, and no matter what elements might be “between” the two.

Sometimes, though, you want to select elements that are direct children of another element,
not an arbitrary descendant. Imagine that you only want to select list items that are the
children (not descendants) of an ol element (see Figure 2-16). Th at way, if there are any
unordered lists within the ordered list, their list items won’t be selected. All we need is a child
combinator.

CHAPTER 2: SELECTORS

63

ol > li {list-style-type: upper-alpha;}

Figure 2-16: Selecting only the list items that are children of an ordered-list element.

Th at greater-than symbol limits the selection to children of ol elements. Take it away, and the
rule will apply to any list item that descends from an ol, even if those are list items in nested
unordered lists (see Figure 2-17).

Figure 2-17: Ordering the unordered.

Yes, that can happen, and no, I didn’t cheat. Figure 2-17 is an unordered list with ordered list
markers, and that happened simply because I removed the child combinator.

SIMULATED PARTIAL CHILD SELECTION

If you have to support old browsers like IE6 that don’t support the child combinatory and you
aren’t willing to rely on JavaScript to add support to those browsers (see “IE9.js” in Chapter 1),
then you can simulate child selection via the universal selector.

Let’s suppose we want to put a border around any div that’s a child of a div with an id of
main (see Figure 2-18). Th e child-combinator way is to say:

64

PART I: FUNDAMENTALS

div#main > div {border: 1px solid gray;}

Figure 2-18: Faking child selection.

Okay, so how do we simulate that eff ect? Like this:

div#main div {border: 1px solid gray;}

div#main * div {border: 0;}

Th e second rule selects any div that descends from any element that descends from a div
with an id of main. In eff ect, it undoes the eff ect of the fi rst rule. Both apply to divs that are
at most grandchildren of div#main, and both are setting the borders, so they’re in confl ict.
Th ey’re also the same specifi city, so the last one declared wins. Th e divs of div#main,
though, are only selected by the fi rst of the two rules, so the borders stay in place.

Th ere’s one thing to keep very much in mind: Th is “faked” child-selection technique really
only works well with non-inherited properties. With inherited properties you can create some
very unintended eff ects. As an example, suppose you wrote:

ol li {font-weight: bold;}

ol * li {font-weight: normal;}

Now, suppose that you have a situation where you want the unordered lists of a certain class
of ordered list to be boldfaced (see Figure 2-19):

ol.urgent ul {font-weight: bold;}

Given this additional rule, the list items in those unordered lists will be … not boldfaced.
Th at’s because the ol * li rule shown previously directly applies to those list items. Its
directly assigned font-weight value of normal overrides the bold value that would ordinar-
ily be inherited from the ol.urgent li rule.

CHAPTER 2: SELECTORS

65

Figure 2-19: Inherited styles being overridden by directly assigned styles.

Th is problem doesn’t come up if you use non-inherited properties like background,
border, display, margin, padding, and so on. If you aren’t clear about whether a given
property is inherited, see w3.org/TR/CSS2/propidx.html or the property’s description
in the CSS specifi cation.

SIBLING SELECTION

In addition to being able to select along parent-child and ancestor-descendant lines, it’s also
possible to select elements based on their being siblings—that is, that they share a common
parent element. We can see this in Figure 2-20, where the elements that are siblings are
highlighted.

h1 p ul

body

li li li li li em a cite

a

p p p

aaaaa

Figure 2-20: Highlighted siblings.

Th ings like list items are obvious siblings, but any collection of elements that share a common
parent element are siblings.

CSS defi nes a combinator that allows you to select an element based on its previous sibling
element. For example, if you wanted to remove the top margin from any paragraph that
immediately follows an h1 (see Figure 2-21), then it’s a simple matter of saying:

h2 {margin-bottom: 0;}

h2 + p {margin-top: 0;}

66

PART I: FUNDAMENTALS

Sibling selection is a great way to set up styles for certain element combinations, such as
increasing the space between a list that immediately follows a table or a heading that immedi-
ately follows a div.

Th ere’s a closely related combinator that allows the selection of elements that are following
siblings, but not immediately adjacent following siblings. Th is uses the tilde as a combinator,
like so:

h1 ~ ul {list-style-type: lower-alpha;}

Figure 2-21: Selecting paragraphs that immediately follow level-two headings.

Th e following code will select any ul element that follows an h1 that shares its parent
element, such as all the lists in the following markup except the fi rst one.

<body>

…

<h1>Planning</h1>

<p>This is an abstract.</p>

…

…

<h2>Introduction</h2>

<p>We have some thoughts here.</p>

…

</body>

Because all those elements share the same parent (the body), they’re all siblings. Th e fi rst list
in the markup does not follow an h1, so it is not selected by h1 ~ ul. Th e rest do, even
though there are other elements “between” them, so they are selected.

CHAPTER 2: SELECTORS

67

GENERATING CONTENT

In a move that blurs the usual line between content and presentation, CSS off ers a way to
generate content and insert it into the document. Th is is done using the pseudo-elements
:before and :after and the property content.

Here’s a basic example (also illustrated in Figure 2-22) of inserting content, putting a short
string in front of the text of any list item’s text:

li:before {content: "Item: "; border-bottom: 1px solid gray;}

Figure 2-22: Prefacing list items with a little content.

Note the space inside the content value. Th is is inserted as part of the value string. If it were
not there, the element text would be closer to the generated content unless a right padding
were applied to the generated content (which is completely possible; we just didn’t do it here).

To be clear, you can insert only text, not structure. If you try to put markup into your
content value, it will be passed into the page as raw text (see Figure 2-23).

li:before {content: "Item: "; border-bottom: 1px solid gray;}

Oops.

On the other hand, you can insert any character glyph the browser is capable of supporting
(see Figure 2-24). All you need is to know its hexadecimal character number. Precede it with a
back-slash, otherwise known as an “escape,” and you’re set.

li:before {content: "\BB ";}

68

PART I: FUNDAMENTALS

Figure 2-23: Passing markup through in the raw.

Figure 2-24: Inserting a character with an escaped code.

In theory, you could also insert any Unicode character into your document by typing the
characters directly into your CSS and then serving up the style sheet with full Unicode
encoding. However, this may run into problems with servers that aren’t confi gured to send
out CSS as anything but ASCII. If you can overcome those kinds of problems, then you can
ignore the escaped-hex approach and just use the characters directly. Test thoroughly, though,
especially in older browsers that may not handle Unicode gracefully.

Th e reason :before and :after are pseudo-elements is that they insert the element as
though it were enclosed in an element. Th is pseudo-element is placed either at the very
beginning or end of the element’s content, depending on which pseudo-element you used.
You can style it much as you would a span in the same place.

You can do a lot of interesting things with generated content, but you have to be careful about
what you generate. What happens to your page if CSS doesn’t load or isn’t supported, as on
some mobile devices? If you’re using generated content to insert things that are crucial to the
understanding of the page, then you could have real trouble if the content isn’t generated.
Th us, it’s strongly recommended that you use only generated content in the service of what’s
called progressive enhancement, where you use advanced features to add enhancements that
the page can live without.

CHAPTER 2: SELECTORS

69

One great example is the insertion of hyperlink URLs into printed copies of pages (see Figure
2-25). To do this, add the following rule to your print-media style sheet:

a[href]:after {content: " [" attr(href) "]"; font-size: smaller;}

Figure 2-25: Inserting URLs in print styles.

Th is counts as progressive enhancement because in browsers where it fails, the printed page
will simply show the links without the generated URLs, just as they’ve always done. Where it
works, the printed page is notably enhanced. (For more on this technique, see “Going To
Print” at http://alistapart.com/articles/goingtoprint.)

Support for generated content is fairly widespread, but only reached the Internet Explorer
family when IE8 came out. You can always use IE9.js (see Chapter 1) to graft support into
earlier versions of Explorer.

PA
R

T

II

II ESSENTIALS

Chapter 3: Tips

Chapter 4: Layouts

Chapter 5: Effects

SMASHING CSS

C
H

A
P

T
E

R

3

TIPS3
EVERYONE CAN USE a few good tips to get
through life. Two of my favorites are “always
favor a small house on a nice street over a big
house on a lousy street” and “don’t eat lead.” And
so it is in CSS: A few simple words to the wise
can put you right in no time fl at.

In this chapter, we discuss the importance of
ordering of values, proper uses of unitless values,
ways to make elements disappear, a method for
controlling border appearance, list tricks,
print-style development, and much more.

74

PART II: ESSENTIALS

VALIDATE!

Th is might be old hat to you. You might be wondering why I would waste precious ink and
tree pulp on so obvious a topic. And yet, how oft en do you actually validate? Once at the end
of the project, or all the way through?

While I’m not telling you to validate every time you hit “Save” on the document you’re
writing, it is a good idea to get into the habit of validating at regular intervals as you go
through a page build. Th at way, you catch problems before they infect the whole page
structure.

Th ere are a few good validators out there for both HTML and CSS. In the HTML sphere,
probably the most widely used validator is the one provided by the W3C itself and located at
validator.w3.org (see Figure 3-1). Its CSS-centric cousin, sited at jigsaw.w3.org/
css-validator/, is equally popular.

Figure 3-1: The W3C’s HTML validator.

What if you’re stuck developing behind a fi rewall, or do all your development on your laptop
with a locally run Web server? Th en use the “Validate local” features in Firebug and other
developer tools. As long as you can browse the Web, then you can validate any page you’re
viewing, whether or not the page you’re viewing can be publicly browsed. (I pretty much
always use “validate local,” even when the page is on a public site, just to keep in the habit of
using it.)

CHAPTER 3: TIPS

75

ORDERING YOUR FONT VALUES

Th is is one of the little quirks of CSS that lots of people stumble over, sometimes without
realizing what tripped them up.

Most CSS properties that accept multiple keywords let you list them in basically any order, and
don’t insist that you include every single one of them. (Th ink for example of background,
which lets you specify anywhere from one to fi ve keywords and doesn’t care how you arrange
them.) One of the few double exceptions is font, which not only has a minimum set of
required keywords, but also requires a certain order.

Th is is the most basic font declaration you can have:

font: <font-size> <font-family>;

Of course, you’d replace those bracketed terms with actual values, like so:

font: 100% sans-serif;

Th e point is that you must include both values, and they must be in that order—size, then
family. Reverse them, or leave one out, and any modern browser will just ignore the declara-
tion outright.

Furthermore, if you include the other keywords in your declaration, they all (except for one,
which is the subject of the next section) have to come before the required values. Th us:

font: bold italic 100% sans-serif;

font: italic small-caps 125% Georgia, serif;

font: italic bold small-caps 200% Helvetica, Arial, sans-serif;

Note how those values before the size can be all scrambled around, and it doesn’t matter. Th e
only thing is that they all come before the size. Put them aft er, and again, browser will ignore
the whole declaration.

ROLLING IN LINE-HEIGHT

If you thought the font value patterns established in the preceding section were a little odd,
then this is where we get downright funky.

Earlier, I said that in order to have the minimum font value, “you must include both values,
and they must be in that order—size, then family.” Th at’s true, but it so happens that you can
drop an optional line-height value in place as a sort of hanger-on to the size (see Figure
3-2). It looks like this:

font: 100%/2.5 Helvetica, sans-serif;

76

PART II: ESSENTIALS

Figure 3-2: Increased line-height.

Th ere’s no space between the font-size and line-height values, just a forward slash.
(In case you’re wondering, this is the only place in the whole of CSS that uses a forward slash.)

Adding the line-height to a font declaration is always optional, but if you do include it,
its placement is not. You must immediately follow the font’s size with a forward slash and the
line-height value.

UNITLESS LINE-HEIGHT VALUES

Th e property line-height can accept unitless number values. You can also give line-
height united values, though generally you shouldn’t.

So what’s the diff erence? When you defi ne a united value, like 1em or 100%, you’re setting
things up to pass along the computed result to any descendants. For example, suppose the
following CSS is applied to a document containing the following markup fragment:

ul {font-size: 15px; line-height: 1em;}

li {font-size: 10px;}

small {font-size: 80%;}

 I’m a list item with <small>small text</small>.

CHAPTER 3: TIPS

77

Th e ul element has its line-height computed to be 15px because for line-height,
em-based values are calculated using the computed font-size of the element itself, the
same as percentage values. Since I declared the font-size directly, we know its computed
size in pixels.

Here’s the potentially surprising part: Th e computed value of 15px is what’s passed on to the
descendent elements. In other words, the li and small elements will inherit a line-
height value of 15px. End of story. Th ey don’t change it based on their own font sizes; in
fact, they don’t change it at all. Th ey just take that 15px and use it, exactly the same as if I’d
written:

ul {font-size: 15px; line-height: 1em;}

li {font-size: 10px; line-height: 15px;}

small {font-size: 80%; line-height: 15px;}

Okay, now suppose I take the em off that line-height value, so that the styles now read:

ul {font-size: 15px; line-height: 1;}

li {font-size: 10px;}

small {font-size: 80%;}

 I’m a list item with <small>small text</small>.

Now what’s passed on to the descendants (the li and small elements) is that raw number,
which is used by said descendant elements as a scaling factor—a multiplier, if you will—and
not the computed result.

Th us all elements that inherit that value of 1 will take that value and multiply it with their
computed font-sizes. Th e list item, with its declared font-size: 10px, will have a
computed line-height of 10px. Th en it will pass that 1 on to the small element, which
will multiply it with its computed font-size. Th at’s 8 pixels; therefore, its computed
line-height will also be 8 pixels.

Th e end result is exactly the same as if I’d written:

ul {font-size: 15px; line-height: 1;}

li {font-size: 10px; line-height: 10px;}

small {font-size: 80%; line-height: 8px;}

Th at’s a pretty major diff erence (see Figure 3-3). Th is is why it’s always strongly recommended
that you use unitless numbers if you’re going to set a line-height on something like the
html or body elements, or indeed on any element that is going to have descendant elements.

78

PART II: ESSENTIALS

Figure 3-3: The difference between united and unitless line-height values.

AVOID STYLE-LESS BORDER VALUES

Borders can add a nice touch to any design, but without a style, the border you meant your
border declaration to create will be missing in action.

When I say “without a style,” I don’t mean CSS styles; I mean a border-style value. For
example, suppose you write:

form {border: 2px gray;}

Great, except that no border will be placed around your forms. Th e reason is simple: the
omission of a border-style value means that the default value for border-style was
used. And what is that default value? none. So the preceding rule is exactly equivalent to
saying:

form {border: 2px gray none;}

A border with a border-style of none will never be drawn, no matter how wide you
make its border-width value—because a border that doesn’t exist can’t have any width.

CONTROLLING BORDER APPEARANCE WITH COLOR

From time to time, you may fi nd yourself with the need (or just plain desire) to create an inset
or outset border. I’m not here to judge, but I am here to point out a possible pitfall. Consider:

div {border: 5px red outset;}

Simple enough, right? But look at how that gets handled in various browsers (see Figure 3-4).

CHAPTER 3: TIPS

79

Figure 3-4: Differences in inset and outset across browsers.

Th at’s not an error, and none of the browsers are wrong. Th e CSS specifi cation doesn’t say how
a border’s color should be modifi ed in order to create the illusion of insetness or outsetness. It
just says, and I quote:

Th e color of borders drawn for values of ‘groove’, ‘ridge’, ‘inset’, and ‘outset’ depends
on the element’s border color properties, but UAs may choose their own algorithm to
calculate the actual colors used (www.w3.org/TR/CSS21/box.
html#border-style-properties).

Note that last part: “UAs [user agents] may choose their own algorithm.…” It is a long-estab-
lished truth of Web development that given the chance to choose diff erently, browsers always
will. And so they have.

Maybe you’re okay with the diff erences in those borders, and if so, that’s cool; again, not here
to judge. If you want those border shades to be consistent across browsers, though (as in
Figure 3-5), then what you really want is to declare a solid border and set the colors yourself.

#innie {border-color: #800 #F88 #F88 #800;}

#outie {border-color: #F88 #800 #800 #F88;}

80

PART II: ESSENTIALS

Figure 3-5: Creating consistent inset and outset borders with colored solid borders.

Obviously, this only works with inset and outset borders. To create consistently colored
groove and ridge borders (see Figure 3-6), you’ll need to put a wrapper around (or just
inside) your element and style each one’s solid border with specifi c colors that create the
visual eff ect you want. Something like this:

#innie {border-color: #800 #F88 #F88 #800;}

form {border: 3px solid; border-color: #F88 #800 #800 #F88;}

<form>

 <div class="wrap">

 (content and form inputs and so on here)

 </div>

</form>

Figure 3-6: Consistent “ridged” borders.

SUPPRESSING ELEMENT DISPLAY

Ever wanted to take an element and make it go away on the page without actually removing it
from the document source? Th ere are a few ways to make that happen, each with its own
strengths and weaknesses. Th is and the next few sections discuss the various approaches.

CHAPTER 3: TIPS

81

Th e most obvious way to make an element disappear is to switch off its display.

.hide {display: none;}

Th at will suppress display of any element with a class of hide, of course. Th at means any
such element will generate no element box at all. It will therefore have no eff ect on the layout
of any other element. It’s like it never even existed. Like it was a ninja.

Th ere are a couple of pitfalls with display: none, though—one potential, one persistent.
Th e potential problem is if you directly set the value of none via JavaScript, then how do you
know how to unset it? Th is is trickier than it might seem. Suppose you wrote:

var obj = document.getElementById(‘linker’);

obj.style.display = ‘none’;

Th en, later in the JS, you want to show the element again. What value do you give? It depends
on the element, doesn’t it? If it’s a span element, you probably want it to be inline. If it’s a
p, then you probably want block. (Th en again, maybe not: You can make spans generate
block boxes and divs generate inline boxes easily enough.)

Th ere’s one fairly commonplace solution: assign no value at all:

obj.style.display = ‘’;

Th at will cause the element to default back to whatever display value is called for in the rest
of the CSS, or by the browser’s built-in styles.

Th e other commonplace solution is to not set the display value directly, but instead add a
class value of, say, hide to the element. When you want to reveal it again later, you just
strip off the class. Th is is a little more complicated because it requires you to write (or fi nd
via Google) JavaScript that will add or remove class values, but it’s a very workable solution.

Th e persistent problem is that (as of this writing) elements with a display of none are not
“seen” by the vast majority of assistive technologies like screen readers. Since the element isn’t
rendered to the screen, the reader can’t fi nd it and so doesn’t read it. Th is is oft en exactly what
is wanted, but at other times, it’s exactly what isn’t wanted.

For example, suppose you have assistive links (generally called “skiplinks”) in your page. You
want them there for people who are using screen readers so they can jump forward in the
document, but you don’t want them on-screen getting in the way of people who are sighted. If
you set their container to display: none, then they disappear … for everyone, sighted or
not. Th e people who need them don’t hear them.

Similarly, if you have dropdown menus that are hidden (absent mouse action) for sighted
users, screen readers won’t be able to fi nd them if they’re hidden with display: none.

82

PART II: ESSENTIALS

SUPPRESSING ELEMENT VISIBILITY

In a manner very similar to suppressing the display of an element, you can reduce its
visibility to zero by declaring it to be hidden.

.hide {visibility: hidden;}

Th is will make the element invisible, which probably sounds a lot like it having no display.
Th ere’s a crucial diff erence, though: An element that’s set to visibility: hidden still
participates in the layout of the page, as evident in Figure 3-7.

Figure 3-7: Invisible element.

So besides taking up space, what good is an invisible element? A mouse user can’t interact
with it, it may not be accessible by keyboard, and you certainly can’t see it. So why bother?

Well, it’s great for absolutely positioned elements, which are already not participating in the
page’s layout. (Th ey sit sort of above everything else and aren’t taken into account when laying
out other elements.) So you can toggle their visibility between hidden and visible
without aff ecting the page’s layout. As a bonus, you can hide or show them without messing
with the element’s display role, thus sidestepping the potential problems mentioned in the
preceding section.

CHAPTER 3: TIPS

83

Unfortunately, the same accessibility problems persist: Elements set to visibility:
hidden are completely ignored by the vast majority of screen readers. Dropdown menus
hidden from sight in this manner are also hidden from speaking browsers.

THROWING ELEMENTS OFF-SCREEN

So you want to hide an element from people who can see but still make it available to screen
readers. How? Here’s one way.

.hide {position: absolute; top: -10000em; left: -10000em;}

Having done this, the third paragraph (the one that created a big blank space in Figure 3-7) is
essentially removed from the page, as shown in Figure 3-8.

Figure 3-8: Throwing elements off-screen with positioning.

Th at’s right: the CSS took that third paragraph, absolutely positioned it, and then thrww it
way off -screen. Doing this will remove an element from sight, and yet it will still be read by at
least some screen readers. Th is is the reason why this technique is generally held to be the
superior option for hiding elements.

08_684160-ch03.indd 8308_684160-ch03.indd 83 10/5/10 7:46 PM10/5/10 7:46 PM

84

PART II: ESSENTIALS

Technically speaking, however, you’re placing the top-left corner of the element 10,000
ems—that is, ten thousand times the element’s font size—above and 10,000 ems to the left of
the top-left corner of the element’s containing block. In many cases, that’s the root element, as
in the html element. On other cases, it might be another element within the document. Either
way, the odds are overwhelming that given the above styles, it will be far, far out of sight.

To bring it back, you have a couple of options. If you want it to be absolutely positioned when
it’s visible, then you can just set its top and left to place it where you want it. Th at would be
something like:

.show {top: 0; left: 0;}

If, on the other hand, you want it to come back into the normal fl ow of the document, you can
just set its position to the CSS default.

.show {position: static;}

If you take that approach, you don’t have to reset the values of top and left, because values
for those properties are completely ignored when laying out a statically positioned element.
You could reset them, or not; it won’t make a diff erence.

A third option comes into play if you want the element to come back into the normal fl ow, but
you need it to be a containing block for the elements it contains. Th is would be the case if you
want to absolutely position things that are inside the element you’re bringing back on-screen.
In that case, you can have the element be relatively positioned, but you do have to declare the
off set values.

.show {position: relative; top: 0; left: 0;}

If you leave out the top: 0; left: 0; part, then the element will be off set from its place
in the normal fl ow. Th at’ll leave a hole in the page where it would’ve shown up, had it not
been thrown 10,000 ems up and to the left .

And of course you don’t have to use exactly 10,000 ems here. You can use any number you like
up to 65535 in a few very old browsers, 16777271 in Safari 3, and 2147483647 in the rest. You
can also use any valid CSS measuring units, from ems to pixels to picas to inches. Th e key is to
make it a very large number so that there’s basically no chance of it ever being visible until you
call for it.

IMAGE REPLACEMENT

One of the longest-running design techniques in CSS is that of image replacement. Th is is a
class of techniques that allow you to use an image in place of text in such a way that the text is
still available for print, accessibility, and so forth. Image replacement (IR) is generally
intended for small, limited applications, such as company logos, page headlines (see Figure
3-9), and so on. It is not suitable for replacing entire paragraphs of text.

CHAPTER 3: TIPS

85

Th e most popular IR technique is known variously as the Phark or Rundle Method. (How
popular? People made T-shirts about it.) Basically, what you do is sling the text way off to the
left with negative text indentation.

h1 {height: 140px; text-indent: -9999px;

 background: url(page-header.gif);}

Figure 3-9: A heading using image replacement.

Th is is in many ways similar to the trick of using absolute positioning to hide an entire
element well off -screen. Here, instead, we hide the element’s text content well off -screen
without actually moving the element box anywhere.

In print, background images are almost never printed. Th e option to do so exists, but the
default is to not print backgrounds, and almost nobody ever changes it. Th us, in a print style
sheet (see the next section for more details), you can simply say:

h1 {text-indent: 0; background: none;}

Th e background: none is really only a precaution—almost nobody ever has background
printing enabled. Still, just in case they do, this will prevent the h1 text from printing over the
background image.

86

PART II: ESSENTIALS

Th e one edge case where this sort of replacement fails is when a user has a browser with CSS
enabled but image display disabled, and, more commonly, if the image fails to load for some
reason. In those cases, the heading text will simply disappear, as in Figure 3-10, and not be
replaced by the background image.

Figure 3-10: The result when the image is not available.

Th ere are about a dozen diff erent image-replacement techniques, each with its own unique
approach to the problem. Some involve wrapping the element’s content in a span and
suppressing its display or throwing it off -screen; others have you adding an extra image as
content that mirrors the background image.

One image replacement technique is worth mentioning here: using an image in the content
and nothing else. For example:

<h1></h1>

In this case, the image will show up both on-screen and in prnt, since browsers do print
content images. It will also be very friendly to screen readers, which know to use the alt text
in place of the image. It does, again, fall down if the user has suppressed the loading of
images—though in cases where images are enabled but the image somehow fails to load, the
alt text should be shown in the image’s place.

CHAPTER 3: TIPS

87

PRINT STYLES

If you aren’t creating styles for print, now might be a good time to consider it. Even if you
want your site to look basically the same on page as on-screen, you can still take the opportu-
nity to optimize the color contrast for what will very likely be grayscale output with no
background colors or images whatsoever.

It’s easy to do. You can associate them with the page in three ways:

<style type="text/css" media="print">…</style>

<link type="text/css" rel="stylesheet" media="print"

 href="print.css">

@import url(print.css) print;

Almost everyone uses the link approach. Th is is because embedding a print style sheet in
every page is pretty ineffi cient, and importing a print style sheet requires embedding a style
sheet in every page. Also, there were browser bugs around print-specifi c imported style sheets
that lasted for a very long time.

 Th e print style sheet itself is where you can do things like unset image-replacement eff ects
(see preceding section). It’s also a very good idea to make sure all your text is dark in shade,
because white text on a dark background will almost inevitably become white text on a white
piece of paper, and that’s just really hard to read.

Th is happens because background images and colors are almost never printed. Th e option to
do so exists in every modern browser, but the default setting is not to print backgrounds,
which, when you think about it, is a really good default. (Imagine the eff ect on your printer’s
ink cartridge if you printed out ten pages of white text on a navy blue background.) Almost
nobody ever changes the setting, so you have to assume that no backgrounds will show up in
print. Th erefore, it’s a good idea to just remove them in your print styles.

You can do that in a broad, sweeping way:

* {background: transparent; color: black;}

…or you could list out all the elements that need to be adjusted, something like this:

body, #navbar, #aside, .warning, .blockquote {

 background: transparent; color: black;}

DEVELOPING PRINT STYLES

So what’s the best way to develop print styles? Right there in the browser, unless of course
you’d rather select Print Preview… about a kajillion times. Here’s how it works.

88

PART II: ESSENTIALS

You probably already have a stylesheet or two for browser layout. Let’s assume they’re linked
in, like so:

<link type="text/css" rel="stylesheet" href="basic.css">

<link type="text/css" rel="stylesheet" href="theme.css">

Even though they don’t say so explicitly, both of these style sheets are applied in all media—
that is, things are exactly the same as if they had media="all" included in the markup.

<link type="text/css" rel="stylesheet" href="basic.css" media="all">

<link type="text/css" rel="stylesheet" href="theme.css" media="all">

Th e fi rst question is: Do you want these styles to apply in print? If not, then you probably want
to change the all values to screen.

<link type="text/css" rel="stylesheet" href="basic.css" media="screen">

<link type="text/css" rel="stylesheet" href="theme.css" media="screen">

Okay, that’s the default situation. To this, you want to add a print stylesheet:

<link type="text/css" rel="stylesheet" href="basic.css" media="screen">

<link type="text/css" rel="stylesheet" href="theme.css" media="screen">

<link type="text/css" rel="stylesheet" href="print.css" media="print">

Great! Um, except when you reload the page in the browser, nothing changes, because you’re
looking at it using a screen medium. Since you probably don’t want to call up a print
preview every time you make a change to the CSS, and you defi nitely don’t want to print out
the page every time you tweak the print styles, you’ll need to get those print styles on-screen.

And that right there is the answer: Get them onto the screen while you get the other, screen-
specifi c styles off the screen (see Figure 3-11). So change print to screen and the existing
screen values to … some other media value. I use tty because it’s the furthest medium
from screen that I can reasonably imagine. Also, it’s short to type. Here’s an example:

<link type="text/css" rel="stylesheet" href="basic.css" media="tty">

<link type="text/css" rel="stylesheet" href="theme.css" media="tty">

<link type="text/css" rel="stylesheet" href="print.css" media="screen">

Now you can develop the screen styles to your heart’s content, reloading merrily until you
have things just the way you want them. When you’re done, just change screen back to
print and tty back to screen, and you’re ready to do a fi nal printout to make sure
everything turned out okay.

CHAPTER 3: TIPS

89Figure 3-11: Previewing print styles in the browser.

BLOCK-LEVEL LINKS

Messing around with display is one of the cornerstones of doing interesting layout on
minimal markup. And one of the best tricks in this card deck is to have hyperlinks, which
usually create an inline box, generate a block-level box instead.

To understand why, consider a list of links in a page’s sidebar. Th ese are probably all an
unordered list, one link per list item, or else in some very similar structure. In fact, consider
two identical lists of links. Th e only diff erence is that one list will have block-level links, and the
other won’t (see Figure 3-12). We’ll give the links backgrounds to make the diff erence clear.

Figure 3-12: Two lists of links—one blocked, the other not.

90

PART II: ESSENTIALS

Th e inline links are lot less user-friendly—there’s less area to click. Accordingly, if we want to
do background hover eff ects on the links, the inline links will only “light up” behind the text,
not in the whole box.

Getting to block-level links is really easy.

#sidebar ul a {display: block;}

Th at’s all I needed to get the block-box links into Figure 3-12.

When a link generates a block box, it acts exactly like the boxes usually generated by para-
graphs, headings, divs, and so on—because it’s exactly the same kind of box. You can give it
padding, margins, and all the rest.

MARGIN OR PADDING?

Have you ever thought—I mean, really thought—about the indentation of lists? Or the “gutter
space” that surrounds a page by default? If so, have you thought about how they’re created?
Because it turns out there’s no universally correct answer.

Let’s take the space around a page’s content for a starter. As most people know, there are about
8 pixels of space that separate the page’s content from the edges of the browser window. As
shown in Figure 3-13, you can remove that space with reset styles, or by styling the body
element itself. But how should you style it? Are you removing a margin, or removing
padding?

If you want to be cross-browser friendly, the answer is both. Th at’s because most browsers
create the gutter with an 8-pixel margin, except Opera, which does it with 8 pixels of padding.

Now, before you start looking up ancient Norwegian curses, realize that nobody is in the
wrong here. Th ere’s no specifi cation that says exactly how to create the gutter (or even that
there needs to be one). Th ere’s a strong argument to be made that padding is a better choice
than margins here. Th at really doesn’t matter, though, since there’s disagreement between
browsers. So:

body {padding: 0; margin: 0;}

Th at will eliminate the gutter in all known browsers. (Well, except for Netscape 4, but do you
really care?)

CHAPTER 3: TIPS

91Figure 3-13: A close-up of the “gutter” around the document’s content.

In a like fashion, the indentation of lists—either ordered or unordered—is accomplished by
either margin or padding, depending on the browser. Th us, if you declare the following:

ul, ol {margin-left: 0;}

… then you’ll remove list indentation in some, but not all, browsers. You need to strip off the
left padding as well if you want to be consistent across browsers.

ul, ol {margin-left: 0; padding-left: 0;}

Of course, you aren’t limited to just removing the indentation. Once you’ve gotten used to
setting both left margin and padding on lists to change list indentation, you can decide which
mix works best for you. Maybe you think all browsers should use padding to indent lists. Just
say so:

ul, ol {margin-left: 0; padding-left: 2.5em;}

Or maybe you’d like to split the diff erence:

ul, ol {margin-left: 1.25em; padding-left: 1.25em;}

92

PART II: ESSENTIALS

Or perhaps all margins, no padding is your cup of tea:

ul, ol {margin-left: 2.5em; padding-left: 0;}

In many cases, it won’t really matter how you do this. If you assign a background to your lists,
though, then it very suddenly does matter (see Figure 3-14). Th is is largely because the list
markers—bullets, squares, letters, numbers, whatever—are placed to one side of each list item,
as though absolutely positioned there. (Th ey aren’t actually placed using absolute positioning,
but the eff ect is very, very similar.) So they’ll hand over the list’s left padding or margin or
whatever is over there. If you want them “inside” the visible background, then you want your
list indentation to be done with padding. If you want them hanging out beyond the back-
ground, then use margin.

Figure 3-14: A comparison of list indentation techniques.

OUTDENTING LISTS

We were just talking about list indentation, and now we’re talking about … outdentation? Is
that even a word? Maybe not, but it’s better than “hanging indent,” which is the other term
used for this sort of thing and which makes no sense at all.

What we’re talking about here is the technique of having the fi rst line of a list item hanging
out to the left of where the rest sit (see Figure 3-15).

It’s a nice eff ect because it lets you distinguish between list items without having to clutter up
the page with bullets or what-have-you. It’s really easy to do, too.

ul {text-indent: -2em; list-style: none;}

CHAPTER 3: TIPS

93Figure 3-15: Outdenting.

Th at’s it. Note that I made sure to include list-style: none there. If I hadn’t, then the
fi rst line of each list item would’ve been outdented, and the text would have overlapped the
bullets. So don’t mix outdenting with list markers.

You can outdent anything, of course, from paragraphs to headings to divs to pre to table
cells. It’s just most common to see it in lists.

BULLETING LISTS

Th ere are a lot of ways to get bullets onto lists. Th e simplest, though the least precise, is to use
the list styling properties built into CSS.

Let’s say we have a list of the stars closest to the Earth, and we want each one to have a little
star bullet instead of a circle, disc, or square (see Figure 3-16).

ul.stars{list-style-image: url(star.gif);}

94

PART II: ESSENTIALS

Figure 3-16: Starred stars.

Easy as cake. Th e potential drawback here is that you don’t have any control over the place-
ment of the images. Th eir distance from the left edge of the list item’s text, and their vertical
alignment with respect to the fi rst line, are entirely under the control of the browser. You don’t
have any say.

Now, suppose you wanted just to have regular list markers—we’ll say discs—but have the
markers be a diff erent color than the content of the list item (see Figure 3-17).

Unfortunately, it requires some structural hacking. You have to wrap the content of each list
item in an element—either a div or a span. I’ll demonstrate using a div.

ul.stars {color: red; list-style: disc;}

ul.stars div {color: black;}

<ul class="stars">

<div>The Sun</div>

<div>V645 Centauri (Proxima Centuari)</div>

<div>Alpha Centauri A</div>

...

CHAPTER 3: TIPS

95

Figure 3-17: Changing marker colors.

In this specifi c case, we could’ve switched the div to a span with no real change of result.
Had we wanted to throw in some borders or a background, then there could be a huge
diff erence between the two. (Granted, you could overcome the diff erence using display.)

You’d think that CSS would have ways to independently style the list markers without having
to drop extra elements into the markup—and in fact, you’d be right. Th e problem is that
browsers never implemented them, so they’re kind of irrelevant.

BACKGROUND BULLETS

So you want to set customized image list markers, but you aren’t content with just letting the
browser put it wherever it feels like. Th at’s okay: Just turn off the list’s markers and drop your
image into the list items’ backgrounds (see Figure 3-18).

ul.stars {list-style: none;}

ul.stars li {background: url(star.gif) 0 0.1em no-repeat;

 padding-left: 16px;}

08_684160-ch03.indd 9508_684160-ch03.indd 95 10/5/10 7:46 PM10/5/10 7:46 PM

96

PART II: ESSENTIALS

Figure 3-18: Bullets in the background.

Because you can place the image wherever you want in the background, you have a lot more
fl exibility than plain old list-style-image permits. You do need to remember to add in
some left padding, of course—otherwise, the element content will sit on top of the back-
ground image!

If you want to line the image up with the fi rst line of text, there is a little bit of an art to it, and
you can’t absolutely guarantee to-the-pixel alignment with, say, the baseline of the fi rst line of
text. You can get very close, and in many cases will be in the right place, but it’s never a sure
thing. Th is is one of those cases where you have to accept the potential fl aws, or else try a
diff erent approach.

A benefi t of this particular approach is that you aren’t constrained to the fi rst line of text. You
can have the markers be vertically centered compared to the whole list item, even if it goes to
multiple lines. Combined with intervening borders, as depicted in Figure 3-19, this can be a
nice eff ect.

CHAPTER 3: TIPS

97

Figure 3-19: Vertically centered background markers.

If you want to drop in variant markers for certain types of list items (see Figure 3-20), that’s as
simple as classing the list items and bringing in new images.

ul.stars {list-style: none;}

ul.stars li {background: 0 0.1em no-repeat;

padding-left: 16px;}

ul.stars li.m {background-image: url(star-m.gif);}

ul.stars li.k {background-image: url(star-k.gif);}

<ul class="stars">

<li class="g">The Sun

<li class="m">V645 Centauri (Proxima Centuari)

<li class="g">Alpha Centauri A

<li class="k">Alpha Centauri B

...

98

PART II: ESSENTIALS

Figure 3-20: Variant background markers.

One drawback to this approach is that the images, being in the background, won’t print for
the vast majority of users. Accordingly, you’ll want to declare regular list markers in a print
stylesheet or something similar.

GENERATING BULLETS

Th ere’s an even more advanced way to do your own customized list markers, though it is
incompatible with older browsers. In this approach, you mix outdenting with generated
content (see Figure 3-21).

ul.stars li:before {content: url(star.gif);margin-right: 8px;}

ul.stars li {text-indent: -20px; list-style: none;}

Th at’s it. You don’t need to add any extra elements, because the generated content eff ectively
inserts its own at the beginning of each list item’s content. Th is does mean that the image is
being inserted as inline content, so you can vertically align it with respect to the text’s baseline
and so on.

You can of course address specifi c classes to get specifi c icons (see Figure 3-22).

ul.stars li.m:before {content: url(star-m.gif);}

ul.stars li.k:before {content: url(star-k.gif);}

CHAPTER 3: TIPS

99

Figure 3-21: Generating markers.

Figure 3-22: Generating variant markers.

100

PART II: ESSENTIALS

Since these are inserted into the content of the page, they will be printed, the same as if you’d
added them with an img element or via list-style-image.

Th e advantage is that instead of having to load images, you can just insert characters that you
can style independently of the content, no extra elements required. Here’s how you could
replace the above styles, with the result shown in Figure 3-23:

ul.stars li {text-indent: -1.25em; list-style: none;}

ul.stars li:before {content: "\2605";

margin-right: 0.75em;}

ul.stars li.m:before {color: red;}

ul.stars li.k:before {color: orange;}

Figure 3-23: Generating Unicode markers.

Th ere isn’t quite as much precision here as you get with images and pixels, so it’s possible that
the text in the fi rst line won’t be precisely lined up with the text in following lines. You can
generally get really close, though, and furthermore, it’s only an issue if your list items will have
multiple lines of text.

YOU HAVE MORE CONTAINERS THAN YOU THINK

It’s a fairly common practice to wrap the entirety of a page’s content in a “wrapper” div,
something like this:

CHAPTER 3: TIPS

101

<body>

<div class="wrapper">

…

</div>

</body>

Th e rationale here is usually that you want to center the content, or otherwise have a couple of
containers sitting outside the content. In this case, it’s the body and the div. So with that
markup, you’ll oft en see this kind of CSS:

body {background: #ABACAB; text-align: center;}

div.wrapper {width: 800px; margin: 0 auto; text-align: left;)

Th at’s the classic “center the design even in old versions of IE, which didn’t understand auto
margin centering but thought text-align should be used to center element blocks”
technique.

But there were already two elements containing the page’s content, even without the extra
div: the body and html elements. Yes, you can style html. Why not? To CSS, it’s just
another element. Th ere’s nothing magic or even particularly special about it, save that it’s the
topmost element in the document tree and therefore the “root” element.

So we can just take the preceding rules and alter them ever so slightly:

html {background: #ABACAB; text-align: center;}

body {width: 800px; margin: 0 auto; text-align: left;)

Now we can remove the “wrapper” div entirely, with no change in layout, as shown in Figure
3-24.

Aft er you realize that both body and html are available for your styling, you can do a
number of interesting things. For example, suppose you have a design that calls for a two-tone
stripe across the top of the page, with a logo inside the stripe. You can probably think of a way
to do that with a div. Here’s an alternate approach that doesn’t require one (see Figure 3-25):

html {border-top: 5px solid navy;}

body {border-top: 55px solid silver; margin: 0; padding: 0;}

img.logo {position: absolute; top: 10px; left: 10px;}

102

PART II: ESSENTIALS

Figure 3-24: The layout.

Figure 3-25: Stars and stripes.

CHAPTER 3: TIPS

103

You can of course do something very similar with repeating background images (see Figure
3-26).

html {background: url(stars-m.png) 14px 41px repeat-y;}

body {background: url(stars-k.png) 54px -20px repeat-x;}

img.logo {position: absolute; top: 10px; left: 10px;}

Figure 3-26: Many stars.

DOCUMENT BACKGROUNDS

We’re all used to setting a background on the body and having it fi ll the whole browser
window. But guess what happens if you also set a background for the html element?

html {background: #ABACAB;}

body {background: #DED;}

Yep: As evident in Figure 3-27, the browser window is fi lled out by the html element’s
background, and the body’s background just fi lls in the content area and padding of that
specifi c element. Th is is true whether or not the body element is tall enough for its bottom to
reach the bottom of the browser window. If it doesn’t, then the html background is visible
underneath. Th is would also be the case if the body element has a bottom margin, the html
element has bottom padding, or both.

104

PART II: ESSENTIALS

Figure 3-27: The body does not always fi ll the viewport.

If we remove the rule html {background: yellow;} from the style sheet, though, the
entire window will fi ll with white.

Th is happens because the HTML specifi cation says that the canvas, which is the area in which
the Web page is drawn, gets its background from the html element. If there is no background
set for html, then it gets its background from the body element. If the body doesn’t have a
background either, then the browser just fi lls in some default color.

Th is is a special case described in detail in the specifi cation; there is no other case where a
background (or any other CSS property) applies upwards in the document tree. Just keep it in
mind if you’re setting an html background.

SERVER-SPECIFIC CSS

How many times have you played out the following scenario?

 1. Make local changes to your stylesheet(s).
 2. Upload the changes to the staging server.
 3. Switch to your browser and select Reload.
 4. Nothing happens.
 5. Force-reload. Nothing happens.

CHAPTER 3: TIPS

105

 6. Go back to make sure the upload is fi nished and successful.
 7. Reload again. Still nothing.
 8. Try sprinkling in !important. Upload, reload, nothing.
 9. Start swearing at your computer.
 10. Check Firebug to see what’s overriding your new styles. Discover they aren’t being

applied at all.
 11. Continue in that vein for several minutes before realizing you were selecting Reload

while looking at the live production server, not the staging server.
 12. Go to the staging server and see all your changes.
 13. Start swearing at your own idiocy.

It’s happened to me more times than I’d like to admit. Th e last time it did, I realized that if I
could just serve up a special extra stylesheet from my staging server, one that made it obvious
I was on the staging server without blowing away the whole design, I’d save myself a lot of
frustration.

html {background: url(staging-bg.png) 100% 50% repeat-y;}

As it turns out, you can do this in a variety of ways. Th e most elegant is to use HTTP headers
to send out an extra stylesheet. If your Web site runs on Apache, you can do this by adding
the following line to your server’s root .htaccess fi le:

Header add Link "</staging.css>;rel=stylesheet;type=text/css"

Now all you need is staging.css to sit at the root level of your development server, and
you’re golden. You aren’t limited to that placement, either: You can put staging.css
anywhere on the server and just modify the bracketed URL to match its new home. You can
also use a fully qualifi ed URL, like http://example.com/staging.css, if you prefer.
Just make sure you keep the angle brackets, because they’re required.

Of course, there’s always the risk that you might migrate both staging.css and the
.htaccess fi le to the production server. You can avoid that by not using .htaccess to
serve up staging.css, but instead send it via an addition to httpd.conf. It would look
like this:

<Directory /path/to/website/rootlevel>

Header add Link "</staging.css>;rel=stylesheet;type=text/css"

</Directory>

Again, you’d alter /path/to/website/rootlevel to match your local install. It’s just the
UNIX fi le system path to the directory where your Web site lives. Th e advantage here is that
you’re a lot less likely to have httpd.conf copied from one server to another. It isn’t
impossible that it would happen, but it’s mighty close.

106

PART II: ESSENTIALS

One drawback to using HTTP headers to serve stylesheets is that it won’t work in either
Internet Explorer or Safari. Th at’s why this technique is very rarely used to serve up CSS on
public Web sites. It’s fi ne in a development environment, of course, as long as you’re using
Firefox or Opera as your development browser.

Now, suppose you either don’t run Apache or can’t mess with its confi guration, but still want
to do this.

If you’re on an IIS server, you can send CSS via HTTP headers using the directions available
at http://technet.microsoft.com/en-us/library/cc753133(WS.10).aspx.
You can do it either through the IIS Manager interface or from the command line.

If you’re using PHP for all your pages, on the other hand, then you don’t have to mess with the
server confi guration at all, though you do have to add a PHP directive to every page that you
want to show the staging-server styles. As a bonus, this approach also works in all browsers.

Th e simplest way is to add the following in each page’s head element:

<?php if ($_SERVER[‘HTTP_HOST’] == "staging.example.com") { ?>

<link rel="stylesheet" href="/staging.css" type="text/css" />

<?php } ?>

Th us you simply write out a link to a stylesheet, and if there’s a browser that won’t support
that, it isn’t going to show you any CSS anyway.

Th at works great for any fi le served off of staging.example.com. A more robust solution,
one that works from any server with a certain string in its domain name or even from a local
development server running on your personal machine, looks like this:

<?php

if(preg_match("/staging|test|dev|localhost|127\.0\.0\.1/", $_SERVER[‘HTTP_

HOST’])){ ?>

<link rel="stylesheet" href="/staging.css" type="text/css" />

<?php } ?>

You could also use PHP to conditionally emit HTTP headers to bring in a stylesheet; but
honestly, if you’re already doing the server detection on each page, then you may as well just
write out the link element.

Similar approaches no doubt exist for the wide variety of Web development languages out
there. Th e above code should provide a good start toward working out the details.

My thanks to Zachary Johnson (http://www.zachstronaut.com/) and Alan Hogan
(http://alanhogan.com/) for their PHP contributions, and Peter Wilson (http://
peterwilson.cc/) for pointing me to the IIS directions. Gentlemen and scholars all.

SMASHING CSS

C
H

A
P

T
E

R

4

LAYOUTS4
IT IS UNSURPRISING that one of the most
basic things designers want to do with CSS is lay
out pages. What is sometimes a bit more of a
surprise is that there isn’t a totally straightfor-
ward way to do layout with CSS. (Not that there
has ever been a straightforward way to do layout

on the Web. People only thought of table layout
as simple because we got used to it.) Th is chapter
takes a look at some ideas for making layout
work simpler as well as covers a number of
common and useful layout techniques.

108

PART II: ESSENTIALS

OUTLINES INSTEAD OF BORDERS

To lead off , I’d like to talk about the use of outlines, which at fi rst glance look a lot like borders
but turn out to diff er in ways that are very signifi cant to layout. Outlines can be used in
published layouts, and are very handy diagnostic tools when creating and debugging layouts
in progress.

During layout creation, you can visualize the placement of your layout pieces using something
like this (see also Figure 4-1):

div {outline: 1px dashed red;}

Figure 4-1: Outlining the divs.

You might think that the same thing can be accomplished with border, but that’s actually
not true. Th e reason is that borders participate in layout. Outlines do not.

Here’s what I mean: Suppose you have three column divs that are meant to fi t into a con-
tainer div 960 pixels wide. (If you dislike pixels, the same thing can happen with ems,
percentages, or any other width measure.) You set each one to float: left; width:
33.33%; and are trying to visualize exactly where the column edges sit. If you add borders,
the last of the three divs will drop below the fi rst two (see Figure 4-2). Th at’s because each
div will have a width of 320 pixels and then right and left borders added to that, which will
make each div’s layout box a minimum of 322 pixels wide. Multiply that by three columns
and you get a total of 966 pixels, which will not fi t into a 960 pixel container. Float drop!

CHAPTER 4: LAYOUTS

109Figure 4-2: The third column drops out of sight.

Th at’s what’s meant when we say that borders participate in layout. Outlines, on the other hand,
do not. Th ey are eff ectively drawn around elements aft er they’ve been laid out, so in our three-
div scenario, the divs will all sit next to each other with the outlines drawn around them.

It doesn’t matter how thin or thick you make the outlines; they’ll never shift the divs—or
anything else on the page. All they can do is overlap or be overlapped, as evident in Figure 4-3.

Th is has immediately obvious advantages when it comes to trying to map a layout. If things
don’t seem to be lining up quite right, you can drop in some outlines to get a sense of where
the element edges sit and not worry about completely wrecking the layout in the process.

Another thing about outlines that diff ers from borders is that an outline must go all the way
around an element, and be the same all the way around. In other words, you cannot simply set
a left outline or a top outline, the way you can with a border. Th ere is simply an outline
around all four sides of the element, or else there isn’t. In a like manner, you cannot vary the
color, width, or style of the outline on each side. If you want a two-pixel dashed yellow border,
then it will be so all the way around the element.

Note that an element can have both a border and an outline. In such a case, the outline is
drawn just outside the border, so that the outline’s inner edge touches the border’s outer edge.
If the element has margins, then the outline is drawn over that margin area, but the margins
are not changed or displaced by the outline.

110

PART II: ESSENTIALS

Figure 4-3: Great big dotted outlines.

CENTERING BLOCK BOXES

Sometimes you want to center a whole element within its container (even when that container
is the body element). Th ere isn’t a specifi c element-centering property in CSS, but you can get
the same eff ect with margins.

If you have a tightly locked layout, then it’s pretty simple: Figure out how much space you
need on each side of the centered element, and set up the appropriate margins (see Figure
4-4). For example:

div#contain {width: 800px;}

div#main {width: 760px; margin: 0 20px;}

In that case, it’s just simple math. In fact, you wouldn’t even need the div#main rule. You
could just use padding on the container:

div#contain {width: 760px; padding: 0 20px;}

Same visual result, diff erent approach.

In a situation where you have an element with a specifi c width but you don’t know how large
its container will be, you still use margins. You just get a little sneaky about it.

CHAPTER 4: LAYOUTS

111Figure 4-4: One box centered inside another.

Consider a situation where a div is the child of the body element. You want to center that
div but, because every browser window can be a diff erent width, you don’t know how wide
or narrow the body will be. As long as you’re giving the div a specifi c width, no problem:
Just auto the right and left margins (see Figure 4-5).

div#main {width: 55em; margin: 0 auto;}

Th is works because the CSS specifi cation says that when an element has a specifi c width, and
both the right and left margins are automatically determined, then the browser takes the
diff erence between the widths of the element and its container, splits that diff erence in half,
and applies one half to the left margin and the other to the right. Th us the box is centered.

Th is will not center the text within that box, of course. If you want to do that too (see also
Figure 4-6):

div#main {width: 55em; margin: 0 auto; text-align: center;}

Note that in a case where the div is wider than its container, browsers will left -justify the box
(not the content) in left -to-right languages, and right-justify the box in right-to-left languages.

112

PART II: ESSENTIALS

Figure 4-5: Centering a box with auto-margins.

Figure 4-6: Centering a box with auth-margins and text with text-align.

CHAPTER 4: LAYOUTS

113

FLOAT CONTAINMENT: OVERFLOW

Since fl oats are such an important part of current CSS layout, it’s oft en the case that you need
to have an element that contains some fl oats that stretch around them. Th is doesn’t happen
by default (for some perfectly good reasons; see the fi rst part of http://complexspiral
.com/publications/containing-floats/ for details) so you can get situations like
the following:

div#main {border: 2px dashed gray; background: #9AC;}

div.column {float: left; width: 28%;

padding: 0 1%; margin: 0 1%;}

See that dashed line above the top of the columns in Figure 4-7? Th at’s the full border around
div#main. It’s just that the div is zero pixels tall with the fl oated column divs sticking out
of it. (Again, this is not a bug or a fl aw in CSS; see the previously cited URL for an explanation
as to why.)

Figure 4-7: A collapsed box failing to visually contain its fl oated descendants.

A number of options will get div#main to “stretch around” the fl oated columns. Th e
simplest is to exploit the behavior of overflow (see Figure 4-8).

div#main {border: 2px dashed gray; background: #9AC;

overflow: auto;}

114

PART II: ESSENTIALS

Figure 4-8: Using overflow to visually contain fl oated descendants.

Yes, that works. Yes, there’s a reason. No, we’re not going to dig through it here. (But if you’re
curious, read section 10.6.7 of CSS 2.1.) If you want to be sure you sidestep some glitches in
older versions of IE, add an explicit width to your overflowed element:

div#main {border: 2px dashed gray; background: #9AC;

overflow: auto; width: 100%;}

Th e width value doesn’t have to be exactly 100%: It can be anything that isn’t auto. And, as
I say, it only has to be there to keep older versions of IE from soiling themselves. If you don’t
care about older versions of IE, then you can drop the width declaration entirely.

Th e advantage with this approach is that it leaves the containing element (div#main) in the
normal fl ow of the document. Th at means that it will keep any following content below its
bottom edge, even if it’s narrower than the following content. Th is allows it to keep following
content from fl owing next to your columns. It will also default to be as wide as its container.
Th at way you can say things like width: 100% and have the container stretch out like any
normal-fl ow element should.

Note, however, that since our example gives div#main side borders, declaring width:
100% means that div#main will actually stick out of its containing element by four pixels.
Using width: auto will prevent that—the whole element box, including borders, will fi t
inside its container—but then you might get old-IE problems.

CHAPTER 4: LAYOUTS

115

Th ere’s one more thing to be wary about: Th e value of auto for overflow means that a
browser could, if it decided it was necessary, place scrollbars on div#main. Th is doesn’t seem
to come up in practice, but there have been sporadic reports of accidental scrollbar invocation
and it’s something to keep an eye out for, just in case.

FLOAT CONTAINMENT: FLOATING

Another technique for containing fl oats is to fl oat the container.

div#main {border: 2px dashed gray; background: #9AC;

float: left;}

div.column {float: left; width: 28%;

padding: 0 1%; margin: 0 1%;}

Th is works because fl oats are defi ned to contain any fl oated descendant elements. Th ey ’re also
defi ned to be as wide as necessary for their contents, and no wider. In this particular case, that
can be dangerous: Th e columns are set to be one-third the width of div#main, but because it
has been fl oated, the browser gets to decide how wide or narrow div#main gets to be. Th e
result is unpredictable.

Th is is easily fi xed by giving div#main an explicit width (see Figure 4-9):

div#main {border: 2px dashed gray; background: #9AC;

float: left; width: 100%;}

Figure 4-9: Using float to visually contain fl oated descendants.

116

PART II: ESSENTIALS

Figure 4-9 looks the same as Figure 4-8, doesn’t it? And yet the two were generated using
diff erent CSS. Th is is one of those places where you have more than one way to get to the
same result, and choosing which is a matter of preference and the project in question.

Once again, div#main will stick out a little bit farther to the right (by four pixels) due to the
values for width and border. Because fl oats aren’t in the normal fl ow, though, we can’t just
assign width: auto and be done with it. Doing that with a fl oated element just means it
will be as wide or narrow as the browser decides is necessary.

Also, when you fl oat a box like this, you run the risk of following normal-fl ow content
running up next to it. To prevent that, you probably want to clear whatever element comes
aft er. If that’s a known element, you can just assign it, something like this (assuming the footer
always comes aft er div#main):

div#footer {clear: left;}

If you don’t know for sure that the same element will always follow div#main, then you can
use the adjacent-sibling combinator with the universal selector (see Figure 4-10):

div#main + * {clear: left;}

Figure 4-10: Using adjacent siblings and clear to push the footer below fl oated columns.

CHAPTER 4: LAYOUTS

117

CLEARFIXING

“Clearfi xing” is an older technique that has been largely supplanted by the preceding two
techniques, but it’s easier to use clearfi xing under certain circumstances. Th ese arise most
oft en with older versions of Internet Explorer, which in some circumstances don’t properly
contain fl oats using the previously discussed tips.

Th e simplest method of clearfi xing is inserting an element into the document and setting it to
clear. For example:

div#main + * {clear: left;}

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

<br class="clearfix">

<p>...</p>

Th e br element is the key here. It will push itself, and therefore anything that comes aft er it,
below the fl oated columns that come before. In order to make that happen, you will need the
following CSS:

.clearfix {display: block; clear: both;}

Figure 4-11: Using the “clearfi x” method to push the footer below fl oated columns.

118

PART II: ESSENTIALS

Th e CSS used will make sure the br element sits below the two fl oated columns. It may also
insert a “blank line” in older browsers, so if you’re going to use this method, test it out fi rst. If
you do see a blank line, try altering your CSS like so:

.clearfix {display: block; clear: both;

font-size: 0; height: 0;}

Some people have also used an hr instead of a br on the theory that the clearing is a separa-
tor in the document and they’d like to have it visible in non-CSS browsers. However, that will
defi nitely create a gap in CSS-aware browsers, since the hr takes up layout space. You might
think you could prevent that with display: none, but if you do that, the hr won’t aff ect
layout and so won’t clear below the fl oats! So instead the space is most oft en closed up with
some margin trickery:

hr.clearfix {display: block; clear: left;

font-size: 0; height: 0;

visibility: hidden;

margin: -0.66em 0;}

Th e result is basically the same as before, though you should certainly test it just to be sure.
And if you want exact-to-the-pixel placement of elements, this particular variant isn’t your
best bet. You’d be better off with the br.

Th ere is a related method that relies on generated content, but recent browsers have made its
use diffi cult thanks to changes in the handling of generated content, and it’s also been largely
supplanted by previously discussed tips on fl oat containment. If your sense of historical
curiosity has been piqued, see http://positioniseverything.net/easy
clearing.html (but note the note at the top).

ADJACENT CLEARING

Similar to the preceding tip, this is a way to clear an element that immediately follows another,
as long as the element to be cleared has the same parent as the fl oated element(s).

Consider this markup:

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

<p>...</p>

You’ll note that there’s no element between the last column div and the paragraph. So how
do we clear the paragraph below the two columns (see Figure 4-12)? Simple:

div.three + p {clear: both;}

CHAPTER 4: LAYOUTS

119Figure 4-12: Using adjacent siblings and clear to push the footer below fl oated columns.

Since both the columns and the paragraph share the same parent element, they’re siblings.
Th erefore, we can use the adjacent-sibling combinator (+) to select the paragraph and have it
clear.

A more generic solution is to replace the p with a universal selector:

div.three + * {clear: both;}

Th at way, any element, be it paragraph, list, table, preformatted code, or anything else, will be
cleared.

Note that there is an easy way to break this approach, and that’s to enclose the columns in
their own div.

<div class="columns">

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

</div>

<p>...</p>

09_684160-ch04.indd 11909_684160-ch04.indd 119 10/5/10 7:49 PM10/5/10 7:49 PM

120

PART II: ESSENTIALS

Given this markup, the paragraph will not clear. Th at’s because it no longer shares a parent
element with the columns, and so it isn’t a sibling element. Th at prevents the sibling selector
from working at all. With this markup pattern, you’ll want to use one of the previous fl oat
containment tips, like overflow: auto.

TWO SIMPLE COLUMNS

Putting two columns of text side by side is very simple: Just fl oat them. If you need to clear
anything below them, see the previous tips, or just clear any following element.

Consider this markup:

<div class="column one">...</div>

<div class="column two">...</div>

<div class="footer">...</div>

All you need is to set the columns next to each other, so your only real decision is which one
gets which side. Does column one go on the left or the right? Just to make it interesting,
assume you want it on the right. No problem:

.column {float: right; width: 50%;}

Th at’s enough to put the two columns side by side. Th ey’ll be jammed up against each other
and look terrible, but they’re side by side!

With a little more CSS work, we can make them look passable (see also Figure 4-13):

.column {float: right; width: 30%; margin: 0 10%;}

Of course, the footer is not exactly what we want—its top border is now across the top of the
two columns. Simple: Just clear it!

.footer {clear: both;}

And that’s a simple two-column layout. It contains two bits of beauty. First is that you can put
the columns wherever you want regardless of their source order. As we saw, the fi rst column
can go on the right instead of the left . Second is that if you change your mind, swapping them
is as simple as changing float: right; to float: left;. Easy-peasy!

And of course you can do this with any kind of width measure—pixels, ems, percentages, you
name it. It all depends on whether you want the columns’ widths to be “liquid”—that is, fl ex
with changes in the browser window’s width—or “fi xed,” which sets an immovable value,
usually in pixels. Discussing which is better or worse could be an entire chapter all by itself, so
we’ll leave it at “pick the one that fi ts the design” and move on.

CHAPTER 4: LAYOUTS

121Figure 4-13: Two simple columns.

THREE SIMPLE COLUMNS

Th e jump from two columns to three columns (see Figure 4-14) is pretty straightforward. Add
a div, class it appropriately, and fl oat the columns.

.column {width: 20%; margin: 0 5%; float: left;}

.two {width: 30%;}

.footer {clear: both;}

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

<div class="footer">...</div>

122

PART II: ESSENTIALS

Figure 4-14: Three simple columns.

Th at’s the basic drill. By itself, it’s nothing more than a simple two-column setup plus one
column. Th e reason I bring it up is to explore a few things about fl oated-column styling.

First is that, as you may have noticed here or in the preceding section, the left and right
margins of fl oated elements don’t “collapse.” Instead, the outer margin edges touch and sit
right next to each other. Th us, in the preceding bit of CSS, the columns will be 10% apart—5%
plus 5%. If we were to convert the 5% to 20px, the columns would then be 40 pixels apart.

Second is that it’s hard to put “full-height” separators between columns. Th is is one of those
CSS limitations that has been bugging people for over a decade now, but it still exists and we
still have to deal with it. However, with a three-column setup, if you know the middle column
will always (and I mean always) be the tallest, you can give it side borders to create lovely
separators.

It takes a little massaging of the CSS, but not much (see Figure 4-15).

.column {width: 20%; margin: 0 2%; padding: 0 2%; float: left;}

.two {width: 30%; border: 1px solid gray; border-width: 0 1px;}

CHAPTER 4: LAYOUTS

123Figure 4-15: Using the tallest column’s borders as column separators.

Since the middle column is tallest, its borders serve as separators. We had to adjust the
margins and padding of the columns to keep the separators away from the column contents,
but that’s no big deal. Well, actually, we could have just adjusted the middle column and left
the .column rule alone, like this:

.column {width: 20%; margin: 0 5%; float: left;}

.two {width: 30%; border: 1px solid gray; border-width: 0 1px;

margin: 0; padding: 0 4%;}

Th e result would be essentially the same, with maybe a pixel or two of diff erence in the
placement of the separators.

You may be looking askance at some of the numbers there, and with good reason. Where did the
4% on the padding come from, and what about the result that 5% divided by two equals 2%?

Th at brings me to point #3, which is that you have to be careful with fl uid columns and
borders. Suppose you had just split the 5% margins in half. With the borders in place, you
would be taking a risk in doing that (see Figure 4-16).

.column {width: 20%; margin: 0 2.5%; padding: 0 2.5%; float: left;}

.two {width: 30%; border: 1px solid gray; border-width: 0 1px;}

124

PART II: ESSENTIALS

Figure 4-16: Inadvertantly dropping the third column.

Yep: Float drop. Th e third column drops down below the other two because there isn’t enough
room for it to sit next to the others. Th at’s because the widths, margins, paddings, and borders
add up to more than 100%—to 100% plus two pixels, in fact. Even one pixel above 100% is
one pixel too many.

For this, I have no solutions save “double-check your math.” For the full-height separator
problem, the next two sections may well provide an answer.

FAUX COLUMNS

A classic CSS technique fi rst popularized by Dan Cederholm (http://simplebits
.com/) in a 2004 article for A List Apart, faux columns are a venerable solution to the vexing
problem of creating equal-height columns in CSS.

In order to create faux columns, you fi rst need columns.

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

CHAPTER 4: LAYOUTS

125

Th ey’ll most likely be fl oated, since positioning is generally a really bad solution for column
layout. Th e key making this technique work (see Figure 4-17) is to make sure the columns
have pixel widths, and really pixel everything (except, we hope, font size).

.column {width: 300px; margin: 0 5px; padding: 0 5px; float: right;}

Figure 4-17: Placing the three columns.

Now all we need is a way to “paint in” a set of separators. We’ll need an element that’s at least
as tall as the columns themselves, and ideally exactly as tall. Something like a container div.

<div class="contain">

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

</div>

Now we need two things. First is to contain the fl oated columns.

div.contain {width: 960px; overflow: auto;}

Second is an image that, when fi lled into the background of that container, will defi ne the
column separators, as in Figure 4-18.

126

PART II: ESSENTIALS

Figure 4-18: The background image containing the column separators.

It’s only a few pixels tall because it will be repeated vertically (see also Figure 4-19).

div.contain {width: 960px; margin: 0 auto; overflow: auto;

background: url(separators.png) 0 0 repeat-y;}

Figure 4-19: Column separators by way of background image.

And there you go!

You aren’t limited to separators, of course—any vertically repeating pattern will work,
including fi lled-color column backgrounds (see Figure 4-20). Just a quick change of image
accomplishes that.

div.contain {width: 960px; margin: 0 auto; overflow: auto;

background: url(filled-columns.png) 0 0 repeat-y;}

CHAPTER 4: LAYOUTS

127Figure 4-20: Filling in column colors.

Th e technique can of course support as many columns as you like; just set up the background
properly and you’re good to go.

Th is is all great if you’re using pixel-width layouts, of course, and many people do. Th er e are
potential problems with doing so, but many of them are obviated by “page zoom” in modern
browsers. Not all, though: If a user has a browser window narrower than your overall layout,
then they’ll get a horizontal scrollbar. Conversely, if they come in with a browser window
much wider than your layout, there will be a ton of empty space on the side(s) of the design.
Th ose possibilities may not matter to you, but they’re worth considering.

If you want a faux-column–like technique for liquid layouts, then the next section is for you.

LIQUID BLEACH

Suppose you want to stretch column separators or backgrounds to be of equal height, but your
layout is liquid. In that case, Liquid Bleach is for you. Th is multicolumn layout technique was
jointly developed by Doug Bowman (of Sliding Doors fame) and Eric Meyer (who?) in late
2004, and gets its name from its support for liquid layouts and the name of Doug Bowman’s
blog theme (“Bleach”) at the time it was developed.

128

PART II: ESSENTIALS

Liquid Bleach starts out much like faux columns, but with an addition.

<div class="contain">

 <div class="inner">

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

 </div>

</div>

To make this work, you need one container for every gap between columns; or, if you prefer,
you need one less container than you have columns. Since we have three columns here, we
need two containers. Additionally, we’ll need one separator and/or background pattern for
each container.

To get started, we’ll add some liquid-width styles.

.column {width: 20%; margin: 0 5%; float: left;}

.two {width: 30%;}

Th en we’ll take just one background image. Note that Figure 4-21 shows just a portion of the
image itself, which is actually 3,000 pixels wide (really!).

Figure 4-21: The fi rst separator image.

Note that the image has a fi lled color to the left of the separator, and complete transparency to
the right. (Th e gray checkerboard pattern is Photoshop’s stand-in for the transparent part of
the image.)

Here’s the important part: Th e separator has to line up with the gap between two columns. In
this case, we’ll place it between the left most and center columns (see Figure 4-22). We want
the separator to land 25% of the way across the container, as that’s the point between the two
left most columns. So two things have to be done.

First is that, as implied in the preceding fi gure, the separator image is 25% of the way across
the whole 3,000-pixel-wide image. Th erefore, its midpoint is 750 pixels from the left edge of
the image.

Second is this CSS:

.inner {background: url(lb01.png) 25% 0 repeat-y; overflow: auto;}

CHAPTER 4: LAYOUTS

129Figure 4-22: Placing the fi rst background image.

Th ere, you see? Th e point in the background image 750 pixels (25%) from the image’s left edge
is lined up with the point 25% of the way across the container. As long as 25% of the width of
the container is less than 750 pixels, no problem!

To fi ll in the right separator, we just need another image with a similar setup to the fi rst. In
this case, we want a separator sitting between the center and rightmost columns, as in Figure
4-23. Th e width of the rightmost column is 30%—20% for width and 5% for each of the side
margins. Th at means we need the separator to fall 70% of the way across a great big wide
image, or 2,100 pixels for a 3,000 pixel image. To the left of the separator is transparency; to
the right, a fi lled color. A little CSS and it’s in place:

.contain {background: url(lb02.png) 0 70% repeat-y; overflow: auto;}

Now no matter what browser window width, the separators will be in the right place; and as
long as the window is less than 3,000 pixels wide, the trick won’t break down.

One last trick here: If you want to fi ll the center column with a color (see Figure 4-24), you
don’t need to add any markup. You just assign a background color to the outer container.

.contain {background: #DECADE url(lb02.png) 70% 0 repeat-y; overflow: auto;}

130

PART II: ESSENTIALS

Figure 4-23: Placing the second background image.

Figure 4-24: Adding a background color to fi ll the third column.

CHAPTER 4: LAYOUTS

131

Th at color “shines through” the transparent portions of the background images, and all is well.

In cases where you don’t want to fi ll in column backgrounds, but just want liquid-friendly
separators, you can use the same CSS and replace the images. All you need is the vertically
repeating separator images with no extra; thus, they can be two pixels or fi ve pixels or
however many pixels wide to contain just the separator. Th en you repeat them vertically with
the same CSS as before.

.inner {background: url(sep01.png) 25% 0 repeat-y; overflow: auto;}

.contain {background: url(sep02.png) 75% 0 repeat-y; overflow: auto;}

Th at’s all it takes. If you fi nd the separators are off by a pixel or two horizontally, just add a
pixel or two of transparency to the separator images.

THE ONE TRUE LAYOUT

Th e name of this layout technique is more than a bit tongue-in-cheek, but its usefulness is
beyond question. Popularized by Alex Robinson in late 2005 (see http://positionis
everything.net/articles/onetruelayout/), the core message is this: You can have
fl oated columns laid out in an order independent from the document source order. Th is is a
signifi cant improvement on simple fl oated columns (see previous sections), whose layout is
tied to source order.

To make this work, you need only your columns in divs and some CSS. No extra container
elements are necessary, as was the case with previous attempts to permit source-independent
fl oat layout.

We start, as usual, with a set of three columns. In this case, the page’s “main content” is in the
fi rst column, and the “secondary” content and navigation links go into the next two columns.

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

To start things out, we’ll fl oat them all left and set some widths (see Figure 4-25). To keep
things simple, we’ll use pixel widths, but please note that this works just as well with ems or
percentages. (Th e only restriction is that all the columns use the same units for their width,
and even that is bendable.)

.column {float: left; padding: 0 20px; margin: 0 20px;}

.two, .three {width: 200px;}

.one {width: 300px;}

132

PART II: ESSENTIALS

Figure 4-25: Floating the three columns.

All right, now let’s assume that we want the fi rst column in the middle, the second on the
right side, and the third on the left side, as depicted in Figure 4-26. Th at requires two more
rules.

.one {width: 300px; margin-left: 300px;}

.three {margin-left: -920px;}

Th at’s it. Th at’s the whole thing.

How does it work? Well, the left margin on the fi rst column pushes it over and opens up a big
blank space that’s the same width as the entirety of the third column—content, padding, and
margins—plus the original left margin of the fi rst column (which was 20px). With that ready,
the left margin of the third column pulls it left ward past the preceding two columns and drops
it over the top of the left margin of the fi rst column. And that’s all it takes.

Now suppose we want the second column on the left side and the third column on the right,
thus switching the side columns around (see Figure 4-27). Easy. Keep the .one rule from
before, drop the .three rule, and add this rule:

.two {margin-left: -640px;}

CHAPTER 4: LAYOUTS

133
Figure 4-26: Shifting the third column from right to left.

Figure 4-27: Shifting the second column from middle to left.

09_684160-ch04.indd 13309_684160-ch04.indd 133 10/5/10 7:49 PM10/5/10 7:49 PM

134

PART II: ESSENTIALS

Th e basic idea is exactly the same. It’s just a matter of making sure there’s enough room on the
left to accommodate the column that’s meant to go there, and then pulling that column
left ward by the appropriate amount.

Oh, and you can fl ip all this around to go rightward as well:

.column {float: right; padding: 0 20px; margin: 0 20px;}

.two, .three {width: 200px;}

.one {width: 300px; margin-right: 320px;}

.two {margin-right: -640px;}

You aren’t limited to three columns, either. If you have four, fi ve, or even more columns, you
can rearrange them into pretty much any order you like. It gets more complicated as the
number of columns increases, of course, but if it were easy anyone could do it, right?

Of course, if you want to center your columns in the browser window, you will need a
container around the columns. Something like this:

.contain {width: 1000px; margin: 0 auto;}

<div class="contain">

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

</div>

As I said earlier, pixels were used in this tip because they make the math a little easier to
understand. Th e technique does not, however, depend on pixels. You can do the same thing
with percentage-based columns (see Figure 4-28) for that fl uid feeling:

column {float: right; padding: 0 2.5%; margin: 0 2.5%;}

.two, .three {width: 20%;}

.one {width: 30%; margin-right: 32.5%;}

.two {margin-right: -70%;}

CHAPTER 4: LAYOUTS

135Figure 4-28: Any-order columns based on percentage widths.

THE HOLY GRAIL

A follow-on to the “One True Layout,” the “Holy Grail” technique is another serious tool with
a cheeky name. First published by Matthew Levine a few months aft er One True Layout made
its debut, the Holy Grail builds on Alex’s work with some contributions by your humble
author to create a hybrid fl uid/fi xed layout independent of course order. (See http://
alistapart.com/articles/holygrail for the original.)

In this approach, given three columns, the outer two are of fi xed width and the innermost is
fl uid, resizing itself to fi ll any available space. Holy Grail starts with the usual three column
divs, plus a necessary container.

<div class="contain">

<div class="column one">...</div>

<div class="column two">...</div>

<div class="column three">...</div>

</div>

136

PART II: ESSENTIALS

As before, we’ll put the fi rst column in the middle. In this case, we’ll put column two on the
left and column three on the right. Th ese columns need to have a fi xed width—that is, one not
based on percentages. (If we wanted all the columns to be percentage-based, we’d just use the
original One True Layout discussed in the preceding section.) We could use pixels, but let’s
spice things up a bit with ems. We’ll make the second column 13em wide, and the third 15em
wide.

Okay, so that’s 13em on the left and 15em on the right (see Figure 4-29). First, style the
container

.contain {padding: 0 15em 0 13em;}

Figure 4-29: Setting up the necessary padding.

Now start fl oating the columns and pulling them into their intended slots. Th is fi lls up the
container’s content area with the fi rst (center) column:

.column {float: left; position: relative;}

.one {width: 100%;}

CHAPTER 4: LAYOUTS

137

We’ll return to the position: relative; in a bit. For now, we set the widths of the
secondary columns and pull them into place (see also Figure 4-30).

.two {width: 13em; margin-left: -100%;}

.three {width: 15em; margin-right: -15em;}

Figure 4-30: One column in place, the other overlapping.

Well … almost. Th e problem is that the left column is in the wrong place, overlapping the
main column. Th at’s because it was pulled all the way across the container from right edge to
left edge. To get it into place, we need a little more.

What we need to do is shove the left column farther (see Figure 4-31) to the left by a distance
equal to its own width. And that’s where the position: relative; comes in. We’re going
to give the column a right off set equal to the distance it needs to travel, which happens to be
its own width.

.two {width: 13em; margin-left: -100%; right: 13em;}

138

PART II: ESSENTIALS

Figure 4-31: All three columns properly in place.

Note that the same eff ect would have been possible with an off set of left: -13em;.

And that’s really all there is to it. We just pull the secondary columns over the top of the
container’s padding, and all is right with the world. Of course, if we apply margins and
padding to the columns, then there’s more math to do, but the principle remains the same.

For example, suppose we want to push the side columns a bit apart from the content. Th at
could be accomplished by reworking the center column to use a combination of borders and
padding.

.contain {padding: 0 2em; border: 1em solid white; border-width: 0 15em 0 13em;}

Notice that now we have great big fat borders on the sides. Th at is what’s holding open the
spaces for the two columns. Th e padding on the element will push its content inward even
farther, and thus away from the side columns.

Th is means that we have to adjust the placement styles for the side columns. For the second
column—the left most in this example—we just increase the right value to be the width of
the column (also the width of the center column’s left border) plus the left padding of the
center column.

.two {width: 13em; margin-left: -100%; right: 15em;}

CHAPTER 4: LAYOUTS

139

For the rightmost column, you’re probably tempted to just increase the negative value of the
right margin. Th at doesn’t always work, though. Instead, leave the margin alone and add a
left off set.

.three {width: 15em; margin-right: -15em; left: 2em;}

A negative right off set would have worked as well, of course. Either way, we end up with the
result shown in Figure 4-32.

Figure 4-32: Another way to place the rightmost column.

Th e subtle benefi t of this approach is that if you ever want to put solid colors behind the side
columns, it’s a simple matter of setting a border color on the center column.

Th ere is one more thing we should probably do, and that’s keep the design from getting too
narrow. Th at can be accomplished with a bit of body styling.

body {min-width: 50em;}

With this, the body element can’t get any narrower than 50 ems. Th at means that there will be
enough room for both side columns and another 22 ems left for the center column. Th is could
be set to any value, of course, though making it in a unit other than ems means you can’t be as
sure of the results.

140

PART II: ESSENTIALS

FLUID GRIDS

Th e Fluid Grids technique, fi rst described in detail by Ethan Marcotte (at http://alist
apart.com/articles/fluidgrids), is a way of turning a rigidly grid-based layout into
a more fl uid composition that uses percentages and ems in a heady mixture. Even better, you
can alter the mixture away from ems to some other measure at any time you like.

But fi rst, start with pixels.

No, really. Th is is easiest if you start with a fi nished layout design, say in Photoshop, and start
measuring things there. You won’t use any pixel measures in the end, but that’s okay. It will all
still work.

First, Figure 4-33 shows a layout mockup with some “top-level” measures placed over top.

Figure 4-33: Visualizing the layout needs of the page.

Now for the math. If we add up all the numbers, we get a total of 1,010 pixels. Now we just
need to divide each of those numbers by 1,010 to get the appropriate percentages.

But wait! How are we going to split up the blank spaces? Margins or padding? Evenly distrib-
ute the 70 pixels between the two elements, or assign them all to one or the other?

Th ere is no right answer to any of these questions, to be honest. Th e answer can depend on
the specifi c design and just as easily come down to personal taste. Here, let’s assume that it

CHAPTER 4: LAYOUTS

141

will all be padding just in case we ever want to set background colors. Further, we’ll split the
diff erence between the space between the two.

In pixels, that would yield:

#contain {width: 1010px;}

#main, #extra {float: left;}

#main {width: 715px; padding: 20px 35px 20px 25px;}

#extra {width: 190px; padding: 20px 10px 20px 35px;}

But remember, we’re dividing all these by 1,010 pixels. Th at ends up as (see also Figure 4-34):

#contain {width: 1010px;}

#main, #extra {float: left;}

#main {width: 70.792%; padding: 1.98% 3.465% 1.98% 2.475%;}

#extra {width: 18.812%; padding: 1.98% 9.9% 1.98% 3.465%;}

Figure 4-34: Placement of the two main columns of the layout.

Yes, you’re leaving the container alone for the moment. It will keep things controlled while
you assemble the layout, to make sure things are landing where they’re supposed to go.

Now look at the measures of the things inside #main (see Figure 4-35).

142

PART II: ESSENTIALS

Figure 4-35: Visualizing the layout needs within the two main columns.

Okay, now turn those into some CSS.

#main h2 {width: 575px; padding-left: 140px;}

#main .info {float: left; width: 95px;}

#main .text {float: right; width: 575px;}

You’ll note that I didn’t defi ne anything for the separation between .info and .main. Th at ’s
because they’re fl oating in diff erent directions, so we can rely on them to keep separated
simply by running away from each other. Now we divide all those pixel lengths by 715 pixels,
which is the width of #main. Th at yields the following CSS, which will result in the screen
shown in Figure 4-36.

#main h2 {width: 80.4196%; padding-left: 19.5804%;}

#main .info {float: left; width: 13.2867%;}

#main .text {float: right; width: 80.4196%;}

CHAPTER 4: LAYOUTS

143Figure 4-36: Properly placing the pieces with percentages.

Th ere’s a little bit of vertical alignment to be worked out between the columns, but nothing
that a little bit of top margining won’t fi x in a jiff y.

You might wonder: Why do all this math when we had perfectly good pixels? Because now we
can change the width of the container to be anything, and the grid will hang together, with all
the pieces being the correct relative sizes. For example:

#contain {width: 70em;}

Or even:

#contain {width: 90%; margin: 0 5%;}

Th e world is now your oyster. If you do this, though, make sure you keep the oyster from
getting too skinny, like so:

#contain {width: 90%; min-width: 960px; margin: 0 5%;}

144

PART II: ESSENTIALS

EM-BASED LAYOUT

Th is technique is strikingly similar to the Fluid Grid technique, only here the layout dimen-
sions are specifi ed in ems instead of percentages.

As before, we’ll start with a layout mockup with some “top-level” measures placed over top
and the associated CSS (see Figure 4-37).

#contain {width: 1010px;}

#main, #extra {float: left;}

#main {width: 715px; padding: 20px 35px 20px 25px;}

#extra {width: 190px; padding: 20px 10px 20px 35px;}

Figure 4-37: Visualizing the layout sizes for the whole design.

Great. Time once more for math. Th is time around, we divide all these numbers by the
“baseline” font size we’re using in our page. Th is is generally the font size set for the body or
html element. If you were to foreswear the use of all font-size, then the baseline font size
in the vast majority of browsers would be 16 pixels, because that’s the default preference
setting and almost nobody ever changes it. If, on the other hand, you said something like
body {font-size: 0.8215em;}, then the baseline you’re setting is 13 pixels.

CHAPTER 4: LAYOUTS

145

Once you’ve determined the baseline, you divide all the pixel measures by that number. Th e
resulting numbers will be in ems. Th us, assuming a 13-pixel baseline:

#contain {width: 77.692em;}

#main, #extra {float: left;}

#main {width: 55em; padding: 1.538em 2.692em 1.538em 1.923em;}

#extra {width: 14.615em; padding: 1.538em 0.769em 1.538em 2.692em;}

Now the stuff inside the #main section.

#main h2 {width: 575px; padding-left: 140px;}

#main .info {float: left; width: 95px;}

#main .text {float: right; width: 575px;}

Again, we divide it all by 13 (see Figure 4-38).

#main .info {float: left; width: 7.308em;}

#main .text {float: right; width: 44.231em;}

Figure 4-38: Properly placing most of the pieces with ems.

146

PART II: ESSENTIALS

You probably noted that I left out the h2 containing the entry title. Th at’s because the size of
the text in the h2 is bigger than the default, so we can’t just divide by 13. Let’s see what size it’s
been given elsewhere in the CSS.

h2 {font-size: 1.6em;}

Okay, so its font size is 13 times 1.6, or 25.6. We therefore need to divide its two measures by
25.6 (see Figure 4-39).

#main h2 {width: 27.644em; padding-left: 6.731em;}

Figure 4-39: Correcting the heading’s placement.

Th e math can get a little tricky, there’s no question. Th e beautiful part here is that if you bump
the document’s baseline font size up or down, the whole layout will scale to match. For
example, suppose you changed the CSS to say:

body {font-size: 90%;}

Th a t shift s the whole layout to be larger along with the text, which means line lengths are
basically consistent, the layout hangs together, and it’s all nicely scalable for anyone who has
diff erent browser default settings or likes to bump the text size up or down for readability
reasons.

CHAPTER 4: LAYOUTS

147

As evident in Figure 4-40, though, it does mean that the layout may get wider than the
browser window. Th at’s a potential downside of Em-Based Layout, and not one you can really
get around. In fact, the whole point of Em-Based Layout is that it preserves line lengths and
relative placement regardless of how big or small the browser window might get. If that’s not
for you, then Em-Based Layout isn’t for you either.

Figure 4-40: The horizontal scrollbar appears when the browser window gets too narrow.

Th is approach can even be extended to size images along with your text. Suppose you have an
image that’s 88 pixels wide. Divide that by the size of the text around it (we’ll stick with 16)
and give it the resulting width, like so:

With this in place, the image will scale up or down in size in response to changes in text size.
Obviously this won’t be something you necessarily do to every image, but it can come in very
handy for section headers or other integrated images.

NEGATIVE MARGINS IN FLOW

Margins are great for letting elements keep their distance from each other, but did you know
that negative margins can close up the distance, and even completely overwhelm it?

09_684160-ch04.indd 14709_684160-ch04.indd 147 10/5/10 7:49 PM10/5/10 7:49 PM

148

PART II: ESSENTIALS

To take a simple example, suppose you have a page where you always want the element aft er
an h2 to start right below the bottom of the h2. Th e most common case is to have a fi rst
paragraph begin with no “blank line” between it and the preceding heading. One way to do
this is with the adjacent-sibling heading (see “Sibling Selection” in Chapter 2). Another way,
pictured in Figure 4-41, is to put a negative bottom margin on the h2.

h2 {border-bottom: 1px solid; font-size: 150%; margin-bottom: -0.67em;}

p {margin: 1em 0;}

Figure 4-41: Bringing a heading and its following element close together.

You might think the paragraph lacks its top margin, but that’s not so. It’s still there. It’s just
overlapping the h2 because the bottom margin edge of the h2 is actually near the top of the
characters in the h2 text. Th e paragraph and its margin sit below that, not the bottom edge of
the h2’s border.

It’s possible to use this general technique to put bits of content “on the same line.” Th a t’s in
quotes because they’re only visually aligned. Consider:

<ul class="jump">

<li class="prev">Salaries

<li class="next">Punching the Clock

Now suppose we want these to sit next to each other in a line, as shown in Figure 4-42. We
could fl oat them both, but there is another way.

ul.jump {list-style: none; line-height: 1; width: 25em;

margin: 0 auto; padding: 0.25em 1em; border: 1px solid;}

li.next {text-align: right; margin-top: -1em;}

Figure 4-42: Pulling two elements into horizontal alignment.

CHAPTER 4: LAYOUTS

149

Th e negative one-em top margin of li.next pulls it upward by just the right amount (since
we already defi ned line heights in this element to be 1).

Another useful trick is to pull elements partway out of their containers. Suppose you wanted a
section’s heading to be in a box that’s centered on a dividing line (as in Figure 4-43). Here’s the
markup and CSS:

.entry {border-top: 1px solid gray;}

.entry h2 {width: 80%; background: #FFF; border: 1px solid gray;

margin: -0.67em auto 0; text-align: center;}

<div class="entry">

<h2>The Web Stack</h2>

…

</div>

Figure 4-43: Centering a heading on a dividing line.

On the other hand, maybe you want the box to be “shrink-wrapped” to the text, not a
predefi ned width. In that case, you need a little more markup, but just a little:

<div class="entry">

<h2>The Web Stack</h2>

…

</div>

Th en you just shift the CSS around a bit (see also Figure 4-44):

.entry h2 {margin-top: -0.67em; text-align: center;}

.entry h2 span {background: #FFF; border: 1px solid gray; padding: 0.25em 1em;}

Th ere you go!

150

PART II: ESSENTIALS

Th at’s all fi ne as long as the text doesn’t get longer than one line, of course. If it does run to
two lines, then the box will hang down from the divider, not recenter itself; and the box will
be split up between the lines. Th ere really isn’t a good solution for this using negative margins.
You could just drop the border and keep the white background. Th at wouldn’t be perfect, but
it might be good enough.

Figure 4-44: “Shrink-wrapping” the text of a heading with a box.

POSITIONING WITHIN A CONTEXT

One thing that hasn’t really been touched upon in this chapter is the use of positioning. Th at ’s
because positioning—by which, in this case, I mean absolute positioning—is usually a bad
choice for large-scale layout. Not always, but usually.

Th e reason for this is that if you absolutely position an element, it is entirely removed from
the normal fl ow of the document. Th at means that wherever it ends up, other elements will
act like it’s not even there. Th us, overlapped content is a common result of absolute
positioning.

It’s kind of a shame, because it would be really simple if you could position, say, columns of a
page and not worry about them completely overlapping the page’s footer.

However, don’t lose heart: You can easily use absolute positioning within limited contexts, like
headers or footers. Consider this header’s markup:

<div class="header">

<ul class="nav">

Home

Products

Buy!

Contact

<form method="get" action="/search">

CHAPTER 4: LAYOUTS

151

<fieldset>

<legend>Search</legend>

<input type="text" name="terms" id="terms">

<input type="submit" value="Search">

</fieldset>

</form>

</div>

You could position three things: the logo, the navigation links, and the search box.

However, you probably wouldn’t want to position them all. Consider for a moment what
would happen if you did: Th e header div wouldn’t have any normal-fl ow content, and thus
wouldn’t have any height. It would be zero pixels tall. Or maybe one line of text tall, depend-
ing on what exactly you positioned and how browsers treated the left over whitespace. At any
rate, it wouldn’t be tall enough.

Assume the logo is what you leave unpositioned. Th at leaves you free to put the navlinks and
search wherever you like. First, establish a containing block (the technical term for a position-
ing context) for this to happen.

.header {position: relative;}

Bingo: Th at establishes a positioning context for any descendant elements. So if you want to
put the links into the upper-right corner, you start with this:

.nav {position: absolute; top: 0; right: 0;}

Perhaps you want to put the search form in the lower-right corner. Th e result is shown in
Figure 4-45.

.header form {position: absolute; bottom: 0; right: 0;}

Obviously there’s some other CSS at work here (otherwise the navlinks would be a bulleted
list) but you get the idea. Th anks to positioning, you can put these things wherever you like
within the header. Want to put the search up top and the links below? Swap top for bottom
in the navlinks’ rule, and vice versa in the form’s rule, with the result shown in Figure 4-46.

.nav {position: absolute; bottom: 0; right: 0;}

.header form {position: absolute; top: 0; right: 0;}

Figure 4-45: Positioning elements within another element.

152

PART II: ESSENTIALS

Figure 4-46: Flipping the placement of the positioned elements.

Of course, you do have to be concerned about overlap. As an example, suppose the navigation
links run to two or three lines of text. Th ey might start overlapping the search box. Th is is why
a lot of layout uses fl oats instead of positioning; fl oats don’t naturally overlap. Still, used
judiciously, positioning can make it a lot easier to rearrange content within an area like a
header or footer.

PUSHING OUT OF THE CONTAINING BLOCK

An interesting feature of absolute positioning is that you can position elements outside the
element that serves as the containing block (positioning context). Th is can come in a lot
handier than you might think.

For example, you can take navigation links that are structurally within a header div and
visually place them just below that div. Consider the following markup structure (see the
preceding section for the full details):

<div class="header">

<ul class="nav">...

<form method="get" action="/search">...</form>

</div>

In addition, apply (on top of some other color, font, and related styles which are omitted here
for clarity) the following styles to place the navigation and search form (see Figure 4-47):

.header {position: relative; margin-bottom: 1.5em;}

.nav {position: absolute; top: 100%; right: 0;}

.header form {position: absolute; top: 0; right: 0;}

Notice that the links are now sitting just below the bottom edge of the header div. In order to
leave room for the links to have enough space to avoid overlap with content aft er the header, a
bottom margin is applied to the header. Th is makes it a lot less likely that the search box (still
within the header) and the navigation links will overlap.

CHAPTER 4: LAYOUTS

153

You might think the links are a little too close to the header. Th at’s easy to fi x: Increase the
value for top. But maybe you want to place the links exactly seven pixels below the bottom of
the header. In that case, you could defi ne the exact height of the header, then do the math to
fi gure out what percentage value would add seven pixels to the off set. Or you could just defi ne
a top margin of seven pixels for the navigation (see Figure 4-48).

.nav {position: absolute; top: 100%; right: 0;

margin-top: 7px;}

Figure 4-47: Placing the links outside the header.

Figure 4-48: Pushing the links down a bit with a top margin.

Th anks to the fact that top and margin-top have separate layout eff ects, you can do this
sort of thing in a way that simulates simple equations. Th at is, the top edge of the navigation
links’ content area is 100% + 7px below the top edge of the header (where “100%” means “the
entire height of the header” in this case).

Another interesting example of placing information outside its containing block is to take
some date-and-time information for a blog post and put it to the side. Consider this markup
structure:

<div class="entry">

 <h2>Positioning in Context</h2>

…

<hr>

<ul class="datetime">

Tuesday, 18 May 2010

15:26:37 -0400

</div>

154

PART II: ESSENTIALS

So we have the content of the entry, and then the publication date and time information. We
could have more there, like categories or tags, but let’s stick with the date and time to keep
things simple. Th anks to absolute positioning, we can place it anywhere along the outer edge
of the entry.

First, as usual, create a containing block, and at the same time open up some space for the
date and time information to live:

.entry {position: relative; margin-left: 10em;}

Th en grab the ul and position it outside the left edge of the entry div (see Figure 4-49).

. datetime {position: absolute; width: 9em; left: -10em; top: 0;

margin: 0; padding: 0;}

. datetime li {list-style: none; font-style: italic;}

Figure 4-49: Positioning an entry’s metadata to one side.

Th e width is used to keep the content’s right edge from getting too close to the left edge of
the actual entry content. And just like that, we’ve put the date and time out to the left . Of
course, fl ipping this over to the right is just as simple (see also Figure 4-50):

.entry {position: relative; margin-right: 10em;}

. datetime {position: absolute; width: 9em; right: -10em; top: 0;

margin: 0; padding: 0;}

CHAPTER 4: LAYOUTS

155

Th anks to positioning, we can put things anywhere. Th is is great power. Use it responsibly.

Figure 4-50: Moving the metadata from left to right.

FIXED HEADERS AND FOOTERS

Remember frames? You could put a navbar or a footer at the top or bottom of the browser
window and have it never, ever move. Th is was used for ill in many cases, but the core idea
isn’t a bad one, and you can actually recreate frames with CSS as well as do frame-like things
that don’t really create frames. Th e key is fi xed positioning.

For example, suppose you wanted your header to always be at the top of the screen while
content scrolled past it (see Figure 4-51). Simple:

.header {position: fixed; top: 0; left: 0; width: 100%; z-index: 1;}

Th at nails the header to the top of the browser window and, thanks to the explicit z-index
value, places it above any non-positioned content. (Without it, whether the positioned
element overlaps other content or vice versa is determined by their document source order.)
In technical terms, the browser window is the header’s containing block. No matter how
much you scroll the page, the header will not move.

156

PART II: ESSENTIALS

Figure 4-51: A fi xed header.

If you just leave it at that, you will very likely run into a problem: Th e top of the page’s content
will sit underneath the header, and nobody will ever be able to read it. To make it visible, you
need to move the page’s content downward.

One way to do this is to pad the top of the page by a measure at least as great as the height of
the header (see Figure 4-52).

body {padding-top: 100px;}

Th ere’s another potential problem here, which is that page up and page down will skip
through the page at browser-window heights. Th is takes no account of the fi xed header. Th us,
someone who uses page up/down will very likely miss several lines of content with each jump.

Th ere isn’t a simple command to tell the browser to “skip less.” Instead, you have to redefi ne
the window in which the content appears (see Figure 4-53). Th at would mean applying fi xed
positioning to a div that surrounds the rest of the page. For that, you’d drop the body
padding and do something like this:

.contain {position: fixed; top: 100px; bottom: 0; width: 100%;}

CHAPTER 4: LAYOUTS

157Figure 4-52: Pushing the main content down to avoid overlap by the fi xed header.

Figure 4-53: Using fi xed positioning on both the header and the main content.

158

PART II: ESSENTIALS

Th e end result is that the header never overlaps the content, and page up and page down work
as expected. It also means that the scrollbar for the content is potentially within the browser
window. You know, like frames used to do. As with so many layout techniques, there are
benefi ts and drawbacks to be considered. Choose wisely.

SMASHING CSS

C
H

A
P

T
E

R

5

EFFECTS5
IT’S NICE TO be able to change colors and fonts,
of course, but everyone craves more—sparkle,
pizzazz, a bit of the old razzle-dazzle. It might be
a bit over-broad to lump all these things together
as “eff ects,” but the scope here is so broad that it

was hard to do anything else. In this chapter you
see how to round corners, break out of boxes,
fake distortion fi lters, slide images into tabs,
create parallax, and much more.

160

PART II: ESSENTIALS

COMPLEXSPIRAL

Th is one’s an oldie but a goldie, if I do say so myself (and I do). Th is is what’s known as the
“complexspiral demo,” because that’s what I called it when I created it back in 2001. Even
though its primary use case has been eclipsed by translucent PNGs and RGBa colors, there’s
still some life left in the old battle-axe.

To make this one work, you need a minimum of two background images (see Figure 5-1).

Figure 5-1: The two images to be used.

Th en you’re going to assign one to the body background, and one to the background of a div
that contains most of the page’s content (see Figure 5-2). Here’s the CSS and skeleton HTML.

body {background: white url(shell.jpg) top left no-repeat fixed;}

div#main {background: white url(shell-rippled.jpg) top left no-repeat fixed;}

<body>

 <div id="main">

 (...content...)

</div>

</body>

CHAPTER 5: EFFECTS

161Figure 5-2: The end result.

Th e key here is the keyword fixed. In both cases, it places the background images so that
their top-left corners sit in the top-left corner of the viewport (in this case, the browser
window) and are fi xed in place. Th ey cannot move, even when the document scrolls. Th us,
they sit “atop” one another.

To see what this means, consider a simpler example that fi xes two diff erently sized back-
ground images in the top-left corner of the viewport (see also Figure 5-3).

html, body {background: transparent top left no-repeat fixed;}

html {background-image: url(red-box.gif);}

body {background-image: url(green-box.gif);}

162

PART II: ESSENTIALS

Figure 5-3: Showing the two images fi xed to the viewport.

Note how the images are in the top left of the window even though the page has been scrolled
down most of the way to the bottom of the content. Again, they’re fixed with respect to the
viewport. Th ey literally can’t move, ever.

Th us the complexspiral demo. It takes two images of equal size, whose contents line up with
each other, and puts them together so that you can see one overlapping the other where its
element exists and coincides with the placement of the image. Th at’s why you see the rippled
shell in the main div, but the unrippled shell in the body background around it. Th e div’s
background image isn’t aligned with its top-left corner, but the viewport’s top-left corner. You
only see, as in Figure 5-4, the parts of it that intersect with the div itself.

Now, suppose you wanted to create a third distortion eff ect for the headings in the content.
All you need is another image—such as Figure 5-5.

CHAPTER 5: EFFECTS

163

Figure 5-4: Showing the rippled shell effect scrolled down.

Figure 5-5: A third image to add.

164

PART II: ESSENTIALS

Now just add it in like so (see also Figure 5-6), and headings get their own eff ects.

div#main h2 {background: url(shell-traced.jpg) top left no-repeat;}

Figure 5-6: The result of adding the third image.

You aren’t limited to non-repeated backgrounds for this eff ect, either. You could layer repeat-
ing patterns atop one another just as easily, as evident in Figure 5-7.

Well, maybe not those patterns. But you get the idea.

Th e original complexspiral demo, by the way, used color-shaded versions of the same image to
create an eff ect of semi-transparent backgrounds. Back in 2001, that was state of the art: Very
few installed browsers supported PNGs with alpha channels, and none of them supported
alpha-channel colors like RGBa. With widespread full PNG support, that form of the demo is
out of date (you can still see it at http://meyerweb.com/eric/css/edge/complex
spiral/demo.html). Th e “distorted” version shown in this section, though, is as relevant
as ever. Th ere’s just no other way to create the same eff ect.

CHAPTER 5: EFFECTS

165Figure 5-7: Using aligned patterns.

CSS POP-UPS

Here’s an eff ect that can go all the way to driving pop-up menus, if you get fancy enough (see
the next section for details). At the simpler end, you can use this eff ect to make information
appear on mouseover and go away on mouseout without ever having to write a lick of
JavaScript.

Suppose you want a little bit of explanatory text to show up for each link in your sidebar, but
you don’t want to entrust it to tooltips, which are inconsistently presented across browsers and
anyway can’t (yet) be styled. You’d set up the markup something like this:

<ul class="toc">

Chapter 1 <i>In which a dragon is seen</i>

Chapter 2 <i>In which a knight is summoned</i>

Chapter 3 <i>In which a princess is disappointed</i></

li>

Wait a minute, i? Isn’t that presentational? Well, yes, and so is what you’re doing. You could
just as easily use span, but i is a shorter element name and besides, that way if the CSS
somehow fails to be applied, the text will very likely be italicized. Th at’s an acceptable fallback,
in my opinion.

166

PART II: ESSENTIALS

So, pop-ups. All you need to do is fi rst suppress the appearance of the i elements, and then
reveal each one as its parent link is hovered (see Figure 5-8).

ul.toc li {position: relative;}

ul.toc li a i {display: none;}

ul.toc li a:hover i {display: block; width: 6em;

position: absolute; top: 0; left: 100%;

margin: -1em 0 0 1em; padding: 1em;

background: #CDE; border: 1px solid gray;}

Figure 5-8: Pop-up text next to links.

Ta-da! Little pop-ups. Th ey’re positioned with respect to their containing li elements
because of the position: relative in the fi rst line of CSS shown. If you wanted to place
them with respect to the whole set of links, you’d just shift the relative positioning to the ul
itself and adjust placement of the pop-ups accordingly. For example, you could put them
underneath the last of the links in the list, as in Figure 5-9.

ul.toc {position: relative;}

ul.toc li a i {display: none;}

ul.toc li a:hover i {display: block; width: 6em;

position: absolute; top: 100%; right: 0;

margin: 1em 0 0; padding: 1em;

background: #CDE; border: 1px solid gray;}

CHAPTER 5: EFFECTS

167

Figure 5-9: Pop-up text below links.

Th is technique can be ramped all the way up to multiple levels of nested menus—which you
do in the next section.

CSS MENUS

You can use the principles of CSS pop-ups to make multiple nested pop-up menus, if you like.
(Not that I do. I generally can’t stand pop-up menus. But then I also can’t stand chocolate,
coff ee, carbonation, or almost any form of alcohol, so what do I know?) One of the great
values of this particular technique is that it shows how hover eff ects aren’t restricted to
hyperlinks.

Here’s the basic setup (with very simplifi ed URLs for clarity’s sake; see also Figure 5-10):

<ul class="menu">

<li class="sub">Section 1

Subsection 1

Subsection 2

Subsection 3

168

PART II: ESSENTIALS

<li class="sub">Section 2

Subsection 1

Subsection 2

(…and so on…)

Figure 5-10: The unhidden submenus.

So far, all normal. Now hide the submenus.

li.sub ul {display: none;}

Th at’s it. Of course, you need to bring the submenus back. Th e simplest (and least visually
satisfying) way to do that is to say:

li.sub:hover > ul {display: block;}

Th at will just cause the submenus to pop back into place, pushing everything that comes aft er
them downward. Add in some positioning, though, and you get them popping up right next
to their parents (as in Figure 5-11) and not altering the rest of the document’s layout.

li.sub {position: relative;}

li.sub:hover > ul {display: block; position: absolute; top: 0; left: 100%;

margin: 0; background: white;}

CHAPTER 5: EFFECTS

169

Figure 5-11: The pop-up menu.

Th is can go to any level of nested menu, in fact. You can have seventeen-level-deep nested
menus if you so desire. You should quite probably be ashamed of that desire, but you can
fulfi ll it regardless.

In terms of placement of menus, you’re limited only by the two-dimensional plane of the page
and your own imagination. You can put the top-level menu entries across the top of the page
and the fi rst-level submenus below them, as in Figure 5-12, with second-and-later menus
popping out to the side. It’s just a matter of writing the necessary CSS. It would go something
like this:

ul.menu > li {display: inline; position: relative;}

ul.menu ul {display: none;}

ul.menu li.sub:hover > ul {display: block; position: absolute; white-space:

nowrap;}

ul.menu > li.sub:hover > ul {top: 100%; left: 0;}

ul.menu ul li.sub:hover > ul {top: 0; left: 100%;}

Th at way, only the top-level menus drop down. Th e rest would go to the right of their parents.

Figure 5-12: Dropdown menus.

BOXPUNCHING

Sometimes, you want things to be a little bit irregular. Th at’s easy to do with the boxpunch
technique, which is a way of visually removing parts of a box. It works only on fl at color or
fi xed-image backgrounds, but that leaves a lot of room.

170

PART II: ESSENTIALS

Th e simplest form of boxpunching is to put one box in the corner of another (see Figure
5-13), and make sure its background matches the surrounding content instead of its parent’s.

body {background: #C0FFEE;}

div.main {background: #BAD;}

.punch {background: #C0FFEE; font-size: 500%;

float: left; margin: 0 0.1em 0.1em 0; padding: 0.1em;}

<div class="main">

<h1 class="punch">Wow.</h1>

(…content…)

</div>

Figure 5-13: A boxpunched greeting.

If you want to make things a little more complex, you can set a background for the punch and
use a nice thick border to separate it from the rest of the box, as in Figure 5-14.

body {background: #C0FFEE;}

div.main {background: #BAD;}

.punch {background: #987; font-size: 500%;

float: left; margin: 0 0.1em 0.1em 0; padding: 0.1em;

border: 0.2em solid #C0FFEE; border-width: 0 0.2em 0.2em 0;}

Th at’s all fi ne so long as your main box doesn’t have any borders. Th e minute you add a
border, as in Figure 5-15, it goes around the punching element, which no longer looks so
punchy.

body {background: #C0FFEE;}

div.main {background: #BAD; border: 3px solid black;}

.punch {background: #C0FFEE; font-size: 500%;

float: left; margin: 0 0.1em 0.1em 0; padding: 0.1em;}

CHAPTER 5: EFFECTS

171

Figure 5-14: Using borders to punch out the greeting.

Figure 5-15: What happens when the container gets a border.

Th at’s okay, you can work around this. All it takes is a couple of borders on the punch, and a
little negative margining (see also Figure 5-16):

.punch {background: #C0FFEE; font-size: 500%;

float: left; margin: -3px 0.1em 0.1em –3px; padding: 0.1em;

border: 3px solid black; border-width: 0 3px 3px 0;}

Figure 5-16: Bringing the boxpunch out of and integrating it with the border.

10_684160-ch05.indd 17110_684160-ch05.indd 171 10/5/10 7:58 PM10/5/10 7:58 PM

172

PART II: ESSENTIALS

Th anks to the negative top and left margins, the punching box is actually pulled outward so
that it overlaps the border of the main div. Setting right and bottom borders that match the
border on the main div creates the illusion of an irregularly shaped box. And so the box is
once again punched!

Of course, you can use this in contexts other than a corner. Here’s the CSS for a punched
treatment for a blockquote (also represented in Figure 5-17):

blockquote {font-size: 150%; font-weight: bold; background: #C0FFEE;

 float: right; width: 40%;

padding: 0.25em 5%; margin-right: -3px;

border: 3px solid black; border-right: 0;}

Figure 5-17: A boxpunched blockquote.

PRE-CSS 3 ROUNDED CORNERS

Using a combination of boxpunching and CSS sprites (discussed later in this chapter), you
can create rounded corners with one image and four extra elements. Th e advantage is that
these are pretty cross-browser compatible, with only a few quirks in older browsers like IE6
and Safari 2. Th e downside is the need for the extra elements and image.

CHAPTER 5: EFFECTS

173

Figure 5-18 shows the end result.

Th e fi rst step is to make sure the element to be rounded is marked as such, and that it has the
pieces needed to create the corners.

<div class="rounded">

(…content…)

<b class="c tl">

<b class="c tr">

<b class="c bl">

<b class="c br">

</div>

Figure 5-18: The target result.

Yes, that’s right: b elements. Th e example is a presentational element because the whole point
of those elements is to create a presentational eff ect. You could as easily use div or span
elements in their place, but there’s really not much point. b is shorter and it serves as a
structural fl ag: “Th is is only here to make things prettier.” (Of course, in an ideal world like
that described in the next section, no extra elements would be needed at all.)

Th e class name rounded is applied to any element that needs to have its corners rounded;
it will be used to apply a necessary bit of CSS. Th e b elements have two class names each.
Th ey all share c, which is short for “corner.” Aft er that comes the two-letter designation of
which corner the element will be used to create: tl for top left , tr for top right, bl for
bottom left , and so on.

Now for the CSS. First, set things up so you can see what you’re doing:

b.c {background: red;} /* temporary */

Th at will outline the corner-holders nicely. Now put them into place (see Figure 5-19):

b.c {background: red;} /* temporary */

.rounded {position: relative; border: 2px solid black; background: white;}

b.c {position: absolute; height: 20px; width: 20px;}

b.tl {top: 0; left: 0;}

b.tr {top: 0; right: 0;}

b.bl {bottom: 0; left: 0;}

b.br {bottom: 0; right: 0;}

174

PART II: ESSENTIALS

Figure 5-19: Placing b elements into the corners.

As you can see, each one is sitting in the corner where it belongs,
creating a little 20-by-20 box. Th at already points to a problem:
Th ey’re sitting inside their respective corners. Th e red background
should overlap the borders of the div, as in Figure 5-20. So:

b.tl {top: 0; left: 0; margin: -2px 0 0 –2px;}

b.tr {top: 0; right: 0; margin: -2px –2px 0 0;}

b.bl {bottom: 0; left: 0; margin: 0 0 –2px –2px;}

b.br {bottom: 0; right: 0; margin: 0 –2px –2px 0;}

Th is will pull each b outward just enough to overlap the div’s
border. Of course, if the div had thicker borders, you’d pull the b
elements outward by the matching amount.

All you need now is an image to fi ll in for the corners. And I do mean image, singular: only
one. It looks like Figure 5-21.

Figure 5-21: The entire image used to create the corners.

Figure 5-20: The new
placement of the corners
(close-up).

CHAPTER 5: EFFECTS

175

I’ll save you the trouble of counting: Th e image is 40 pixels by 40 pixels. It’s actually PNG with
transparency of a punchout of a circle, with the punchout bordered, and the outside of that set
to the same color as the overall page background. Call it corners.png for clarity’s sake.

So now alter the CSS to say:

b.c {position: absolute; height: 20px; width: 20px;

background: url(corners.png) no-repeat;}

Th at’s all you’re going to say here. Th e default values of transparent for the background
color, scroll for the background attachment, and 0 0 for the position are implicitly
assigned.

Now is also a good time to delete the red-background rule, although that isn’t strictly neces-
sary, since this rule’s implicit transparent will override it.

Now, change the b elements to align the image as needed (see Figure 5-22):

b.tl {top: 0; left: 0; margin: -2px 0 0 –2px;

background-position: top left;}

b.tr {top: 0; right: 0; margin: -2px –2px 0 0;

background-position: top right;}

b.bl {bottom: 0; left: 0; margin: 0 0 –2px –2px;

background-position: bottom left;}

b.br {bottom: 0; right: 0; margin: 0 –2px –2px 0;

background-position: bottom right;}

Figure 5-22: The image fi lled into the elements creates the corners.

And just like that, rounded corners.

Th e great thing about this technique is that you aren’t limited to outward-curving borders.
You could just as easily create scalloped corners, or diagonally cut corners, or whatever comes
to mind (see Figure 5-23 for some examples). All you have to do is swap out the image you
use to create the corners, and possibly also adjust the size of the b elements.

176

PART II: ESSENTIALS

Figure 5-23: Some alternative corners.

Furthermore, you aren’t forced to always have four corners. If you only need to round two
corners, then just include the related b elements. For example, for a bottom-of-page footer,
you might just want to round the top two corners. So:

<div class="rounded footer">

(…content…)

<b class="c tl">

<b class="c tr">

</div>

No problem!

You may have noticed that I put the b elements aft er the content in the element being
rounded. Since they’re placed using absolute positioning, it doesn’t really matter where they’re
placed within the rounded element. Th ey could be fi rst, last, or all mixed up at random. So
put them where they make the most sense to you.

One disadvantage of this approach is that if you ever change the background color of the page,
the corner image has to be recreated to match it; furthermore, if you have diff erent page
background colors throughout the site, you need a separate corner image for each possible
color and the CSS to match it. A possibly greater disadvantage is that if the background
surrounding your rounded-corner element isn’t a single color, such as a gradient or a tiled
pattern, you’ll get mismatches between the corners and the surrounding page. Th e best you
can do with this technique is to minimize those occurrences.

CHAPTER 5: EFFECTS

177

Also, on a history-compatibility note, this doesn’t work as intended in IE6 unless you
assign an explicit width to the div. You can use pixels, ems, percentages, or whatever,
but if you stick with the default value of auto, the bottom corners won’t go where
they’re supposed to go. It’s a small annoyance, but one worth knowing about. IE6 also
didn’t support PNG transparencies, so you’ll also have to hack in a substitute GIF or else
just hide this stuff from IE6 altogether. Th e IE6 users won’t suff er much from not having
rounded corners on the page anyway.

CSS 3 ROUNDED CORNERS

Th ese really couldn’t be any easier, at least once you grasp how the curves are sized. Th e
advantage is that they’re purely CSS-driven, requiring no extra markup, and they don’t
require a fl at-color background surrounding the rounded element. Th e downside is their
somewhat limited support—as of this writing, no version of Internet Explorer supports
them, although support has been promised for IE9—and the need for vendor prefi xes.

First, refer to Figure 5-22, found in the preceding section. To create that same basic
eff ect using CSS 3, you would really need just this:

.rounded {background: #FFF; border: 2px solid #000;

border-radius: 20px;}

Th at’s it! Except that won’t work in almost any browser, because border-radius isn’t
fi nalized yet. To make it work in supporting browsers, which means Safari/Chrome and
Firefox , and so on, you have to add a vendor prefi x—twice, in fact (see also Figure
5-24). And then leave in the unprefi xed version so that it will be there when browsers
support it.

.rounded {background: #FFF; border: 2px solid #000;

-moz-border-radius: 20px;

-webkit-border-radius: 20px;

border-radius: 20px;}

Figure 5-24: Very easily rounded corners.

178

PART II: ESSENTIALS

When IE supports rounded corners, will you also have to declare –ms-border-radius?
Possibly. It depends on when border-radius is declared stable enough to remove vendor
prefi xes and when IE adds its support.

Th e advantage with this approach is that you don’t have to muck around with the extra
HTML, CSS, and image that the preceding technique required. You are also really rounding
the corners of the element, so the background of the page just shows past the rounded
corners, whether it’s a fl at color, a gradient, or full-on plaid.

You can alter the shape of the curves by using two values (see Figure 5-25). For example:

.rounded { background: #FFF; border: 2px solid #000;

-moz-border-radius: 20px / 60px;

border-radius: 20px / 60px;}

Figure 5-25: Oval-rounded corners.

Note how the corners are now not perfect circular arcs, but are instead elliptical in nature.
Th at’s the eff ect of having two slash-separated values. Th e slash is important: If you leave it
out, you’ll be setting corners to diff ering sizes, but each one will use a circular arc. (I dropped
the –webkit- line because, as of this writing, WebKit browsers didn’t support that value
pattern.)

Suppose you did just remove the slashes.

.rounded { background: #FFF; border: 2px solid #000;

-moz-border-radius: 20px 60px;

border-radius: 20px 60px;}

Th e result is shown in Figure 5-26.

CHAPTER 5: EFFECTS

179

Figure 5-26: Corners of unequal radius.

Th ere are also properties that let you set each corner individually. Th e unprefi xed versions are
border-top-right-radius, border-bottom-right-radius, border-bottom-
left-radius, and border-top-left-radius. Each one takes either one or two values:
One value gets you a circular arc, and two values gets you an elliptical. Th e slash is only used
on border-radius, and is necessary there to distinguish one result (circular corners of
diff ering sizes) from another (same-size corners that are elliptical).

In fact, the individual-corner properties come in handy if you want to support WebKit. Th at ’s
because while it doesn’t support value patterns like 20px 60px, it does support individual
corner properties. So in order to get Figure 5-26 in both Gecko- and WebKit-based browsers,
you’d write:

.rounded { background: #FFF; border: 2px solid #000;

-webkit-border-radius: 20px;

-webkit-border-top-right-radius: 60px;

-webkit-border-bottom-left-radius: 60px;

-moz-border-radius: 20px 60px;

border-radius: 20px 60px;}

Ugly, but eff ective.

CSS SPRITES

A technique fi rst popularized by Dave Shea (of CSS Zen Garden fame) way back in 2004, CSS
sprites are a way of having really fast hover eff ects. Th ey’ve since become a way of reducing
server load by bundling decorative images together into a single download.

Th e basic example of a CSS sprite is one that contains two states for an icon—say, one for
normal display next to a link, and a “lit up” version for when the link is hovered. Th e image
looks like Figure 5-27.

180

PART II: ESSENTIALS

Figure 5-27: The sprites.

Th ere’s a reason for all that blank space between the two, as you’ll see in a moment. With a
little CSS, you get the icons showing up next to links in a navbar.

.navbar li a {background: url(sprites.png) 5px 50% no-repeat;

padding-left: 30px;}

Th at places them right in the vertical midpoint of the link, all the way to the left edge. Now to
make the icon “light up” when the link is hovered (see Figure 5-28), change the position of the
background image.

.navbar li a:hover {background-position: -395px 50%;}

Figure 5-28: Icons, both hovered and not.

Th e negative horizontal off set is what does it: It pulls the background image 395 pixels to the
left . Th at’s 400 pixels of blank space in sprites.png minus the 5px of off set in the original
rule. Since the “lit up” variant of the icon is 400 pixels from the left edge of the background
image, it lands right in the same place.

CHAPTER 5: EFFECTS

181

Th is is extendable to any number of link states, right up to all of them. You could have
diff ering icons for unvisited, visited, hovered, focused, and active links (see Figure 5-29):

.navbar li a:link {background-position: 5px 50%;}

.navbar li a:visited {background-position: -395px 50%;}

.navbar li a:hover {background-position: -795px 50%;}

.navbar li a:focus {background-position: -1195px 50%;}

.navbar li a:active {background-position: -1595px 50%;}

Figure 5-29: Sprited icons for various link states.

For that matter, you could set up an image that has stripes of icons and their variants for
diff ering types of links. You just need to set up each icon set in its own stripe with enough
vertical separation so that they don’t show up in each others’ links.

In that case, you then write vertical off sets in pixels for each type. Here’s a snippet of what I
mean.

.navbar li a.internal:link {background-position: 0 0;}

.navbar li a.external:link {background-position: 50px 0;}

.navbar li a.internal:visited {background-position: 0 –400px;}

.navbar li a.external:visited{background-position: 50px -400px;}

You might think that this makes the image way bigger than two individual images, but it
actually doesn’t. Because of the way the GIF algorithm works, the fi le is basically the same size
whether the variant icons are separated by 4 pixels or 4,000 pixels, assuming all those inter-
vening pixels are the same (lack of) color, as they are here. Once you factor in the extra size of
http headers and the load on the server to handle two connections, one for each image, it can
actually be more effi cient to use sprites.

10_684160-ch05.indd 18110_684160-ch05.indd 181 10/5/10 7:58 PM10/5/10 7:58 PM

182

PART II: ESSENTIALS

Th is insight is key to understanding why some sites actually take all of the icons, rounded
corners, and other bits of image-based decoration and cram them all into a single large image.
Th e icons are then displayed as needed by simple use of background-position.

While this sort of thing might be overkill for your site, give your design another look. You
might fi nd more use for sprites than it would fi rst seem.

SLIDING DOORS

A technique fi rst popularized by Doug Bowman (of the all-CSS Wired redesign fame) way
back in 2003, “Sliding Doors” is a way of creating really fancy tabs out of your text navigation
links. Th e general approach is adaptable to eff ects other than tabs, however.

Figure 5-30 depicts what you want to see in the end.

Figure 5-30: The fi nal result.

Yes, you could do that with straight images, but then changing the text on the tabs becomes a
real pain, especially if there are multiple tab states. It’s a lot easier to have the markup look like
this:

<ul class="nav">

Home

Products

Buy!

Contact

Th en, if “Buy!” becomes “Checkout” or “Store,” you just have to update the text in the markup.

Okay, that’s nice and all, but how about the tabs? Well, fi rst you need a big image of a tab.
Really. A big image. Big like Figure 5-31.

Figure 5-31: The large tab image.

CHAPTER 5: EFFECTS

183

Th en you cut it into two pieces: a narrow strip from the left , and everything else, as in Figure
5-32.

Figure 5-32: The two “doors” of each tab.

Believe it or not, that’s all you need image-wise. Now you need the proper CSS (see Figure
5-33 for the fi nished product):

ul.nav, ul.nav li {float: left; margin: 0; padding: 0; list-style: none;}

ul.nav {width: 100%;}

ul.nav li {background: url(tab-right.png) no-repeat 100% 0;}

ul.nav li a {background: url(tab-left.png) no-repeat;

display: block; padding: 10px 25px 5px;

font: bold 1em sans-serif; text-decoration: none; color: #000;}

Figure 5-33: The end result.

And that’s done it—you have tabs!

Th e reason this works is easy to see if you temporarily remove the background image from the
links. Once they’re dropped, you can see the great big right-side-of-tab image fi lling out the
entire list item. Of course the link sits inside that, so when you add the left -side-of-tab stripe
to the left side of the link, it sits overtop the left side of the list item’s background.

Now, suppose you want the tabs to light up when they’re hovered. Th ere are two ways to do it,
both making use of arbitrary-element hovering. Th e simplest is to swap out the images.

ul.nav li:hover {background-image: url(tab-right-hover.png);}

ul.nav li:hover a {background-image: url(tab-left-hover.png); color: #FFF;}

Th e drawback there is that the fi rst time a tab is hovered aft er the page is loaded, there will be a
slight delay while the images are fetched from the server. To avoid that, merge the CSS sprites
technique (see preceding section) with this one. Now the tab slices look like Figure 5-34.

184

PART II: ESSENTIALS

Figure 5-34: The two halves of the sprited tabs.

… and the hover-eff ect CSS looks like this:

ul.nav li:hover {background-position: 100% 400px;}

ul.nav li:hover a {background-image: 0 400px;}

It’s also quite possible to turn this whole idea on its side, and have fl exible tabs that jut out
along the side of a design. In that case, you’d slice a big tab image horizontally instead of
vertically, as in Figure 5-35.

Figure 5-35: The two halves of a set of horizontal tabs.

CHAPTER 5: EFFECTS

185

Th en the same markup as before gets styled like so:

ul.nav, ul.nav li {margin: 0; padding: 0; list-style: none;}

ul.nav li {background: url(tab-bottom.png) no-repeat 0 100%;}

ul.nav li a {background: url(tab-top.png) no-repeat 0 0;

display: block; padding: 5px 15px;

font: bold 1em sans-serif; text-decoration: none; color: #000;

display: block;}

It will result in the screen shown in Figure 5-36.

Figure 5-36: The horizontally oriented result.

For hover eff ects, the same principles apply: Just use CSS sprites to make them happen.

Looking to the future, some day support for multiple backgrounds will be widespread enough
to combine all the tab pieces on a single element.

CLIPPED SLIDING DOORS

One of the drawbacks of the original Sliding Doors technique is that it forces you to include the
“page background” as part of the tabs. Th at’s okay as long as the background around the tabs is
a single solid color that never changes. But what if you want to put the tabs into diff erent
contexts with changing backgrounds, or even over something like a patterned background?

To accomplish this, you’ll need the same basic tab slices as before, only with transparent bits
that are meant to allow the surrounding area to “shine through.” Th e images are displayed in
Figure 5-37; for simplicity’s sake, just stick to straight tabs and leave off the hover eff ects.

186

PART II: ESSENTIALS

Figure 5-37: The two halves of the tab.

Whether you use GIF89a or alpha-channel PNG for this is up to you and your site’s audience.
I used PNGs, since they create smoother transparency edges.

Now, if you just drop those into place with the same markup and CSS from the preceding
technique, you’d end up with the screen shown in Figure 5-38.

Figure 5-38: The result of dropping the images onto the preceding technique’s markup.

Well, you’re halfway there. Th ings are fi ne on the right side of each tab, but on the left , the
background image of the li element is visible through the transparent parts of the a ele-
ment’s background, including the top-left corner!

Working around this requires a bit of trickery. First, pull the a element left ward out of the li,
which you can do a couple of ways. Perhaps the simplest is to relatively position them to the
left (see Figure 5-39), and make sure there’s enough space for them to land.

ul.nav, ul.nav li {float: left; margin: 0; padding: 0; list-style: none;}

ul.nav {width: 100%;}

ul.nav li {background: url(tab-clip-right.gif) no-repeat 100% 0;

margin-right: 25px;}

ul.nav li a {background: url(tab-clip-left.gif) no-repeat;

display: block; padding: 10px 0 5px 25px;

position: relative; left: -25px;}

Figure 5-39: Making the clipped tabs line up.

See what I did there? Each a element is moved left ward by 15 pixels. Th at alone isn’t enough,
because it would mean that the second through last links would overlap the list item that
came before them. Giving those list items 15px of right margin opens up just enough space
for the a elements to land with no overlap or gaps.

CHAPTER 5: EFFECTS

187

Th ere is a small problem, however; the right side of each tab will become unclickable because
the link has moved to the left (look closely at Figure 5-39 to see the plain arrow over the last
tab). So a better way to do this is a little margin trickery. In that case, alter the last rule to read:

ul.nav li a {background: url(tab-clip-left.gif) no-repeat;

display: block; padding: 10px 25px 5px; margin-left: -25px;}

In this setup, the left edge of each hyperlink is pulled 15 pixels to the left of the left edge of the
list item. Th is causes the link to cover up the right margin extending from the preceding list
item, just as with the relative-positioning approach. Th is time, though, the link’s right edge is
still lined up with the right edge of the list item, instead of being shift ed away from it. So the
tabs work as intended, as the magic pointing hand shows in Figure 5-40, and the clipped
corners let the page background shine through!

Figure 5-40: Fully functioning clipped tabs.

CSS PARALLAX

CSS parallax is a subtle technique that’s fun to employ as an Easter Egg on your site, and also
sheds a little light on how simple, straightforward percentage-based background image
positioning can yield unexpected results. (It’s also something that’s very, very diffi cult to
illustrate in print, so you’ll defi nitely want to try this one out for yourself.)

To start, consider how percentage-based positioning is done. Say you assign a background
image a position of 50% 50%. Th at will cause its center to be aligned with the center of the
background area. Similarly, if you assign 100% 100%, then its bottom-right corner will be
aligned with the bottom-right corner of the background area. See Figure 5-41 for an example
of two diff erent image placements.

What that means is that percentage values for background image positioning are actually used
twice. Th e fi rst time is to fi nd the defi ned point in the background area. Th e second is to fi nd
the defi ned point in the image itself. Th e two points are then aligned.

So what happens when the background area’s size dynamically changes? Take this rule:

body {background: url(ice-1.png) 75% 0 no-repeat; width: 100%;

padding: 0; margin: 0;}

188

PART II: ESSENTIALS

Figure 5-41: Diagrams of and .

Further assume that ice-1.png is 400 pixels wide. In a browser window that’s exactly 800
pixels wide, the 300th pixel from the left edge of ice-1.png will be aligned with the 600th
pixel from the left edge of the body, as illustrated in Figure 5-42.

Figure 5-42: The icicles in place.

CHAPTER 5: EFFECTS

189

Now imagine what happens to the icicles as the browser window (and therefore the body) is
made narrower. Th e icicles will shift left ward as compared to the page’s layout, of course, as
the 75% point in the body moves left ward. If the window and body are then made wider, the
icicles will shift rightward.

Now consider what will happen if the horizontal placement of the image is changed to 50%.
Th at will center it in the body, and its rate of movement will be lower than when it was at
75%. Take it all the way down to 0%, placing it against the left edge of the body, and it won’t
move at all (when compared to the overall page layout) as the body resizes.

Now suppose you have two backgrounds, one left -aligned and the other at 75%, and both are
horizontally repeated (see Figure 5-43). For example:

body {background: url(ice-1.png) 0 0 repeat-x; width: 100%;

padding: 0; margin: 0;}

div#main {background: url(ice-2.png) 75% 0 repeat-x; width: 100%;}

Figure 5-43: Two sets of icicles.

A lovely layered look. More to the point, though, as the window is made narrower or wider,
the icicles on div#main will slide past the ones on the body. Th at in itself is potentially
interesting, but take it one step further and shift the body’s background so it isn’t left -aligned.

body {background: url(ice-1.png) 25% 0 repeat-x; width: 100%;

padding: 0; margin: 0;}

div#main {background: url(ice-2.png) 75% 0 repeat-x; width: 100%;}

190

PART II: ESSENTIALS

Now as the browser window changes size, both sets of icicles will shift , but at diff erent rates of
speed. In fact, the body icicles will move at one-quarter the speed of the size change, and the
div#main icicles will move at three-quarters that speed. Th us, if you resize the window at a
speed of 12 pixels per second, the body background will shift at 3 pixels per second, and the
div#main background at 9 pixels per second.

Th erefore, if you want the background to move faster than the speed of the resize, you would
give the horizontal off set a percentage value of greater than 100%. Shift ing the image at twice
the speed of the resize would call for a background-position value of 200% 0, assuming
you wanted the image along the top of the body. Along the bottom, the value would be 200%
100%, and centered vertically in the body it would be 200% 50%.

Now for the bit that can give you a real parallax feeling: You can make the images move
opposite to the direction of the window resize by using negative percentages.

Th us, instead of having the background shift right as the window gets wider and left as it gets
narrower, you can have the opposite eff ect. For example:

body {background: url(ice-1.png) -75% 0 repeat-x; width: 100%;

padding: 0; margin: 0;}

div#main {background: url(ice-2.png) 75% 0 repeat-x; width: 100%;}

With this setup, the icicles will seem to move away from the window center as the window
gets wider, creating sort of a “zoom in” illusion; as the window is narrowed, the icicles will
move toward the center, appearing to “zoom out.”

RAGGED FLOATS

One of the things on many a designer’s wish list is the capability to fl ow text along irregular
shapes instead of the boring boxes they deal with every day. Well, it’s not only possible, but it’s
also pretty easy and reliable, albeit at a markup cost.

Say you want to fl ow your text along a gently sloping curve, as in Figure 5-44.

CHAPTER 5: EFFECTS

191

Figure 5-44: The intended result of fl owing text along a curve.

 Seems impossible at fi rst glance, right? It’s actually really simple. All you have to do is slice
that curve up into a stack, and then fl oat all the images. Create 20-pixel-tall slices of the curve
and make sure they have transparent areas beyond the curve (see Figure 5-45).

Figure 5-45: The curve with slicing guides.

10_684160-ch05.indd 19110_684160-ch05.indd 191 10/5/10 7:58 PM10/5/10 7:58 PM

192

PART II: ESSENTIALS

Note how each slice is just wide enough to contain the visible portion of the curve, and no
more. Now toss those slices into the markup right before the point where you want the curve
to start.

<div class="curves">

</div>

Of course, more slices means more img elements, but you get the idea. Th e CSS is then really,
really simple:

.curves img {float: left; clear: left; margin-right: 1em;}

Th e margin keeps the text from getting too close to the slices, and can be adjusted as needed.
If you add a temporary border to the images, as shown at the top left of Figure 5-46, you can
see what’s happening in the browser.

.curves img {border: 1px solid red;} /* temporary */

Figure 5-46: The curve slices with borders turned on for visualization.

CHAPTER 5: EFFECTS

193

Th is technique isn’t limited to simple curves, either. Any irregular shape (such as the curve
illustrated in Figure 5-47) can have text fl owing over its peaks and into its valleys (see Figure
5-48) by taking the same approach.

Figure 5-47: The more complex curve with slicing guides.

Th e CSS used for this version of the technique is exactly the same as with the curve. Only the
slices have changed.

One note of caution: Th e more radical the changes in slice width from one slice to the next,
the more likely it is that you’ll have overlap between text and image. Th is can happen because
browsers don’t test every pixel along the edge of a line box to see if it’s overlapping a fl oated
element. For example, they might only test the top-left corner of the box. If that’s just a couple
of pixels above a much wider fl oated image, then the text in that line will overlap that wider
image.

194

PART II: ESSENTIALS

Figure 5-48: The ragged fl oat in a browser.

Of course, creating all those slices is kind of annoying, and geez, what about the server
overhead? Fortunately, there’s an improved variant of this technique, which the next section
explains.

BETTER RAGGED FLOATS

Building on the “ragged fl oat” technique explained in the preceding section, Nilesh Chaud-
hari came up with what he called “Super Ragged Floats” in the Evolt article of the same name
(http://www.evolt.org/article/Super_Ragged_Floats/22/50410/). Nilesh’s
insight was that rather than slice up the image, you could put it in the background and lay
transparent boxes overtop of it. Th e drawback of his approach was that it required you to
wrap the enclosing div around both the fl oated slices and the content that accompanied
them. So, building on Nilesh’s building on the original, here’s a variant that lets you have little
self-contained bits of markup to create the curves and ragged outlines.

First, consider the markup from the preceding section. Suppose you convert all those images
to empty divs.

<div class="curves">

<div id="sl1"></div>

<div id="sl2"></div>

<div id="sl3"></div>

<div id="sl4"></div>

<div id="sl5"></div>

</div>

Now, get the original, unsliced version of the curve image (see Figure 5-49).

CHAPTER 5: EFFECTS

195

Figure 5-49: The curve image as shown in Photoshop.

At this point, you have everything you need to curve the fl ow of text. It just takes some sizing
and background positioning in the CSS (see also Figure 5-50):

.curves div {float: left; clear: left; margin-right: 20px; height: 20px; width:

100px;

background: url(curve.png) no-repeat;}

.curves #sl2 {width: 42px; background-position: 0 –20px;}

.curves #sl3 {width: 21px; background-position: 0 –40px;}

.curves #sl4 {width: 10px; background-position: 0 –60px;}

.curves #sl5 {width: 5px; background-position: 0 –80px;}

Figure 5-50: The curve placed into the browser using background positioning on .

196

PART II: ESSENTIALS

You could of course also do those things with inline CSS, if you were so inclined. Th a t would
eliminate the need for all the ID’ed rules and indeed the IDs themselves, leaving you with only
.curves div to retain. On the other hand, you’d have a bunch of CSS cluttering your
markup.

<div class="curves">

<div></div>

<div style="width: 42px; background-position: 0 –20px;"></div>

<div style="width: 21px; background-position: 0 –40px;"></div>

<div style="width: 10px; background-position: 0 –60px;"></div>

<div style="width: 5px; background-position: 0 –80px;"></div>

</div>

Th e choice is yours. Choose wisely.

One more wrinkle on this technique (which would apply as well to the sliced version shown
in the last section) is that you aren’t limited to having all your divs be the same height. If you
have an area of the curve that’s, well, un-curvy, you can stretch the div to the proper height.
Th at cuts down on the number of elements you need. You can plan for this by drawing out the
fl ow boxes (see Figure 5-51) in your image-editing program beforehand.

Th e sizes of the boxes can then be copied directly to your document. Figure 5-52 depicts the
end result.

<div class="curves">

<div style="width: 8px; height: 40px;"></div>

<div style="width: 25px; height: 20px; background-position: 0 –40px;"></div>

<div style="width: 50px; height: 15px; background-position: 0 –60px;"></div>

<div style="width: 75px; height: 15px; background-position: 0 –75px;"></div>

<div style="width: 92px; height: 20px; background-position: 0 –90px;"></div>

<div style="width: 97px; height: 15px; background-position: 0 –110px;"></div>

<div style="width: 100px; height: 50px; background-position: 0 –125px;"></div>

<div style="width: 97px; height: 15px; background-position: 0 –175px;"></div>

<div style="width: 92px; height: 20px; background-position: 0 –190px;"></div>

<div style="width: 75px; height: 15px; background-position: 0 –210px;"></div>

<div style="width: 50px; height: 15px; background-position: 0 –225px;"></div>

<div style="width: 25px; height: 20px; background-position: 0 –240px;"></div>

<div style="width: 8px; height: 40px; background-position: 0 –260px;"></div>

</div>

CHAPTER 5: EFFECTS

197

Figure 5-51: The fl ow boxes as visualized in Photoshop.

198

PART II: ESSENTIALS

Figure 5-52: The wave dropped into place using the various .

BOXING YOUR IMAGES

Th ere’s something that most people don’t realize about images: Th ey have the same box model
as any other element. Th at means you can apply things like backgrounds and padding to
images.

Why would you bother? Well, one example is a method of fi lling colors into the background
of a square icon with transparent parts. It goes something like this (see also Figure 5-53):

img.icon {background-color: #826;}

img.icon:hover {background-color: #C40;}

Figure 5-53: Icons in both the hovered and unhovered states.

You can even drop images into the backgrounds of images, as in Figure 5-54, which can make
for some fun combinatorial eff ects.

CHAPTER 5: EFFECTS

199

img.flake1 {background-image: url(flake1.png) center no-repeat;}

img.flake2 {background-image: url(flake2.png) center no-repeat;}

img.flake3 {background-image: url(flake3.png) center no-repeat;}

Figure 5-54: Combining snowfl akes.

Padding can be applied to images just as easily. In fact, with a
combination of padding, background color, and a border, you can
make your images look like they have a two-tone border (see Figure
5-55).

img.twotone {background: #C40; padding: 5px; border: 5px

solid #4C0;}

Figure 5-55: A two-tone
frame with padding and
borders.

200

PART II: ESSENTIALS

Heck, add an outline and you get what looks like a triple border
(see Figure 5-56).

img.threetone {background: #C40; padding: 5px; border: 5px

solid #4C0; outline:

5px solid #40C;}

CONSTRAINED IMAGES

Following on the theme of doing fun things with images, here’s a way to keep them as big as
possible without busting out of their parent elements or forcing them to scale up past their
natural size. Th is is a very handy eff ect, especially if you’re going to be, say, including photo-
graphs or other possibly large images in your page and you want to make sure they don’t
break the layout in skinny-browser situations.

img {max-width: 100%;}

Th at simple rule will keep your images no wider than the element that contains them, but in
cases where the parent is wider than the image, they’ll stay their natural size. You can enhance
this to center the image within the parent, like so:

img max-width: 100%; display: block; margin: 0 auto;}

Figure 5-57 shows an example of the same image in three diff erent parents of diff ering widths:
two narrower than the image, and one wider. (Th e edges of the parent elements are marked
with green borders.)

Figure 5-57: Three instances of the same image.

Figure 5-56: A three-tone frame
with padding, border, and
outline.

CHAPTER 5: EFFECTS

201

Th is does obviously put you at the mercy of browsers’ scaling routines as they shrink the
image. Fortunately, most browsers have gotten pretty good at doing so without too many
eye-wateringly bad artifacts.

10_684160-ch05.indd 20110_684160-ch05.indd 201 10/5/10 7:58 PM10/5/10 7:58 PM

PA
R

T

III

III CUTTING EDGE

Chapter 6: Tables

Chapter 7: The (Near) Future

SMASHING CSS

C
H

A
P

T
E

R

6

TABLES6
I KNOW, I KNOW—you’ve been hearing for
years now that Tables Are Evil, and that nobody
should ever use them in page layout. And that’s
broadly true: Tables shouldn’t be used for layout.
On the other hand, laying out tables is a fi ne and
oft en overlooked pursuit. Aft er all, sometimes
you have a table of data that you need to present.
No sense doing so half-heartedly!

In this chapter, you explore ways to use table
structure to your styling advantage as well as
turning tables into entirely diff erent visualiza-
tions, like maps or bar graphs. Hopefully by the
time you’re done, you’ll see that tables are just
like any other collection of markup—a rich
source of styling possibilities.

206

PART III: CUTTING EDGE

HEAD, BODY, FOOT

HTML defi nes three elements that serve to group rows within tables: thead, tbody, and
tfoot. Perhaps unsurprisingly, these represent the head, main body, and footer of the table.

Here’s a stripped-down table structure using two of these row groupers.

<thead>

<tr>…</tr>

</thead>

<tbody>

<tr>…</tr>

<tr>…</tr>

<tr>…</tr>

<tr>…</tr>

</tbody>

</table>

Th ese elements impart more structure to your tables, which is nice from a semantic point of
view, but the nicer thing is that you can use them to uniquely style elements within the table
header as opposed to its main body (see Figure 6-1). Th us, you might center column headings
(which live in the thead) while right-aligning row headings (those in the tbody).

thead th {text-align: center;}

tbody th {text-align: right;}

Figure 6-1: Right- and center-aligning different types of header cells.

Similarly, you could alter the color, background, padding, or any other stylable aspect of the
cells within the respective groups just by referring to the appropriate element.

Th e surprising thing about these row-grouping elements is that even if you don’t write them
out explicitly, most browsers will create one in the DOM (Document Object Model) anyway
(see Figure 6-2). In such browsers, the following rule will always fail:

table > tr {font-weight: bold;}

Th at’s because there’s always a tbody between the table and the tr. And it is, specifi cally, a
tbody that gets created if no grouping element is written in the source. So you could modify
the preceding rule’s selector to be table > tbody > tr and it would match rows in a
table without any row groupers.

CHAPTER 6: TABLES

207
Figure 6-2: Browsers automatically create some elements if they aren’t explicitly written.

Th e really surprising thing is that in HTML 4, tfoot must come before tbody in the
document structure. HTML 5 removes this restriction, allowing tfoot to follow tbody, and
browsers have never enforced the HTML 4 rule anyway. So while it’s surprising, it isn’t exactly
burdensome.

Th eo retically, the thead and tfoot rows would be placed at the top and bottom of every
table fragment displayed in multiple viewports. Th at’s a fancy specifi cation way of saying that
if you print a long table and it goes for a few pages, the thead and tfoot would be placed at
the top and bottom of every page or fragment of the table appearing on a page. However,
please note my use of the word theoretically. In practice, this never happens. Perhaps one day
it will. As Grover the Waiter once said, to live is to hope.

Remember: One of the big advantages of including thead and tfoot is that you can use
them to uniquely style the cells within. As an example, consider the following HTML 5
fragment:

<table>

<thead>

<tr>

 <th scope="col">Q1</th>

 <th scope="col">Q2</th>

208

PART III: CUTTING EDGE

 <th scope="col">Q3</th>

 <th scope="col">Q4</th>

</tr>

</thead>

<tbody>

 ...

</tbody>

<tfoot>

<tr>

 <td>$83,340</td>

 <td>$87,195</td>

 <td>$91,022</td>

 <td>$90,489</td>

</tr>

</tfoot>

</table>

Now suppose you want to draw a line below the column headings, and above the total fi gures
in the table’s footer, as in Figure 6-3. No classes needed: Just use the structure of the table
itself.

thead th {border-bottom: 1px solid #333; text-align: center; font-weight: bold;}

tfoot th, tfoot td {border-top: 2px solid #666; color: #363;}

Figure 6-3: Using borders to set the header and footer apart from table’s main body.

ROW HEADERS

Th e preceding section briefl y mentions row headers. “Row headers?” you may have said to
yourself. “I thought only columns could have header cells.” Not so! In fact, there exists an HTML
attribute designed to let you specify whether a given th is a header for a column or a row.

CHAPTER 6: TABLES

209

Consider the following markup:

<table>

<thead>

<tr>

<th></th>

<th>Pageviews</th>

<th>Visitors </th>

</tr>

</thead>

<tbody>

<tr>

<th>January 2010</th>

<td>1,367,234</td>

<td>326,578</td>

</tr>

<tr>

<th>February 2010</th>

<td>1,491,262</td>

<td>349,091</td>

</tr>

</tbody>

</table>

Note that each row in the tbody starts with a th element. Th ose are row headers. As a
human, you can infer that they relate to the data that follows them in the row. Even a browser
might be able to draw that inference. Still, it’s better to be explicit, like this:

<table>

<thead>

<tr>

<th></th>

<th scope="col">Pageviews</th>

<th scope="col">Visitors </th>

</tr>

</thead>

<tbody>

<tr>

<th scope="row">January 2010</th>

<td>1,367,234</td>

<td>326,578</td>

</tr>

<tr>

<th scope="row">February 2010</th>

<td>1,491,262</td>

<td>349,091</td>

</tr>

</tbody>

</table>

210

PART III: CUTTING EDGE

By adding the appropriately valued scope attribute to your th elements, you’ve told the
browser exactly how the th elements relate to the cells around them (see Figure 6-4).

In visual browsers, this isn’t such a big deal, though you can use attribute selectors to style the
two types uniquely.

th[scope="col"] {border-bottom: 1px solid gray;}

th[scope="row"] {border-right: 1px solid gray;}

Th is can be a handy hook on which to hang your styles. In this particular case, the same result
could be achieved just using thead th and tbody th but there may sometimes be cases
where there are row headers in the thead or column headers in the tbody. So it’s good to
have both techniques handy.

Figure 6-4: Styling header cells based on their scope.

In speaking browsers, the scope value can theoretically be used to make tables easier to
comprehend by associating column and row header content with the content of each cell.
Th us, as a speaking browser moved through the table shown previously, it could say
“Pageviews January two thousand ten one million three hundred sixty seven thousand two
hundred thirty four—visitors January two thousand ten three hundred twenty six thousand
fi ve hundred seventy eight” for the fi rst row. (Where I put in a dash it would probably
announce “data cell” or something similar, but you get the idea.)

Again, note the word theoretically. In this case, at least some speaking browsers support the
use of scope to make these sorts of determinations, but that capability is generally not
enabled by default.

COLUMN-ORIENTED STYLING

You likely are used to table rows, but there are times you want to set up and style table
columns. Th is turns out to be hard to do simply and (relatively) easy to do with some ugly
complexity (did you follow that?).

Th e simple markup route is to use col elements. Take this simple table as an example.

<table>

<col span="2" />

<col />

<col />

CHAPTER 6: TABLES

211

<tbody>

<tr>

 <td>Row 1 cell 1</td>

 <td>Row 1 cell 2</td>

 <td>Row 1 cell 3</td>

 <td>Row 1 cell 4</td>

 <td>Row 1 cell 5</td>

</tr>

<tr>

 <td>Row 2 cell 1</td>

 <td>Row 2 cell 2</td>

 <td>Row 2 cell 3</td>

 <td>Row 2 cell 4</td>

 <td>Row 1 cell 5</td>

</tr>

</tbody>

</table>

Th is sets up three columns, one of which “spans” two cells per row and two of which encircle
one cell per row. Th at adds up to four cells per row, and you can see that each row has fi ve
cells. Th at means that the last cell in each row is not part of a structural column.

Okay, fi ne, but what about styling the columns you do have (see Figure 6-5)? Th at would seem
to be straightforward enough: Just apply CSS to the col elements.

col {background: red; width: 10em;}

And that very limited example works fi ne in just about any browser available today. If your
goal with columns is simply background colors and setting the column widths, then you’re
golden.

If you want to do just about anything else to style the columns, though, you’re basically out of
luck. Th at’s because the CSS specifi cation allows only two more properties on table columns,
border and visibility, and neither is well supported.

In the former case, if you declare a border, browsers will not draw it the same way. Some
browsers will draw your border around the whole column, whereas others will cause it to be
applied to the column and all of the cells inside the column. Th is has relatively decent results
when you just set a solid one-pixel border, but it breaks down with anything thicker or less
solid. It also requires that you declare table {border-collapse: collapse;} to
work at all, which would be more worth knowing if the results were more consistent.

In the latter case, all you can do is set visibility: collapse in order to hide whole
columns. Th at’s great, except it doesn’t work in all browsers, most notably Safari and Chrome
and their mobile cousins.

12_684160-ch06.indd 21112_684160-ch06.indd 211 10/5/10 8:02 PM10/5/10 8:02 PM

212

PART III: CUTTING EDGE

Figure 6-5: Styling column elements.

Some of you may be sure that you’ve heard about applying other CSS properties to columns.
It’s entirely possible that you have, since Internet Explorer allows you to apply just about any
CSS property to col elements. Th e reasons other browsers (and the CSS specifi cation itself)
don’t is long, tortuous, and frankly kind of annoying. IE really does the expected and desirable
thing here.

So while col elements are the theoretically easy way to do column styling, they’re incredibly
limited in the real world. If you want to do column styling, you have to get more creative. Th e
usual way to accomplish this is with classes on all the cells throughout the whole table.

<table>

<tbody>

<tr>

 <td class="c1">Row 1 cell 1</td>

 <td class="c2">Row 1 cell 2</td>

 <td class="c3">Row 1 cell 3</td>

 <td class="c4">Row 1 cell 4</td>

 <td class="c5">Row 1 cell 5</td>

</tr>

<tr>

 <td class="c1">Row 2 cell 1</td>

 <td class="c2">Row 2 cell 2</td>

 <td class="c3">Row 2 cell 3</td>

 <td class="c4">Row 2 cell 4</td>

 <td class="c5">Row 1 cell 5</td>

</tr>

</tbody>

</table>

Now if you want to make a specifi c column red-backed, say, you simply write CSS the
addresses that the cell classes. Th is will recreate the eff ect seen in Figure 6-5.

.c1, .c2, .c3, .c4 {background: red; width: 10em;}

Clumsier in both markup and style, yes. Th e advantage here is that you can continue on to any
other CSS property that can be applied to a table cell (just about anything except margins). So
if you want to center-align and italicize all those cells (as in Figure 6-6), it’s simple enough.

.c1, .c2, .c3, .c4 {background: red; width: 10em;

text-align: center; font-style: italic;}

CHAPTER 6: TABLES

213

Figure 6-6: Using classes to style “columns.”

Remember: When styling col elements, that simple change of style is impossible in non-IE
browsers, because the CSS specifi cation forbids it.

If you want to put a border around a specifi c column using this markup approach (see Figure
6-7), it takes a little bit of work. All you have to do is fi ll in the side borders for all the cells in
the column, then drop top and bottom borders on the top and bottom cells in the column.

td.c2 {border: 2px solid #000; border-width: 0 2px;}

tr:first-child td.c2 {border-top-width: 2px;}

tr:last-child td.c2 {border-bottom-width: 2px;}

Figure 6-7: Using a combination of approaches to border a “column.”

If you’re uncomfortable using those selectors for backwards-compatibility reasons, then you
can employ a bit more class trickery. Just class the fi rst and last rows in your table
appropriately.

<table>

<tbody>

<tr class="first">

…

</tr>

<tr class="last">

…

</tr>

</tbody>

</table>

With those in place, you need only alter the CSS a little bit to use the new hooks.

td.c2 {border: 2px solid #000; border-width: 0 2px;}

tr.first td.c2 {border-top-width: 2px;}

tr.last td.c2 {border-bottom-width: 2px;}

214

PART III: CUTTING EDGE

But back up a bit and consider a somewhat unusual way to style columns, one that requires no
classes at all. First, strip all those classes out of the markup.

<table>

<tbody>

<tr>

 <td>Row 1 cell 1</td>

…

 <td>Row 1 cell 5</td>

</tr>

<tr>

 <td>Row 2 cell 1</td>

…

 <td>Row 1 cell 5</td>

</tr>

</tbody>

</table>

Now, how do you style just the second column? With :first-child and the adjacent-
sibling combinator.

td:first-child + td {border: 2px solid #000; border-width: 0 2px;}

tr:first-child td:first-child + td {border-top-width: 2px;}

tr:last-child td:first-child + td {border-bottom-width: 2px;}

In this approach, styling the fi rst column means just using td:first-child (since you’re
selecting all the table cells that are the fi rst children of their tr parents). Any column aft er
that is selected by adding n-1 instances of + td. So if you want to shift that border to the
fourth column (see Figure 6-8):

td:first-child + td +td + td {border: 2px solid #000; border-width: 0 2px;}

tr:first-child td:first-child + td + td + td {border-top-width: 2px;}

tr:last-child td:first-child + td + td + td {border-bottom-width: 2px;}

Figure 6-8: Using child and sibling selectors to style a “column.”

Clumsy or elegant? Depends on your aesthetics, I suppose.

CHAPTER 6: TABLES

215

Th e one thing to watch out for with this approach is that it will be spoiled by any cols-
panned table cells. But then, if you’re making your cells span columns, you probably aren’t
doing full-column styling anyway. (Well, okay, you are. But most people aren’t.) If you’re
doing column-spanning cells, then classes are probably your best bet.

TABLE MAPPING

Th ere are times when you have a bunch of data that has geographic relevance: sales fi gures by
state, polling results by region, that sort of thing. Th e data is usually best structured as a table,
but that doesn’t mean that you have to lay it out that way. In fact, why not put it onto a map?

To do this, you really need two things besides the CSS. First you need the appropriate classes
and IDs in the markup. Here’s part of the markup for a U.S.-states example.

<table>

<thead>

<tr>

<th scope="col">State</th>

<th scope="col">Representatives</th>

</tr>

</thead>

<tbody>

<tr id="AL">

<th scope="row">AL</th>

<td>7</td>

</tr>

<tr id="AK">

<th scope="row">AK</th>

<td>1</td>

</tr>

…

<tr id="WY">

<th scope="row">WY</th>

<td>1</td>

</tr>

</tbody>

</table>

So that plus 47 other rows of data now need to be placed onto a map. And that’s the second
thing you need: an image of the map (Figure 6-9).

216

PART III: CUTTING EDGE

Figure 6-9: The map.

With the map, you can start fi guring out where you want to place your data. In this case, what
you need is the approximate midpoint of each state. My approach is to open the image up in
an image editor like Photoshop and use it to fi gure out the X,Y coordinates of each point,
which I write down in a list. Th us:

AL 692 448

AK 210 560

…

WY 330 300

Th ese are the points where you’ll place each bit of data. But don’t stop with just plain pixel
values: Th ese need to be converted to percentages of the image’s dimensions. Th is map is an
1,000 x 700 image. Th us, divide each horizontal measure by 1,000 and each vertical measure
by 700 to get:

AL 69.2% 64%

AK 21% 80%

…

WY 33% 42.9%

CHAPTER 6: TABLES

217

Put the list aside for a moment, because now you start writing the CSS to get things rolling.
First, make sure the map will show up:

table, table * {margin: 0; padding: 0; font: 1em/1 sans-serif;}

table {display: block; width: 1000px; height: 700px;

 background: url(us-state-map.gif) no-repeat;}

Okay, the map’s in place, but the data is all on the left side, not stretched out (see Figure 6-10).
Interesting, no? It’s because the table cells are all hanging together in the manner of a table,
but the table element itself is no longer acting as a table usually does. It’s now generating a
block box, just like any div would do. Th us, the layout association between the table
element and the rows and cells and everything else has been broken. Yes, really.

You need to get all bits of data into place. Th e fi rst step is to get them all to generate block
boxes and then position them all. (In theory, positioning them forces them to generate block
boxes, but I like to explicitly declare changes of display just to be sure.) You also should add
in a temporary border so you can see where things go (see Figure 6-11).

tr, th, td {display: block;}

tr {position: absolute; top: 0; left: 0;

 color: #527435;

border: 1px dotted red;}

Figure 6-10: The map and the data.

218

PART III: CUTTING EDGE

Figure 6-11: Positioning the data, step one.

Yikes, they’re all in the top-left corner of the map instead of their respective proper spots. Th is
is where that list of percentages comes in handy. Each horizontal percentage becomes the
value of left, and each vertical percentage is a top value (see Figure 6-12).

#AL {left: 69.2%; top: 64%;}

#AK {left: 21%; top: 80%;}

…

#WY {left: 33%; top: 42.5%;}

Well, they’re mostly in place. Th e reason they aren’t lined up is that the midpoint (or at least
some reasonable point) of the each state was selected when you wrote down the list. Supplying
those values as the off sets for top and left places the top-left corner of each positioned
element at those chosen points. Th us the positioned tr elements sit below and to the right of
those points.

CHAPTER 6: TABLES

219Figure 6-12: Placing the data into each state.

(Th ere’s also the problem of all those tiny Northeastern states having their data overlap each
other, but that’s something to tackle later.)

Th e easiest way to overcome this is to assign each tr a width and height, and then pull it up
and to the left by half the assigned dimensions. A little experimentation arrives at the follow-
ing (see also Figure 6-13):

tr {position: absolute; top: 0; left: 0;

 width: 2em; height: 2em;

 margin-left: -1em; margin-top: -1em;

 color: #527435;

 border: 1px dotted red;}

220

PART III: CUTTING EDGE

Figure 6-13: Adjusting the placement of each data box.

Hey, look at that! Th e data’s all more or less where you wanted it. Th ere’s certainly room for
some adjustment—for example, Florida’s box seems a little bit off —but things are coming
together relatively nicely. Outside of the Northeast, anyway. Th e text is a little out of align-
ment, so clean up that and a few other things.

tr {position: absolute; top: 0; left: 0;

 width: 2em; height: 2.2em;

 margin-left: -1em; margin-top: -1.1em;

 color: #527435;}

tbody th, tbody td {text-align: center;}

tbody th {font-weight: bold; border-bottom: 1px solid gray; margin-bottom:

0.1em;}

Figure 6-14 is better still! Of course, the Northeast is still kind of a jumbled mess. (Hold the
partisan jokes, please.)

CHAPTER 6: TABLES

221Figure 6-14: Cleaning up the data.

I’m actually going to let this stand as is. It serves as a perfect illustration of why you have to be
careful when mapping data onto a table. Yes, there are ways to mitigate the problem with CSS,
like hiding pieces of data boxes in those tiny states and then revealing them on hover. A better
idea might be to pick a map that has suffi cient space for each state’s data (for example, one which
has the Northeast in magnifi ed form, or which has callout lines pointing into the small states).
Th e data could then be placed at the end of each callout line. I’ll leave it to your imagination.

Th ere is one other thing to do here, and that’s make the table more accessible than the already
extant scope attributes make it. As a bonus, you have something else to style and place. Th is
table needs both a summary and a caption.

<table summary="A list of American states and the number of representatives

allocated to each in the United States House of Representatives, which is

the lower chamber of the United States Congress.">

 <caption>U.S. Representatives, by State</caption>

<thead>

12_684160-ch06.indd 22112_684160-ch06.indd 221 10/5/10 8:02 PM10/5/10 8:02 PM

222

PART III: CUTTING EDGE

Now you can use the caption element as a title for the map (see Figure 6-15) while you also
switch off the thead, which has been hanging out in the top-left corner of the map, looking ugly.

thead {display: none;}

caption {position: absolute;

 top: 0; left: 0; right: 0; text-align: center;

 font: bold 200% sans-serif;}

Figure 6-15: Using the caption as a graph title.

Excellent! And there you go: a table of data placed on a map. Th e data is properly structured,
highly accessible, and visually pleasing in a way a plain old table just isn’t.

TABLE GRAPHS

Sometimes, your table of data lends itself to being graphed. Whether it’s quarterly profi ts, high
and low temperatures for the past week, or rainfall averages for the year, there are lots of data
sets that can be charted.

Consider something a little closer to home: a set of data describing the number of hits and
pageviews on a Web site for a ten-day period.

<table summary="Server hits and pageviews for meyerweb.com over the period

1/10/10 to

1/19/10.">

CHAPTER 6: TABLES

223

 <caption>Web traffic</caption>

 <thead>

 <tr>

 <th scope="col">Day</th>

 <th scope="col" class="hits">Hits</th>

 <th scope="col" class="views">Views</th>

 </tr>

 </thead>

 <tbody>

 <tr id="day01">

 <th scope="row">1/10/10</th>

 <td class="hits">151,308</td> <td class="views">70,342</td>

 </tr>

 <tr id="day02">

 <th scope="row">1/10/11</th>

 <td class="hits">138,887</td> <td class="views">70,410</td>

 </tr>

 <tr id="day03">

 <th scope="row">1/10/12</th>

 <td class="hits">106,563</td> <td class="views">58,383</td>

 </tr>

 <tr id="day04">

 <th scope="row">1/10/13</th>

 <td class="hits">117,551</td> <td class="views">64,181</td>

 </tr>

 <tr id="day05">

 <th scope="row">1/10/14</th>

 <td class="hits">251,969</td> <td class="views">171,790</td>

 </tr>

 <tr id="day06">

 <th scope="row">1/10/15</th>

 <td class="hits">213,228</td> <td class="views">134,238</td>

 </tr>

 <tr id="day07">

 <th scope="row">1/10/16</th>

 <td class="hits">186,099</td> <td class="views">113,014</td>

 </tr>

 <tr id="day08">

 <th scope="row">1/10/17</th>

 <td class="hits">246,637</td> <td class="views">161,287</td>

 </tr>

 <tr id="day09">

 <th scope="row">1/10/18</th>

 <td class="hits">210,124</td> <td class="views">135,479</td>

 </tr>

 <tr id="day10">

 <th scope="row">1/10/19</th>

 <td class="hits">168,413</td> <td class="views">115,541</td>

 </tr>

 </tbody>

</table>

224

PART III: CUTTING EDGE

Rendered in a browser, the raw data looks like Figure 6-16.

Turning this table into a chart is really straightforward. All you need to do is place each day in
the proper place and then scale up the table cells to the necessary height. Simple!

Figure 6-16: The table in the raw.

Okay, so maybe it’s not quite that easy. But as you’ll see, it’s not that complex either. First, set
the area in which you’re going to work.

table, table * {outline: 1px dotted red;}

table {display: block; position: relative;

 height: 300px; width: 600px;

font: small sans-serif;}

Th e height and width could really be any set of measures, but the pixels make it easier to
explain certain mathy bits as you go along. Rest assured, however, that nothing you do will
require the use of pixels. When done, you’ll be able to change those values to whatever you
want and still have the data be graphed. Th e outline rule is temporary, existing only so you
can see what you’re doing as you go.

Now start positioning everything in the table.

tr, th, td {display: block; position: absolute;}

tbody tr {left: 0; bottom: 0; width: 10%; height: 100%;}

CHAPTER 6: TABLES

225

All the tbody table rows are set to a width of 10% because you want to place them side by
side, and there are 10 of them, so 100% (the full width of the table) divided by 10 is 10. Th en
just place the rows next to each other (see Figure 6-17).

#day02 {left: 10%;}

#day03 {left: 20%;}

#day04 {left: 30%;}

#day05 {left: 40%;}

#day06 {left: 50%;}

#day07 {left: 60%;}

#day08 {left: 70%;}

#day09 {left: 80%;}

#day10 {left: 90%;}

tbody td {bottom: 0;}

Figure 6-17: Setting up the containment for each bar of the graph.

Th is is kind of the tedious part: writing out the left off set for every row. Just imagine doing it
for a whole month! (Th at is why you get a script to write this sort of thing out for you instead
of doing it by hand, of course. More on that later.)

At this point, make the bars stand up as appropriate. And this is where it gets really tedious,
because a height has to be computed for every single one and then assigned. Just to get
started, the highest value needs to be determined; in this case, it’s 251,969. Th en pick a value
at or above that which represents the very top of the graph. It could be 260,000; 275,000; or
even 300,000. For this example, go with 260,000.

Having done that, next divide every single value by that maximum to get a percentage. So for
the fi rst row, which contains the numbers 151,308 and 70,342, the percentages are 58.2%
and 27.05%, respectively. Th ose are the height values to assign to the td elements in the

226

PART III: CUTTING EDGE

fi rst row. Similarly, the values for the second row are 53.42% and 27.08%. (Doing all this by
hand is a royal pain, yes. An automated script would be better. It’s discussed a little later in
this chapter.)

#day01 td.hits {height: 58.2%;}

#day01 td.views {height: 27.05%;}

#day02 td.hits {height: 53.42%;}

#day02 td.views {height: 27.08%;}

Doing that same process for all ten rows nets the layout result shown in Figure 6-18.

Figure 6-18: Sizing the bars.

Okay, it’s a little more step-like, but it’s still hard to see the bars. Filling in some colors (see
Figure 6-19) helps.

.hits {background: #4444ED; color: #FFF;}

.views {background: #44ED44;}

Th at simple change makes the bars really easy to see. In fact, even taking out the dotted red
outlines would result in having almost a good-enough graph as things stand. One big problem
concerns the thead and caption elements: Th eir contents are still hanging out in the
top-left corner. Plus there are a few minor problems, like the bars on the left of the graph not
having equal width, and the tallest bar for 1/14/10 overlapping the th content.

CHAPTER 6: TABLES

227

Figure 6-19: Adding in colors makes the bars more obvious.

Tackle these in reverse order. First, pull the red outlines and toss in a subtle border along the
top and bottom of the whole graph.

table, table * {outline: none;}

table {display: block; position: relative;

 height: 300px; width: 600px;

border: 1px solid #999; border-width: 1px 0;

font: small sans-serif;}

For the overlapping of the date, shift the dates above the table altogether (see Figure 6-20),
thus ensuring that they won’t get overlapped.

tbody th {top: -1.33em;}

Figure 6-20: Cleaning up the header cells.

228

PART III: CUTTING EDGE

Now equalize the bar widths and center them within their containing blocks (the tr
elements).

tbody td {bottom: 0; width: 90%; left: 5%;}

Th e text seems a little out of place, actually, but centering it should make things look nicer
(see Figure 6-21). If you want to center most of the content, you do that at a higher point in
the document.

table {display: block; position: relative;

 height: 300px; width: 600px;

 border: 1px solid #999; border-width: 1px 0;

 font: small sans-serif; text-align: center;}

Figure 6-21: Equalizing bar widths.

Oops—the dates are out of alignment with the bars. Th at’s because you gave the td elements a
width and left off set, but not the th elements. So rewrite that stretch of rules a bit, by assigning
the width and left rules to both th and td elements that descend from the tbody. Do this
by moving the width: 90%; left: 5%; from the tbody td rule into one of its own.

tbody th, tbody td {width: 90%; left: 5%;}

tbody td {bottom: 0;}

tbody th {top: -1.33em;}

So what’s left ? Th e thead and caption, which are still cluttering up the top-left corner.
Place the caption below the table, center, and boldface, like so:

caption {position: absolute; bottom: -1.75em; width: 100%;

 text-align: center; font-weight: bold;}

CHAPTER 6: TABLES

229

Now turn thead into the legend for the chart. Aft er all, the information you need is there
already.

Th e fi rst step is to “un-position” the tr and th elements in the thead. At the moment,
thanks to the tr, th, td rule, they’re absolutely positioned. So override that by explicitly
assigning the default value of static, which basically means “not positioned.”

thead * {position: static; padding: 0.25em;}

Alternatively, you could adjust the tr, th, td rule’s selector to read tbody tr, tbody
th, tbody td. Th at would remove the need to “un-position” the thead’s descendant,
although you’d then have to write thead * {display: block;} in order to get the cells
to stack up on top of each other.

Either approach would have the same result in this case of this table (see Figure 6-22). So,
having done that (whichever way it’s done), position the thead itself.

thead {position: absolute;

top: 50%; margin-top: -2.5em;

left: 100%; margin-left: 2.5em;}

Figure 6-22: Using the column headers as a graph legend.

And there you go!

A couple of times I promised to talk about scripting some of this process, so do that now.
When it comes to fi guring out the upper bound of the graph (260,000 in this particular
example), not to mention calculating the heights of all the bars, it’s obvious that a little bit of
programming would go a long way. Th at could be accomplished one of two ways.

230

PART III: CUTTING EDGE

Th e fi rst would be to have the server fi gure it out. In this scenario, the data being graphed is
being pulled from a database and the page generated by a template of some type. In that case,
you would just build into the template the means of calculating the various needed values,
possibly in their own separate style sheet.

Th e second is to write some JavaScript to do the heavy lift ing. In this approach, the various
bar heights would not be included in the stylesheet along with the rest of the graph styles.
Th en, once the page was loaded, the JS would loop through the table twice: once to collect all
the values and determine the maximum, and then a second time to dynamically assign the
percentage height values to their respective td elements.

SMASHING CSS

C
H

A
P

T
E

R

7

THE (NEAR)
FUTURE

7
IN THIS CHAPTER, the focus is on what’s
coming: styling techniques you’ll use in the
immediate and near-term future. From styling
HTML 5 elements to rearranging layout based
on display parameters to crazy selection patterns

to transforming element layout, these are all
techniques that you may use tomorrow, next
month, or next year. With partial browser
support, they’re all on the cutting edge of
Web design.

232

PART III: CUTTING EDGE

Accordingly, be careful not to get cut! A number of sites can help you fi gure out the exact
syntaxes and patterns you need to use these techniques.

 http://css3please.com/

 http://css3generator.com/

 http://www.westciv.com/tools/gradients/

 http://gradients.glrzad.com/

Furthermore, a number of JavaScript libraries can extend support for advanced CSS back into
older browsers, in some cases as far back as IE/Win 5.5. Some are very narrowly focused on
certain browser families, whereas others are more broadly meant to allow support in all
known browsers. Th ese can be useful in cases where your visitors haven’t quite caught up with
the times but you don’t want them to miss out on all the fun.

 http://css3pie.com/

 http://www.useragentman.com/blog/csssandpaper-a-css3-java
script-library/

 http://www.keithclark.co.uk/labs/ie-css3/

 http://code.google.com/p/ie7-js/ (actually a good deal more powerful than
the URL makes it sound)
 http://ecsstender.com/

Th ere are also a good many CSS enhancements available as plug-ins for popular JavaScript
libraries such as jQuery. If you’re a user of such a library, defi nitely do some digging to see
what’s been created.

Again: Be careful! While these techniques are powerful and can deliver a lot of power to your
pages, you need to test them thoroughly in the browsers of the day to make sure you didn’t
just accidentally make the page completely unreadable in older browsers.

STYLING HTML 5

Styling HTML 5 is really no diff erent than styling HTML 4. Th ere are a bunch of new ele-
ments, but styling them is basically the same as styling any other element. Th ey generate the
same boxes as any other div, span, h2, a, or what have you.

Th e HTML 5 specifi cation is still being worked on as of this writing, so this may change a bit
over time, but the following declarations may be of use to older browsers that don’t know
quite what to do with the new elements.

article, aside, canvas, details, embed, figcaption, figure, footer, header,

hgroup, menu, nav, section, summary {display:block;}

command, datalist, keygen, mark, meter, progress, rp, rt, ruby, time, wbr {display:

inline;}

CHAPTER 7: THE (NEAR) FUTURE

233

You may have noticed that I left out two fairly important new elements: audio and video.
Th at’s because it’s hard to know exactly how to treat them. Block? Inline? All depends on how
you plan to use them. Anyway, you can place them in the declaration that makes the most
sense to you.

But what about really old browsers, like IE6? (Note I said “old,” not “unused.” In an interesting
subversion of popular culture, browser popularity has very little to do with age.) For those,
you need to use a bit of JavaScript in order to get the browser to recognize them and therefore
be able to style them. Th ere’s a nice little script available at http://remysharp.com/
downloads/html5.js that auto-forces old versions of IE to play nicely with HTML 5
elements. If you’re going to use and style them, you should defi nitely grab that script and put
it to use.

Once you’ve gotten your browser ducks in a row and quacking “Th e Th reepenny Opera,” you
can get down to styling. Remember: Th ere’s really nothing new about styling with these new
elements (see Figure 7-1). For example:

figure {float: left; border: 1px solid gray; padding: 0.25em; margin: 0 0 1.5em

1em;}

figcaption {text-align: center; font: italic 0.9em Georgia, "Times New Roman",

Times,

serif;}

<figure>

 <img src="splash.jpg" alt="A toddler’s face is obscured by a rippled and

 dimpled wall of water thrown up by her hands slapping into the surface of

 the swimming pool in whose waters she sits.">

 <figcaption>SPLASH SPLASH SPLASH!!!</figcaption>

</figure>

Figure 7-1: A styled HTML 5 fi gure and fi gure caption.

234

PART III: CUTTING EDGE

CLASSING LIKE HTML 5

Perhaps you like the new semantics of HTML 5, but you’re just not ready to take your sites to
full-on HTML 5. Maybe your site’s user base is mostly older browsers and you’d rather stick to
known quantities like HTML 4 or XHTML. Not to worry: You can have the best of both
worlds with the venerable class attribute.

Th is approach was documented by Jon Tan in his article at http://jontangerine.com/
log/2008/03/preparing-for-html5-with-semantic-class-names. Th e basic
idea is to use old-school elements like div and span, and add to them classes that exactly
mirror the element names in HTML 5. Here’s a code example. Figure 7-2 shows this example
rendered in a browser.

.figure {float: left; border: 1px solid gray; padding: 0.25em; margin: 0 0 1.5em

1em;}

.figcaption {text-align: center; font: italic 0.9em Georgia, "Times New Roman",

Times,

serif;}

<div class="figure">

 <img src="spring.jpg" alt="A small child with twin pigtail braids,

 her back to the camera, swings away from the camera on a playground

 swingset while the late afternoon sun peeks over the crossbar of

 the swingset.">

 <div class="figcaption">Swinging into spring.</div>

</div>

Figure 7-2: A styled HTML 4-classed fi gure and fi gure caption.

If you compare the styles there to those found in the preceding section, you’ll see that the only
diff erence is that the names figure and figcaption are preceded by periods—thus
marking them as class names. Th e markup is a little diff erent, of course, though it’s the
same basic structure.

CHAPTER 7: THE (NEAR) FUTURE

235

Th e advantage of this approach is that if you have these styles in place at the point when you
decide you can convert to HTML 5, then all you need to do is change your markup to use
HTML 5 elements instead of classed divs and then strip off the periods to turn the class
selectors into element selectors. Th at’s it. Easy as cake!

MEDIA QUERIES

Th is could honestly be its own chapter, or possibly even its own book. Th us, what follows will
necessarily be just a brief taste of the possibilities. You should defi nitely follow up with more
research, because in a lot of ways this is the future of Web styling.

Th e point of media queries is to set up conditional blocks of styles that will apply in diff erent
media environments. For example, you could write one set of styles for portrait displays and
another for landscape displays. You might change the colors based on the bit depth of the
display. You could change the font based on the pixel density of display. You might even
rearrange the page’s layout (see Figure 7-3) depending on the width or number of pixels
available in the display.

Figure 7-3: A basic three-column layout.

236

PART III: CUTTING EDGE

How? Consider some basic layout styles for a three-column layout.

body {background: #FFF; color: #000;

 font: small Arial, sans-serif;}

.col {position: relative;

 margin: 3em 1%; padding: 0.5em 1.5%;

 border: 1px solid #AAA; border-width: 1px 1px 0 1px;

float: right; width: 20%;}

#two {width: 40%;}

#footer {clear: both;}

As nice as this might be (in a minimalist sort of way), it is likely to run into trouble on
smaller—which is to say, narrower—displays. What if you could magically change to a
two-column layout on such displays?

Well, you can. First, restrict the three-column layout to environments that are more than 800
pixels across. Th is is done by splitting the layout bits into their own declarations:

body {background: #FFF; color: #000;

 font: small Arial, sans-serif;}

.col {position: relative;

 margin: 3em 1%; padding: 0.5em 1.5%;

 border: 1px solid #AAA; border-width: 1px 1px 0 1px;}

#footer {clear: both;}

.col {float: right; width: 20%;}

#two {width: 40%;}

Th en wrap those last two declarations in a media query:

@media all and (min-width: 800px) {

 .col {float: right; width: 20%;}

 #two {width: 40%;}

}

What that says is “the rules inside this curly-brace block apply in all media that have a
minimum display width of 800 pixels.” Anything below that, no matter the medium, and the
rules inside the block will be ignored. Note the parentheses around the min-width term and
its value. Th ese are necessary any time you have a term and value (which are referred to as an
expression).

CHAPTER 7: THE (NEAR) FUTURE

237

At this point, nothing will really change unless you shrink the browser window until it off ers
fewer than 800 pixels across to the document (see Figure 7-4). At that point, the columns stop
fl oating altogether.

Figure 7-4: What happens below 800 pixels.

What you can do at this point is write another media-query block of layout rules that apply in
narrower conditions. Say you want a two-column layout between 500 and 800 pixels, as in
Figure 7-5).

@media all and (min-width: 500px) and (max-width: 799px) {

 .col {float: left; width: 20%;}

 #two {float: right; width: 69%;}

 #three {clear: left; margin-top: 0;}

}

238

PART III: CUTTING EDGE

Figure 7-5: The reworked layout, which shows between 500 and 800 pixels.

And fi nally, you can apply some single-
column styles for any medium with fewer
than 500 pixels of display width (see
Figure 7-6).

@media all and (max-width: 499px) {

 #one {text-align: center;}

 #one li {display: inline; list-

style: none;

 padding: 0 0.5em;

 border-right: 1px solid gray;

 line-height: 1.66;}

 #one li:last-child {border-right:

0;}

 #three {display: none;}

}

Note that in all these queries, layout styles are
defi ned in relation to the display area of the
browser window. More generically, they are
defi ned in relation to the display area
available to the document in any medium in
which it is rendered. Th at means that if a
printer, for example, is used to print the
document and it has an available display area
784 pixels wide, then the two-column layout
will be for printing.

Figure 7-6: Single-column layout, which shows below
500 pixels.

CHAPTER 7: THE (NEAR) FUTURE

239

To restrict the column shift ing to screen media only, alter the queries, like so:

@media screen and (min-width: 800px) {...}

@media screen and (min-width: 500px) and (max-width: 799px) {...}

@media screen and (max-width: 499px) {...}

But what if you want the three-column layout used in some non-screen media, like print and
TV displays? Th en add in those media using commas, like so:

@media print, tv, screen and (min-width: 800px) {...}

@media screen and (min-width: 500px) and (max-width: 799px) {...}

@media screen and (max-width: 499px) {...}

Th e commas here act as logical ORs, so the fi rst query reads “use these styles on print media
OR TV media OR a display area on a screen medium where the display area is 800 pixels
or more.”

And if you want the three-column layout used in all non-screen media? Add a statement to
the fi rst query using the not modifi er saying “anything that isn’t screen.”

@media not screen, screen and (min-width: 800px) {...}

@media screen and (min-width: 500px) and (max-width: 799px) {...}

@media screen and (max-width: 499px) {...}

As before, the comma joins the two in an OR statement, so it reads as “anything not on a
screen medium OR a display area on a screen medium where the display area is 800 pixels
or more.”

Th ere is also an only modifi er, so that a query can say something like only print or only
screen and (color). As of this writing, not and only are the only modifi ers in media
queries.

You aren’t restricted to pixels for the previous queries, by the way. You can use ems, centim-
eters, or any other valid length unit.

Table 7-1 shows all the query terms that can be used in constructing media queries. Note that
almost all of these terms accept min- and max- prefi xes (for example, device-height also
has min-device-height and max-device-height cousins). Th e exceptions are
orientation, scan, and grid.

Table 7-1 The base media query terms
Term Description

width The width of the display area (e.g., a browser window).

height The height of the display area (e.g., a browser window).

continued

240

PART III: CUTTING EDGE

Table 7-1 (continued)

Term Description

device-width The width of the device’s display area (e.g., a desktop monitor or
mobile device display).

device-height The height of the device’s display area.

orientation The way the display is oriented; the two values are portrait and
landscape.

aspect-ratio The ratio of the display area’s width to its height. Values are two inte-
gers separated by a forward slash.

device-aspect-ratio The ratio of the device display’s width to its height. Values are two
integers separated by a forward slash.

color The color bit-depth of the display device. Values are unitless integers
which refer to the bit depth. If no value is given, then any color display
will match.

color-index The number of colors maintained in the device’s “color lookup table.”
Values are unitless integers.

monochrome Applies to monochrome (or grayscale) devices.

resolution The resolution of the device display. Values are expressed using units
dpi or dpcm.

scan The scanning type of a “TV” media device; the two values are progres-
sive and interlace.

grid Whether the device uses a grid display (e.g., a TTY device). Values are
0 and 1.

STYLING OCCASIONAL CHILDREN

Th ere are times when you may want to select every second, third, fi ft h, eighth, or thirteenth
element in a series. Th e most obvious cases are list items in a long list or rows (or columns) in
a table, but there are as many cases as there are combinations of elements.

Consider one of the less obvious cases. Suppose you have a lot of quotes that you want to fl oat
in a sort of grid. Th e usual problem in these cases is that quotes of varying length can really
break up the grid, as evident in Figure 7-7.

A classic solution here is to add a class to every fourth div (because that is what encloses
each quote) and then clear it. Rather than clutter up the markup with classes, though, why
not select every fourth div (see Figure 7-8)?

.quotebox:nth-child(4n+1) {clear: left;}

CHAPTER 7: THE (NEAR) FUTURE

241Figure 7-7: The problem with fl oating variable-height elements.

Figure 7-8: Clearing every fourth child.

13_684160-ch07.indd 24113_684160-ch07.indd 241 10/5/10 8:04 PM10/5/10 8:04 PM

242

PART III: CUTTING EDGE

A quick explanation of the 4n+1 part.

 4n means every element that can be described by the formula 4 times n, where n
describes the series 0, 1, 2, 3, 4… .Th at yields elements number 0, 4, 8, 12, 16, and so on.
(Similarly, 3n would yield the series 0, 3, 6, 9, 12… .)
 But there is no zeroth element; elements start with the fi rst (that is, element number 1).
So you have to add + 1 in order to select the fi rst, fi ft h, ninth, and so forth elements.

Yes, you read that right: the :nth-child() pattern starts counting from 0, but the elements
start counting from 1. Th a t’s why + 1 will be a feature of most :nth-child() selectors.

Th e great thing with this kind of selector is that if you want to change from selecting every
fourth element to every third element (see Figure 7-9), you need only change a single number.

.quotebox:nth-child(3n+1) {clear: left;}

Figure 7-9: Clearing every third child.

Th at might seem pretty nift y on its own, but it gets better. If you combine this approach with
media queries, you get an adaptable grid-like layout (see Figure 7-10).

@media all and (min-width: 75.51em) {

 .quotebox:nth-child(5n+1) {clear: left;}

}

CHAPTER 7: THE (NEAR) FUTURE

243

@media all and (min-width: 60.01em) and (max-width: 75em) {

 .quotebox:nth-child(4n+1) {clear: left;}

}

@media all and (min-width: 45.51em) and (max-width: 60em) {

 .quotebox:nth-child(3n+1) {clear: left;}

}

@media all and (min-width: 30.01em) and (max-width: 45.5em) {

 .quotebox:nth-child(2n+1) {clear: left;}

}

@media all and (max-width: 30em) {

 .quotebox {float: none;}

}

Figure 7-10: Two views of an adaptable fl oated grid.

Note that this particular set of queries is based on the width of the display area of the browser
as measured in ems. Th at helps make the layout much more adaptable to changes of text size
and browser window.

If you’re interested in selecting every other element—say, every other table row—there are
some more human alternatives to 2n+1. You can select even-numbered or odd-numbered
children using :nth-child(even) and :nth-child(odd), as in this example.

tr:nth-child(odd) {background: #EEF;}

STYLING OCCASIONAL COLUMNS

It’s easy enough to select alternate table rows for styling, but how about table columns?
Actually, that’s just as easy, thanks to the :nth-child and :nth-of-type selectors.

244

PART III: CUTTING EDGE

In a simple table with rows consisting of nothing but data cells (those are td elements), you
can select every other column like so (see also Figure 7-11):

td:nth-child(odd) {background: #FED;}

Figure 7-11: Styling the odd-numbered columns.

Want to fi ll in the alternate ones, as in Figure 7-12? Easy-peasy!

td:nth-child(odd) {background: #FED;}

td:nth-child(even) {background: #DEF;}

If you’re aft er every third (Figure 7-13), fourth, fi ft h, or similarly spaced-out interval, then you
need the n+1 pattern.

td:nth-child(3n+1) {background: #EDF;}

Figure 7-12: Styling both odd- and even-numbered columns.

CHAPTER 7: THE (NEAR) FUTURE

245

Figure 7-13: Styling every third data column.

Th at’s all relatively straightforward. Now, what happens when you put a th at the beginning of
each row? In one sense, nothing. Th e columns that are selected don’t change; you’re still
selecting the fi rst, fourth, seventh, and so on children of the tr elements. In another sense,
the selected columns are shift ed, because you’re no longer selecting the fi rst, fourth, seventh,
and so on data columns. You’re selecting the third, sixth, and so on data columns. Th e fi rst
column, which is composed of th element, doesn’t get selected at all because the selector only
refers to td elements (see Figure 7-14).

Figure 7-14: Disrupting the pattern with row headers.

To adjust, you could change the terms of the :nth-child selector (see Figure 7-15).

td:nth-child(3n+2) {background: #EDF;}

Alternatively, as shown in Figure 7-16, you could keep the original pattern and switch from
using :nth-child to :nth-of-type.

td:nth-of-type(3n+1) {background: #FDE;}

246

PART III: CUTTING EDGE

Figure 7-15: Restoring the pattern by adjusting the selection formula.

Figure 7-16: Restoring the pattern with :nth-of-type.

Th is works because it selects every nth element of a given type (in this case, td elements)
that shares a parent element with the others. Th ink of it as :nth-child that also skips any
elements that aren’t named in the :nth-child selector.

RGB ALPHA COLOR

Color values are probably one of the most familiar things in all of CSS; some people are to the
point of being able to estimate a color’s appearance based on its hexadecimal representation.
(Go on, try it: #E07713.) It’s not quite as common to use the rgb() notation for colors, but
they’re still pretty popular.

In CSS 3, the rgb() notation is joined by rgba() notation. Th e a part of the value is the
alpha, as in alpha channel, as in transparency. Th us you can supply a color that is partly
see-through (see Figure 7-17).

.box1 {background: rgb(255,255,255);}

.box2 {background: rgba(255,255,255,0.5);}

CHAPTER 7: THE (NEAR) FUTURE

247Figure 7-17: Boxes with opaque and translucent RGB backgrounds.

You can also use the percentage form of RGB color values in RGBA.

.box1 {background: rgb(100%,100%,100%);}

.box2 {background: rgba(100%,100%,100%,0.5);}

Th e alpha value is always represented as a number between 0 and 1 inclusive, with 0 meaning
“no opacity at all” and 1 meaning “fully opaque.” So half-opaque (and thus half-transparent)
is 0.5. You can’t put a percentage in there for historical reasons that are too messy to get into
here.

If you supply a number outside the 0 to 1 range, it will (in the words of the specifi cation) be
“clamped” to the allowed range. So if you give an alpha value of 4.2, the browser will treat it
as if you’d written 1. Also, it isn’t clear what should happen when an alpha of 0 is used. Since
the color is fully transparent, what will happen to, say, invisible text? Can you select it? If it’s
used on a link, is the link clickable? Both are interesting questions with no defi nitive answers.
So be careful.

248

PART III: CUTTING EDGE

RGBA colors can be used with any property that accepts a color value, such as color and
background-color. To keep older browsers from puking on themselves, it’s advisable to
supply a non-alpha color before the alpha color. Th at would take a form like so:

{color: #000; color: rgba(0,0,0,0.75);}

Th e older browsers see the fi rst value and know what to do with it. Th en they see the second
value and don’t know what to do with it, so they ignore it. Th at way, at least older browsers get
black text. Modern browsers, on the other hand, understand both values and thanks to the
cascade, override the fi rst with the second.

Note that there is no hexadecimal form of RGBA colors. Th us, you cannot write #00000080
and expect half-opaque black.

HSL AND HSL ALPHA COLOR

A close cousin to RGBA values are the HSLA values, and an even closer cousin to them are
HSL colors. Th ese are new to CSS 3, and will be a delightful addition to many designers.

For those not familiar with HSL, the letters
stand for Hue-Saturation-Lightness. Even if
you didn’t know the name, you’ve probably
worked with HSL colors in a color picker
such as that shown in Figure 7-18.

Figure 7-19 represents a few tables to give an
idea of how the various pieces of HSL work
together.

Th e hue is represented as a unitless number
corresponding to the hue angle on a color
wheel. Saturation and lightness are both
percentages, and alpha is (as with RGBA) a
number between 0 and 1 inclusive. In
practice, you can use HSL colors anywhere a
color value is accepted. Consider the follow-
ing rules, which create the equivalent eff ect to that shown in Figure 7-17 (as demonstrated by
Figure 7-20).

.box1 {background: hsl(0,0%,100%);}

.box2 {background: hsla(0,0%,100%,0.5);}

You can do old-browser fallbacks with regular RGB values, though having to specify an RGB
color and then HSL color does sort of detract from the point of using HSL in the fi rst place.
HSL allows you to get away from RGB altogether.

Figure 7-18: An HSL color picker.

CHAPTER 7: THE (NEAR) FUTURE

249
Figure 7-19: Various HSL color tables.

Figure 7-20: Boxes with opaque and translucent HSL backgrounds.

250

PART III: CUTTING EDGE

SHADOWY STYLES

Ah, drop shadows. Remember drop shadows? In the mid-90’s, everything had a drop shadow.
Of course, back then the shadows were baked into images and constructed with tables even
more tortuously convoluted than usual. Now you can relive the glory days with some fairly
simple CSS.

Th ere are actually two properties available: text-shadow and box-shadow. Take the
former fi rst. Th e following CSS will result in the image shown in Figure 7-21.

h1 {text-shadow: gray 0.33em 0.25em 0.1em;}

Th e fi rst length (0.33em) indicates a horizontal off set; the second (0.25em), a vertical off set.
Th e third is a blur radius, which is the degree by which the shadow is blurred. Th es e values
can use any length unit, so if you want to do all your shadow off sets and blurs in pixels, go to
town. Blurs can’t be negative, but off sets can: A negative horizontal off set will push the
shadow to the left , and a negative vertical off set will go upward.

Figure 7-21: Dropping shadows from a heading.

You can, as in Figure 7-22, even have multiple shadows! Of course, whether you should is a
matter of opinion.

h1 {text-shadow: gray 0.33em 0.25em 0.1em, -10px 4px 7px blue;}

Note that the color of a shadow can come before all the lengths or aft er them, whichever you
prefer. Note also that the CSS 3 specifi cation says that the fi rst shadow is “on top,” which is
closest to you. Shadows aft er that are placed successively further away from you as you look at
the page. Th us, the gray shadow is placed over the top of the blue shadow.

Now to shadow boxes (see Figure 7-23). It’s pretty much the same drill, only with a diff erent
property name.

h1 {box-shadow: gray 0.33em 0.25em 0.25em;}

Figure 7-22: A heading with multiple shadows.

CHAPTER 7: THE (NEAR) FUTURE

251

Figure 7-23: Shadowing the element box of a heading.

Even though there’s no obvious element box for the h1, a shadow is generated anyway. It’s also
drawn only outside the element, which means that you can’t see it behind/beneath the
element, even when the element has a transparent (or, with RGBA colors, semi-transparent)
background. Th e shadows are drawn just beyond the border edge, so you’re probably better
off putting a border or a visible background (or both) on any shadowed box.

You can have more than one box shadow, as depicted in Figure 7-24, just like you can with
text shadows.

h1 {box-shadow: gray 0.33em 0.25em 0.25em, -10px 2px 6px blue;}

Figure 7-24: Multiple shadows on the element box of a heading.

Here’s where I have to admit a small fi b: Th e previous examples are the ideal cases. As of this
writing, they wouldn’t actually work in browsers. In fact, the fi gures were produced using a
diff erent syntax than what’s shown in the text. As of mid-2010, to make the single-shadow
example work, you’d actually need to say:

h1 {-moz-box-shadow: gray 0.33em 0.25em 0.25em;

 -webkit-box-shadow: gray 0.33em 0.25em 0.25em;

 box-shadow: gray 0.33em 0.25em 0.25em;}

Th at will cover all modern browsers as of mid-2010. Over time, the need for the prefi xed
properties (-moz- and –webkit-) will fade and you’ll be able to just write the single
box-shadow declaration. When exactly will that happen? It all depends on your design, your
site’s visitors, and your own sense of comfort.

If you also want to get drop shadows on boxes in older versions of Internet Explorer, then
you’ll need to add in the IE-only Shadow fi lter. See http://robertnyman.com/
2010/03/16/drop-shadow-with-css-for-all-web-browsers/ for details.

MULTIPLE BACKGROUNDS

One of the really nift y things in CSS 3 is its support for multiple background images on a
given element. If you’ve ever nested multiple div elements just to get a bunch of background
decorations to show up, this section is for you.

13_684160-ch07.indd 25113_684160-ch07.indd 251 10/5/10 8:04 PM10/5/10 8:04 PM

252

PART III: CUTTING EDGE

Take, for example, this simple set of styles and markup to present a quotation, the result of
which is shown in Figure 7-25:

body {background: #C0FFEE; font: 1em Georgia, serif; padding: 1em 5%;}

.quotebox {font-size: 195%; padding: 80px 80px 40px; width: 16em; margin: 2em

auto;

border: 2px solid #8D7961; background: #FFF;}

.quotebox span {font-style: italic; font-size: smaller; display: block;

margin-top:

0.5em; text-align: right;}

<div class="quotebox">

One’s mind has a way of making itself up in the background, and it suddenly

becomes clear what one means to do.

—Arthur Christopher Benson

</div>

Figure 7-25: Setting up the quotation’s box.

Now, adding a single background image (as in Figure 7-26) is no big deal. Everyone has done
it about a zillion times.

.quotebox {background: url(bg01.png) top left no-repeat; background-color: #FFF;}

Figure 7-26: Adding a single background.

CHAPTER 7: THE (NEAR) FUTURE

253

But what if you want a little quarter-wheel in every corner (see Figure 7-27)? Previously, you
would have nested a bunch of divs just inside the quotebox div. With CSS 3, just keep
adding them to the background declaration.

.quotebox {background:

 url(bg01.png) top left no-repeat,

 url(bg02.png) top right no-repeat;

 background-color: #FFF;}

Figure 7-27: Applying two backgrounds to the same element.

Comma-separate each background value to get multiple backgrounds (see Figure 7-28).

.quotebox {background:

 url(bg01.png) top left no-repeat,

 url(bg02.png) top right no-repeat,

 url(bg03.png) bottom right no-repeat,

 url(bg04.png) bottom left no-repeat;

 background-color: #FFF;}

Figure 7-28: Applying four backgrounds to a single element.

Th e eff ect here is extremely similar to nesting a bunch of divs. It’s just that with CSS 3, you
don’t have to bother any more.

254

PART III: CUTTING EDGE

Th at similarity extends into the way background are composited together. You may have
noticed that I split out the background-color declaration in order to have a nice fl at white
behind all the images. But what if you wanted to fold it into the background declaration?
Where would you put it? Aft er all, each of these comma-separated values sets up its own
background. Put the color in the wrong place, and one or more images will be overwritten by
the color.

As it turns out, the answer is the last of the values.

.quotebox {background:

 url(bg01.png) top left no-repeat,

 url(bg02.png) top right no-repeat,

 url(bg03.png) bottom right no-repeat,

 #FFF url(bg04.png) bottom left no-repeat;}

Th at’s because the multiple background go from “highest”—that is, closest to you as you look
at the page—to “lowest”—furthest away from you. If you put the color on the fi rst back-
ground, it would sit “above” all the others.

Th is also means that if you want some kind of patterned background behind all the others (as
in Figure 7-29), it needs to come last and you need to make sure to shift any background color
to it.

.quotebox {background:

 url(bg01.png) top left no-repeat,

 url(bg02.png) top right no-repeat,

 url(bg03.png) bottom right no-repeat,

 url(bg04.png) bottom left no-repeat,

 #FFF url(bgparch.png) center repeat;}

Figure 7-29: One element, fi ve backgrounds.

CHAPTER 7: THE (NEAR) FUTURE

255

Because of the possible complexities involved, I prefer to split any default background color
into its own declaration, as shown earlier. Th us I’d write the preceding as:

.quotebox {background:

 url(bg01.png) top left no-repeat,

 url(bg02.png) top right no-repeat,

 url(bg03.png) bottom right no-repeat,

 url(bg04.png) bottom left no-repeat,

 url(bgparch.png) center repeat;

 background-color: #FFF;}

When you use the separate property, the color is placed behind all the images and you don’t
have to worry about shift ing it around if you reorder the images or add new images to the pile.

You can comma-separate the other background properties such as background-image. In
fact, an alternate way of writing the preceding styles would be:

.quotebox {

 background-repeat: no-repeat, no-repeat, no-repeat, no-repeat, repeat;

 background-image: url(bg01.png), url(bg02.png), url(bg03.png), url(bg04.png),

url(bgparch.png);

 background-position: top left, top right, bottom right, bottom left, center;

 background-color: #FFF;}

Diff erent format, same result. Th is probably looks more verbose, and in this case it really is,
but not always. If you drop the parchment background, which would result in the screenshot
shown in Figure 7-30, then you could simplify the fi rst declaration quite a bit:

.quotebox {

 background-repeat: no-repeat;

 background-image: url(bg01.png), url(bg02.png), url(bg03.png), url(bg04.png);

 background-position: top left, top right, bottom right, bottom left;

 background-color: #FFF;}

Figure 7-30: Similar background, alternate syntax.

256

PART III: CUTTING EDGE

Given those styles, none of the background images would be repeated, because the single
no-repeat is applied to all the backgrounds that are assigned to the element. Th e only
reason you had to write out all the repeat values before was that the fi rst four have one value
and the fi ft h had another.

And if you were to write two values for background-repeat?

.quotebox {

 background-repeat: no-repeat, repeat-y;

 background-image: url(bg01.png), url(bg02.png), url(bg03.png), url(bg04.png);

 background-position: top left, top right, bottom right, bottom left;

 background-color: #FFF;}

In that case, the fi rst and third images would not be repeated, whereas the second and fourth
images would be repeated along the y axis. With three repeat values, they would be applied to
the fi rst, second, and third images, respectively, whereas the fourth image would take the fi rst
repeat value.

2D TRANSFORMS

If you’ve ever wanted to rotate or skew an element, border, and text and all, then this section
is defi nitely for you.

First, though, a word of warning: In order to keep things legible, this section uses the unpre-
fi xed version of the transform property. As of this writing, doing transforms in a browser
actually would require multiple prefi xed declarations, like so:

-webkit-transform: …;

-moz-transform: …;

-o-transform: …;

-ms-transform: …;

transform: …;

Th at should cease to be necessary in a year or two (I hope!) but in the meantime, keep in
mind as you read through this section that it’s been boiled down to the unprefi xed version for
clarity.

Time to get transforming! Possibly the simplest transform to understand is rotation (see
Figure 7-31). (In the next and subsequent fi gures, the dashed red lines indicate where the
transformed elements were placed before their transformations.)

.box1 {-moz-transform: rotate(33.3deg);}

.box2 {-moz-transform: rotate(-90deg);}

CHAPTER 7: THE (NEAR) FUTURE

257Figure 7-31: Rotated element boxes. The red dashes show the original placement of the elements before their rotation.

In a sense, transforming is a lot like relative positioning: Th e element is placed normally and
then transformed. You can transform any element at all, and in the case of rotation can use
any real-number amount of degrees, radians, or grads to specify the angle of rotation. If
you’ve ever wanted to rotate your blog by e radians or 225 grads, well, now’s your chance.

As you no doubt noticed, the boxes in the preceding example were rotated around their
centers. Th at’s because the default transformation origin is 50% 50%, or the center of the
element. You can change the origin point using transform-origin (see Figure 7-32).

.box1 {transform: rotate(33.3deg); transform-origin: bottom left;}

.box2 {transform: rotate(-90deg); transform-origin: 75% 0;}

258

PART III: CUTTING EDGE

Figure 7-32: Elements rotated around points other than their centers.

Two notes: First, negative angles can be equivalent to positive angles. Th us, 270deg is
equivalent to –90deg in the fi nal positioning of the element, just as 0deg and 360deg are
the same. Second, you can specify angles greater than the apparent maximum value. If you
declare 540deg, the element’s fi nal rotation will look exactly the same as if you’d declared
180deg (as well as –180deg, 900deg, and so on). Th e interim result may be diff erent if you
also apply transitions (see next section), but the fi nal “resting” state will be equivalent.

Almost as simple as rotation is scaling, an example of which is depicted in Figure 7-33. As you
no doubt expect, this scales an element up or down in size, making it larger or smaller. You
can do this consistently along both axes, or to a diff erent degree along each axis.

.box1 {transform: scale(0.5);}

.box2 {transform: scale(0.75, 1.5);}

CHAPTER 7: THE (NEAR) FUTURE

259Figure 7-33: Scaled elements.

One scale() value means the element will be scaled by that amount along both the x and y
axes. If there are two values, the fi rst specifi es the horizontal (X) scaling, and the second, the
vertical (Y) scaling. Th us, if you want to leave the horizontal axis the same and only scale on
the y axis, do this:

.box1 {transform: scale(0.5);}

.box2 {transform: scale(1, 1.5);}

Alternatively, you can use the scaleY() value.

.box1 {transform: scale(0.5);}

.box2 {transform: scaleY(1.5);}

Regardless of which particular path you choose, Figure 7-34 is the end result.

Along the same lines is the scaleX() value, which causes horizontal scaling without
changing the vertical scaling (see Figure 7-35).

.box1 {transform: scaleX(0.5);}

.box2 {transform: scaleX(1.5);}

260

PART III: CUTTING EDGE

Figure 7-34: Two scaled elements, one scaled only on the Y axis.

Figure 7-35: Two scaled elements, one scaled only on the X axis.

CHAPTER 7: THE (NEAR) FUTURE

261

When writing CSS yourself, it seems most convenient to just stick with scale() and fi ll in
a 0 for the horizontal any time you want a purely vertical scaling. If you’re programmatically
changing the scaling via DOM scripting, it might be easier to manipulate scaleX() and
scaleY() directly.

As with rotation, you can aff ect the origin point for scaling. Th is allows you, for example, to
cause an element to scale toward its top-left corners instead of shrink down toward its center
(see Figure 7-36).

.box1 {transform: scale(0.5); transform-origin: top left;}

.box2 {transform: scale(1.5); transform-origin: 100% 100%;}

Figure 7-36: Two scaled elements, each with a different scaling origin.

Similarly simple is translation. In this case, it isn’t changing the language from one to another,
but “translating” a shape from one point to another, as in Figure 7-37. It’s an off set by either
one or two length values.

.box1 {transform: translate(50px);}

.box2 {transform: translate(5em,10em);}

13_684160-ch07.indd 26113_684160-ch07.indd 261 10/5/10 8:04 PM10/5/10 8:04 PM

262

PART III: CUTTING EDGE

Figure 7-37: Translated elements.

Again, this is very much like relative positioning. Th e elements are placed normally and then
transformed as directed.

When there’s only one length value in a translate() value, it specifi es a horizontal
movement and the vertical movement is assumed to be zero. If you just want to translate an
element up or down, you have two choices. First is to simply give a length of 0 for the
horizontal value.

.box1 {transform: translate(0,50px);}

.box2 {transform: translate(5em,10em);}

Th e other is to use the value pattern translateY():

.box1 {transform: translateY(50px);}

.box2 {transform: translate(5em,10em);}

Either way, you get Figure 7-38 as a result.

Th ere is also a translateX(), which does about what you’d expect: moves the element
horizontally.

CHAPTER 7: THE (NEAR) FUTURE

263Figure 7-38: Two differently translated elements.

While you can declare a transform-origin in cases where you’re just translating, it doesn’t
matter all that much whether you do so. Aft er all, whether an element’s center or top-left
corner is pushed 50 pixels to the right doesn’t really matter. Th e element will end up in the
same place either way. But that’s only true if all you’re doing is translating. If you do anything
else at the same time, like rotate or scale, then the origin will matter. (More on combining
transforms in a bit.)

Th e last type of transformation, skewing, is slightly more complex, although the method of
declaring it is no more diffi cult than you’ve seen so far. Skewing an element distorts its shape
along one or both axes (see Figure 7-39).

.box1 {transform: skew(23deg);}

.box2 {transform: skew(13deg,-45deg);}

If you provide only a single value for skew(), then there is only horizontal (X) skew, and no
vertical (Y) skew. As with translations and scaling, there are skewX() and skewY() values
for those times you want to explicitly skew along only one axis (see Figure 7-40).

.box1 {transform: skewX(-23deg);}

.box2 {transform: skewY(45deg);}

264

PART III: CUTTING EDGE

Figure 7-39: Two skewed elements.

Figure 7-40: Two elements, each one skewed along a different axis.

CHAPTER 7: THE (NEAR) FUTURE

265

Here’s how skewing works: Imagine there are two bars running through the element, one
along each of the x and y axes. When you skew in the x direction, the y axis is rotated by the
skew angle. Yes, the y (vertical) axis is the one that rotates in a skewX() operation. Positive
angles are counterclockwise, and negative angles are clockwise. Th at’s why the fi rst box in the
preceding example appears to tilt rightward: Th e y axis was tilted 33.3 degrees clockwise.

Th e same basic thing happens with skewY(): Th e x axis is tilted by the specifi ed number of
degrees, with positive angles tilting it counterclockwise and negative angles tilting clockwise.

Th e interesting part here is how the origin plays into it. If the origin is in the center and you
provide a negative skewX(), then the top of the element will slide to the right of the origin
point while the bottom will slide to the left . Change the origin to the bottom of the element,
though, and the whole thing will tilt right from the bottom of the element (see Figure 7-41).

.box1 {transform: skewX(-23deg);}

.box2 {transform: skewY(-23deg); transform-origin: bottom center;}

Figure 7-41: Two skewed elements, each with a different skewing origin.

Similar eff ects happen with vertical skews.

266

PART III: CUTTING EDGE

So those are the types of transforms you can carry out. But what if you want to do more than
one at a time (see Figure 7-42)? No problem! Just list them in the order you want them to
happen.

.box1 {transform: translateX(50px) rotate(23deg);}

.box2 {transform: scale(0.75) translate(25px,-2em);}

Figure 7-42: Multiple transforms in action.

In every case, the transforms are executed one at a time, starting with the fi rst. Th is can make
a signifi cant diff erence. Consider the diff ering outcomes of the same transforms in diff erent
orders (see Figure 7-43).

.box1 {transform: rotate(45deg) skew(-45deg);}

.box2 {transform: skew(-45deg) rotate(45deg);}

Th ere is one more transformation value type to cover: matrix(). Th is value type allows you
to specify a transformation matrix in six parts, the last two of which defi ne the translation.
Here’s a code example, which is then illustrated in Figure 7-44.

.box1 {transform: matrix(0.67,0.23,0,1,25px,10px);}

.box2 {transform: matrix(1,0.13,0.42,1,0,-25px);}

CHAPTER 7: THE (NEAR) FUTURE

267Figure 7-43: The differences caused by transform value ordering.

Figure 7-44: Matrix transforms.

268

PART III: CUTTING EDGE

Basically, the fi rst four numbers are a compact form of expressing the end result of rotating,
skewing, and scaling an element, and the last two translate that end result. If you understand
matrix-transformation math, then you’ll love this. If you don’t, don’t worry about it overmuch.
You can get to the same place with the other transform values reviewed in this chapter.

If you’d like to learn about matrix transforms, here are two resources:

 http://en.wikipedia.org/wiki/Linear_transformation#Examples_
of_linear_transformation_matrices

 http://www.mathamazement.com/Lessons/Pre-Calculus/08_Matrices-
and-Determinants/coordinate-transformation-matrices.html

Index

SYMBOLS AND
NUMERICS
* (asterisks)

in selectors, 49
in substring matchers, 59

^ (caret), 60
$ (dollar sign), 61
> (greater-than symbol),

63
2D transforms, 256–259,

261–263, 265–266

A
absolute positioning

containing blocks,
152–155

within context 150 152

adjusting position
absolute

containing blocks,
152–155

within context,
150–152

of elements, 82–84
lists, 92

fi xed, 155–158
in graphs, 224–229
of images, 94, 96, 187
transforms, 257, 262

alanhogan.com (Web site),
106

alistapart.com (Web site),
69, 135, 140

alt text, 86
ancestor-descendant

angles, negative/positive,
258

AOL Instant Messenger
service links, 62

Apache Soft ware, 106
Apple Safari

Firebug in, 12
rounded corners with,

172, 177
table columns in, 211
tools for, 26–28

assistive technologies, 81,
83, 86

asterisks (*)
in selectors, 49
in substring matchers, 59

attributes
editing, 10

270

INDEX

B
background-position,

182
backgrounds

color, 176
of documents, 103–104
hover eff ects, 90
images, 85, 131, 160–162
lists with, 92
multiple, 251–256
with sliding doors, 185

backwards-compatibility
browsers, 232–234, 248
columns, 213

bar graphs, 222–230
blind users, 81, 83, 86
block boxes, 110–112
block-level links, 89–90
body, 206–208
bold fonts, 75
borders

about, 78–80
outlines with, 108, 109
pitfalls, 123–124, 211
types of, 79–80

Bowman, Doug (devel-
oper), 127, 182

boxing images, 198–200
boxpunching, 169–172
br element, 117–118
browsers

backwards-compatibility,
232–234, 248

Chrome
rounded corners

with, 177
table columns in, 211

compatibility, 172
cross-browser usage

compatibility, 172
consistency, 79–80
element inspection, 29
friendly, 90

CSS, 118
diff erences, 78–79, 90
Document Object Model

in, 206
Firefox

Firebug in, 12
rounded corners with,

177
Internet Explorer

code for versions 7, 8
and 9, 36

drop shadows, 251
Firebug in, 12
HTTP headers,

105–106
rounded corners with,

172, 177, 178
table columns in, 212

with Liquid Bleach out-
put, 129

Netscape 4, 90
page zoom, 127
printing styles, develop-

ing, 87–89
with row headers, 210
Safari

Firebug in, 12
rounded corners with,

172, 177
table columns in, 211
tools for, 26–28

scaling routines, 200
style diff erences, 33, 35
table columns in, 211,

213
window display areas,

238, 243
built-in styles, 7
bulleted lists, 92–100

C
caching, disabling, 13
caret (^), 60
Cascading Style Sheets

(CSS)
browsers, 118
editing, 10–12
eff ects. see eff ects
future developments.

see future
developments

layout techniques
about, 107
absolute positioning,

150–152
adjacent clearing,

118–120
block boxes, 110–112
clearfi xing, 117–118
columns, 120–127
containing blocks,

152–155
em-based, 144–147
fl oat containment,

113–116
Fluid Grids, 140–143

INDEX

271

footers, 155–158
headers, 155–158
“Holy Grail,” 135–139
Liquid Bleach,

127–131
negative margins,

147–150
one true layout,

131–135
outlines, 108–110

menus, 14, 15, 167–169
parallax, 187–190
popups, 165–167
rounded corners,

172–179
selectors. see selectors
server-specifi c, 104–106
sprites, 172, 179–182,

185
tables. see tables
tips. see tips
tools. see tools
validation

about, 16
markup language with,

32
tools, 20, 74

case-sensitivity
of attributes, 60
of markup languages, 56

Cederholm, Dan (devel-
oper), 124

centering
block boxes, 110–112
margins, 101

Chaudhari, Nilesh (devel-
oper), 194

child elements
combinators, 62–63, 214
selectors

about, 62–65
line height values,

76–77
styling, 240–243

chrispederick.com
(Web site), 13

Chrome
rounded corners with,

177
table columns in, 211

classes
of attribute selectors,

56–57
displaying, 14–15
in geographic data

mapping, 215
HTML 5, 234–235
IDs and, 50–53, 57
ordering of, 56
in table columns,

213–215
clearfi xing, 117–118
clipped sliding doors,

185–187
code.google.com (Web

site), 36, 232
coding

eff ects
boxpunching, 170–172
complexspiral,

160–161, 164
CSS sprites, 180–181
images, 198–200
menus, 165–169

parallax, 187–190
ragged fl oats, 192,

194–196
rounded corners,

173–179
sliding doors, 182–187

future developments
2D transforms,

256–259, 261–263,
265–266

color, 246–248
HTML 5, 232–234
media environments,

236–239
multiple backgrounds,

252–256
selective styling, 240,

242–245
shadows, 250–251

layout techniques
absolute positioning,

150–151
adjacent clearing,

118–119
block box centering,

110–111
clearfi xing, 117–118
containing blocks,

152–154
em-based layout,

144–147
faux columns, 124–126
fl oat containment,

113–116
Fluid Grids, 141–143
footers, 155–156
headers, 155–156

272

INDEX

coding (continued)
“Holy Grail,” 135–139
Liquid Bleach,

128–129, 131
negative margins,

148–149
one true layout,

131–132, 134
outlines, 108
three-column layout,

121–123
two-column layout,

120
selectors

attributes, 54–62
child, 62–64
content generation,

67–69
IDs, 50–51, 53
multiclassing, 53–54
pseudo-classes/

elements, 40–41
shorthand keywords,

45–48
sibling, 65–66
specifi city, 43–45
targets with style,

41–43
universal, 49

tables
body, 206–208
columns, 210–214
foot, 206–208
graphs, 222–229
head, 206–208
maps, 215, 217–222
row headers, 209–210

tips
backgrounds, 103
borders, 78–80
elements, 81–84
fonts, 75
images, 85–86
line height, 75–77
lists, 90–95, 97–98, 100
printing styles, 88
server-specifi c CSS,

105–106
for wrapper div, 101,

103
tools

diagnostic style sheets,
31–32

Firebug, 7
IE9.js, 36–37
reboot styles, 33–36
SelectORacle, 30

color
backwards-compatibility,

248
of borders, 78–80
of bullets, 94
contrasting, 87
corners, pitfalls with, 176
HSL alpha color,

248–249
with Liquid Bleach out-

put, 129–131
printing, 87
RGB alpha color,

246–248
white, 254

columns
in media environments,

236, 238, 239
selective styling, 243–246
switching, 132–133
in tables, 210–215
types of, 120–127

commercial eff ects
about, 159
boxpunching, 169–172
complexspiral, 160–165
CSS

menus, 167–169
parallax, 187–190
popups, 165–167
rounded corners,

172–179
sprites, 179–182

images
boxing, 198–200
constrained, 200–201

ragged fl oats, 190–198
sliding doors, 182–187

complexspiral, 160–165
complexspiral.com

(Web site), 113
computed styles

in Dragonfl y, 24
in Firebug, 10
in Safari, 27, 28
toggling, 19

conditional styles, 235
consistency

across browsers, 79–80
rebooting styles for, 33

INDEX

273

constrained images,
200–201

containing blocks,
152–155

content
in browser windows, 90
generation, 67–69, 118
images, 86
layout convenience, 152

contextual menus, 8
conversion to HTML 5,

235
coordinates X/Y

fi nding, 216
in transforms, 259–261,

263–265
corners, rounded, 172–179
cross-browser usage

compatibility, 172
consistency, 79–80
element inspection, 29
friendly, 90

CSS (Cascading Style
Sheets)

browsers, 118
editing, 10–12
eff ects. see eff ects
future developments.

see future
developments

layout techniques
about, 107
absolute positioning,

150–152
adjacent clearing,

118–120
block boxes, 110–112

clearfi xing, 117–118
columns, 120–127
containing blocks,

152–155
em-based, 144–147
fl oat containment,

113–116
Fluid Grids, 140–143
footers, 155–158
headers, 155–158
“Holy Grail,” 135–139
Liquid Bleach,

127–131
negative margins,

147–150
one true layout,

131–135
outlines, 108–110

menus, 14, 15, 167–169
parallax, 187–190
popups, 165–167
rounded corners,

172–179
selectors. see selectors
server-specifi c, 104–106
sprites, 172, 179–182,

185
tables. see tables
tips. see tips
tools. see tools
validation

about, 16
markup language

with, 32
tools, 20, 74

css3generator.com
(Web site), 232

css3pie.com (Web site),
232

css3please.com (Web site),
232

D
data mapping, 215–222
dates in graphs, 227–228
Debug menu, 23
debugging

diagnostic style sheets,
31–33

in Dragonfl y, 23
validators for, 16

declarations
disabling, 8
in Dragonfl y, 24
importance ranking,

44–45
declared styles

in Dragonfl y, 19
in Safari, 27
toggling, 19

defaults
CSS, 84
Firebug, 10
showing, 20

descendant features
elements, 115
selectors

about, 62
line height values,

76–77
Develop menu (Safari), 27

274

INDEX

developers
Bowman, Doug, 127, 182
Cederholm, Dan, 124
Chaudhari, Nilesh, 194
Edwards, Dean, 36
Hogan, Alan, 106
Johnson, Zachary, 106
Levine, Matthew, 135
Marcotte, Ethan, 140
Meyer, Eric, 127
Robinson, Alex, 131
Shea, Dave, 179
Tan, Jon, 234
Wilson, Peter, 106

developments, future
2D transforms, 256–259,

261–263, 265–266
about, 231–232
HSL alpha color,

248–249
HTML 5

classes, 234–235
styling, 232–233
Web site for patterns

and syntax, 232
media environments,

235–240
multiple backgrounds,

251–256
RGB alpha color,

246–248
selective styling

children, 240–243
columns, 243–246

shadowy styles, 250–251
diagnosing

elements, 16
selectors, 30
style sheets for, 31–33,

175

dimensions
constrained images, 200
em-based layout,

144–147
faux columns, 125, 127
in Firebug, 10
fl oat containment, 114,

115
in Fluid Grids, 140–142
fonts, 48, 75
“Holy Grail,” 135–139
in Liquid Bleach,

128–129
one true layout, 131–132
in Safari, 27
three-column layout, 124
two-column layout,

120–121
Disable menu, 13–14
disabling

caching, 13
declarations, 8
image display, 86
styles, 9, 14, 15

display suppression, 80–82
divs

about, 94
outlines around,

108–109
Document Object Model

(DOM)
creating, 206
properties, 19

documents
background of, 103–104
Firebug structure, 6

dollar sign ($), 61

DOM (Document Object
Model)

creating, 206
properties, 19

double-colon syntax, 41
downloading

Firebug, 6, 12
Internet Explorer

Developer Toolbar
(IEDT), 17–18

Web Developer Toolbar,
13

XRAY, 29
Dragonfl y (for Opera),

22–26
drop shadows, 250–251
dropdown menus, 81,

83, 169

E
ecsstender.com (Web site),

232
editing

attributes and elements,
10

CSS, 10–12
Edwards, Dean (developer),

36
eff ects

about, 159
boxpunching, 169–172
complexspiral, 160–165
CSS

menus, 167–169
parallax, 187–190
popups, 165–167

INDEX

275

rounded corners,
172–179

sprites, 179–182
images

boxing, 198–200
constrained, 200–201

ragged fl oats, 190–198
sliding doors, 182–187

elements
with asterisks, 59
with classes, 53–54
diagnosing, 16
with diagnostic style

sheets, 31–33
display suppression,

80–82
editing, 10
information, 14
inspecting

Firebug, 8, 9
with XRAY, 29–30

layout visualization, 7
off -screen, 83–84
standardizing, 35
visibility suppression,

82–83
elliptical corners, 178
E-mail contact links, 62
em-based layout, 144–147
embedded styles

ineffi ciencies of, 87
switching off , 14

equal-height columns, 124
error checkers.

see validation
evolt.org (Web site), 194
Excel documents, links, 62

F
fading-background eff ect,

43
faux columns, 124–127
Firebug

tools, 6–12
validation tools, 74

Firebug Lite, 12
Firefox

Firebug in, 12
rounded corners with,

177
fi rewalls, validating from

behind, 16, 74
fi xed footers, 155–158
fi xed headers, 155–158
fl exible tabs, 184
fl oated-column styling,

122
fl oats

containment, 113–116,
118

overlap compared with,
152

ragged, 190–198
fl uid columns, 123–124
Fluid Grids, 140–144
fonts

coding, 75
sizing, 48, 75

foot, 206–208
footers, 155–158
forward slash, 76
future developments

2D transforms, 256–259,
261–263, 265–266

about, 231–232

HSL alpha color,
248–249

HTML 5
classes, 234–235
styling, 232–233
Web site for patterns

and syntax, 232
media environments,

235–240
multiple backgrounds,

251–256
RGB alpha color,

246–248
selective styling

children, 240–243
columns, 243–246

shadowy styles, 250–251

G
Gecko, 179
geographic data mapping,

215–222
getfi rebug.com (Web site),

6, 12
glossary, media environ-

ments, 239–240
Google Chrome

rounded corners with,
177

table columns in, 211
gradients/glrzad.com (Web

site), 232
graphics

background, 85, 131,
251–256

boxing, 198–200

276

INDEX

graphics (continued)
for complexspiral,

160–162
constrained, 200–201
for corners, 174, 175, 177
for CSS sprites, 181–182
display disabling, 86
maps, 215–222
positioning, 94, 96, 187
printing, 85–87, 98
with ragged fl oats, 194

graphs, 222–230
grayscale output, 87
greater-than

symbol (>), 63
grep-style wildcard, 59
grids, fl uid, 140–144
groove borders, 78–80
gutter space, 90–92

H
hanging indents, 92
head, 206–208
headers

fi xed, 155–158
in tables, 208–210

headings
images as, 84
sizing, 48

hidden elements, 82–83,
85

hierarchy in documents,
62

highlighting with
hovering, 6

Hogan, Alan (developer),
106

“Holy Grail,” 135–139
horizontal elements

off set, 180
percentages, 218
scrollbars, 127

hovering
background eff ects

with, 90
fast, 179
highlighting with, 6
over color boxes, 9
over tabs, 184, 185
rulers with, 10

HSL alpha color, 248–249
HTML (HyperText

Markup language)
code ordering, 53, 54
color, 104
for complexspiral, 160
Debug menu, 23
elements of, 206–208
HTML 4

code ordering, 207
styling, 232, 234

HTML 5
classes, 234
code ordering, 207
conversion to, 235
styling, 232–233
Web site for patterns

and syntax, 232
HTML tab, Firebug, 6–7
Internet Explorer

with, 36
validation, 16, 20, 32, 74

HTTP headers, drawbacks,
105–106

Hue-Saturation-Lightness.
see HSL alpha color

hybrid fl uid/fi xed
layout, 135

hyperlinks, block-level,
89–90

HyperText Markup
language (HTML)

code ordering, 53, 54
color, 104
for complexspiral, 160
Debug menu, 23
elements of, 206–208
HTML 4

code ordering, 207
styling, 232, 234

HTML 5
classes, 234
code ordering, 207
conversion to, 235
styling, 232–233
Web site for patterns

and syntax, 232
HTML tab, Firebug, 6–7
Internet Explorer

with, 36
validation, 16, 20, 32, 74

I
IDs

anchors or, 42
attribute selectors, 57–58
class and, 50–53

INDEX

277

in geographic data map-
ping, 215

values, 14–15
IE (Internet Explorer)

code for versions 7, 8
and 9, 36

drop shadows, 251
Firebug in, 12
HTTP headers, 105–106
rounded corners with,

172, 177, 178
table columns in, 212

IE9.js, 36–38
IEDT (Internet Explorer

Developer Toolbar)
for IE7, 17–21
for IE8, 21–22

IIS servers, 106
image replacement (IR),

84–86
images

background, 85, 131,
251–256

boxing, 198–200
for complexspiral,

160–162
constrained, 200–201
for corners, 174, 175, 177
for CSS sprites, 181–182
display disabling, 86
maps, 215–222
positioning, 94, 96, 187
printing, 85–87, 98
with ragged fl oats, 194

importance, of selectors,
44–45

inconsistencies
across browsers, 79–80
reducing, 33

indentation
with bullets, 94
lists, 90–92

Information menu, 14, 15
inherited properties, 64–65
ink cartridges, color

use, 87
inline elements

links, 89–90
styles, 14

inset borders, 79–80
Instant Messenger (AOL)

service links, 62
Internet browsers

backwards-compatibility,
232–234, 248

Chrome
rounded corners

with, 177
table columns in, 211

compatibility, 172
cross-browser usage

compatibility, 172
consistency, 79–80
element inspection, 29
friendly, 90

CSS, 118
diff erences, 78–79, 90
Document Object Model

in, 206
Firefox

Firebug in, 12
rounded corners with,

177

Internet Explorer (IE)
code for versions 7, 8

and 9, 36
drop shadows, 251
Firebug in, 12
HTTP headers, 105–106
with Liquid Bleach out-

put, 129
Netscape 4, 90
page zoom, 127
printing styles, develop-

ing, 87–89
rounded corners with,

172, 177, 178
with row headers, 210
Safari

Firebug in, 12
rounded corners with,

172, 177
table columns in, 211
tools for, 26–28

scaling routines, 200
style diff erences, 33, 35
table columns in, 211,

213
window display areas,

238, 243
Internet Explorer Devel-

oper Toolbar (IEDT)
for IE7, 17–21
for IE8, 21–22

Internet sites
accessites.org, 31
alanhogan.com, 106
alistapart.com, 69, 135,

140
chrispederick.com, 13

278

INDEX

Internet sites (continued)
code.google.com, 36, 232
complexspiral.com, 113
css3generator.com, 232
css3pie.com, 232
css3please.com, 232
for diagnostic style

sheet, 31
for Dragonfl y, 22, 23
for drop shadows, 251
ecsstender.com, 232
evolt.org, 194
for Firebug, 6, 12
for fl oat containment,

113
for Fluid Grids, 140
getfi rebug.com, 6, 12
gradients/glrzad.com,

232
grep-style wildcard, 59
for HTML 5 patterns and

syntax, 232
JavaScript support for

older browsers, 232
jontangerine.com, 234
keithclark.co.uk, 232
mathamazement.com,

268
meyerweb.com, 31, 35,

164, 222
mozilla.org, 13
for one true layout, 135
opera.com, 22, 23
for patterns, 232
peterwilson.cc, 106
positioniseverything.net,

118, 131

for ragged fl oats, 194
remysharp.com, 233
robertnyman.com, 251
for scripting, 233
for SelectORacle, 30, 31
simplebits.com, 124
for syntax, 232
technet.microsoft .com,

106
theopalgroup.com, 30,

31
useragentman.com, 232
w3.org

attributes, 55, 56,
58, 59

child selectors, 65
on color, 79
validation tools, 74

for Web Developer Tool-
bar (WDT), 13

westciv.com, 29, 30, 232
wikipedia.org, 268
wildcards, 49, 59
zachstronaut.com, 106

IR (image replacement),
84–86

irregular fl ow text, 190
italic fonts, 75

J
JavaScript

for backwards-
compatibility,
232, 233

with diagnostic style
sheets, 32

properties, 19
settings, 81
support for older

browsers, 232
turning off , 13
upgrading with, 36–38
Web sites, 232

Johnson, Zachary
(developer), 106

jontangerine.com
(Web site), 234

jQuery, 232

K
keithclark.co.uk (Web site),

232
keyboard shortcuts

in Dragonfl y, 23
in Safari, 26

L
landscape displays, 235
languages (markup)

case-sensitivity of, 56
HTML

code ordering, 53, 54
color, 104
for complexspiral, 160
Debug menu, 23
elements of, 206–208
HTML 4, 207, 232, 234
HTML 5, 207, 232–235
HTML tab, Firebug,

6–7

INDEX

279

Internet Explorer with,
36

validation, 16, 20, 74
with validators, 32

“Layout Diagnostic”
menus, 16

layout submenus, 23
Layout tab

in Dragonfl y, 26
in Firebug, 11

layout techniques
about, 107
absolute positioning,

150–152
adjacent clearing,

118–120
block boxes, 110–112
clearfi xing, 117–118
columns, 120–127
containing blocks,

152–155
em-based, 144–147
fl oat containment,

113–116
Fluid Grids, 140–143
footers, 155–158
headers, 155–158
“Holy Grail,” 135–139
Liquid Bleach, 127–131
negative margins,

147–150
one true layout, 131–135
outlines, 108–110

legends, graphs, 229
Levine, Matthew

(developer), 135
lightness, color, 248

line height, 75–78
link approach, 87
linked styles, 14, 15
links, block-level, 89–90
Liquid Bleach, 127–131
lists

bulleted, 93–100
indentation, 90–92
ordering of, 63
outdenting, 92–93

lite versions, Firebug, 12
local validation, 16, 20, 74
logos, 84
low-resolution settings,

17–18

M
Mac users, 23
mapping, 215–222
Marcotte, Ethan

(developer), 140
margins

about, 90–92
block boxes, 110
centering, 101, 110
negative, 147–150
outlines with, 109

markup languages
case-sensitivity of, 56
HTML

code ordering, 53, 54
color, 104
for complexspiral, 160
Debug menu, 23
elements of, 206–208
HTML 4, 207, 232, 234

HTML 5, 207, 232–235
HTML tab, Firebug,

6–7
Internet Explorer with,

36
validation, 16, 20, 74

with validators, 32
mathamazement.com

(Web site), 268
matrix transforms, 267
media environments,

235–240
menus

contextual, 8, 9
CSS, 14, 15, 167–169
debugging, 23
Develop (Safari), 26, 27
disable, 14
dropdown, 81, 83, 169
information, 14, 15
“Layout Diagnostic,” 16
layout submenu, 23
nested, 167–169
outline, 16
pages, 17
popup, 7, 165, 167, 169
Show Develop, 26
Style tab, 7
tools, 16–18, 21, 22, 23
unhidden submenus, 168

Meyer, Eric (developer),
127

meyerweb.com, 31, 35,
164, 222

Microsoft Excel
documents, links, 62

14_684160-bindex.indd 27914_684160-bindex.indd 279 10/5/10 8:05 PM10/5/10 8:05 PM

280

INDEX

Microsoft Internet
Explorer (IE)

code for versions 7, 8
and 9, 36

drop shadows, 251
Firebug in, 12
HTTP headers, 105–106
rounded corners with,

172, 177, 178
table columns in, 212

Microsoft Word docu-
ments, links, 62

Mozilla
add-ons, 13
Firefox

Firebug in, 12
rounded corners with,

177
mozilla.org, 13
MRI (inspector tool), 30
multiclassing, 53–54
multiple backgrounds,

251–256
multiple shadows, 250
multiple transforms, 266

N
negative angles, 258
negative horizontal off set,

180
negative margins, 147–150
nested menus, 167–169
Netscape 4, 90

non-inherited properties,
64–65

numbered lists, 92

O
oddities, keyboard short-

cuts, 23, 26
offl ine validation, 16
off -screen features

elements, 83–84
text, 85

one true layout, 131–135
Opera

Firebug in, 12
indentation in, 90
tools for, 22–26

opera.com (Web site), 22,
23

ordering
classes, 56
coding, 75
fonts, 75
lists, 63
in tables, 207

outdenting lists, 92–93
Outline menu, 16
outlines, layout, 108–110
outset borders, 79–80
overfl ow in layout,

113–115
overlap

fl oats or, 152
text/image, 193

overriding
selective, 48
styles, 24–25

P
padding, 90–92
page backgrounds

color, 176
of documents, 103–104
hover eff ects, 90
images, 85, 131, 160–162
lists with, 92
multiple, 251–256
with sliding doors, 185

page zoom, 127
Pages menu, 17
parallax, 187–190
parent-child selection, 65
partial child selection,

63–65
patterns

repeating, 164
Web sites for, 232

percentage-based position-
ing, 187

peterwilson.cc (Web site),
106

Phark Method, 85
PHP directives, 106
pictures

background, 85, 131,
251–256

boxing, 198–200

INDEX

281

for complexspiral,
160–162

constrained, 200–201
for corners, 174, 175, 177
for CSS sprites, 181–182
display disabling, 86
maps, 215–222
positioning, 94, 96, 187
printing, 85–87, 98
with ragged fl oats, 194

plug-ins, JavaScript, 232
popup menus, 7, 165, 167,

169
portrait displays, 235
positioning

absolute
containing blocks,

152–155
within context,

150–152
of elements, 82–84
lists, 92

fi xed, 155–158
in graphs, 224–229
of images, 94, 96, 187
transforms, 257, 262

positioniseverything.net,
118, 131

positive angles, 258
pre-CSS 3 rounded cor-

ners, 172–177
prefi xed properties, 251
Print Preview, 87–89
printing

images, 85–86, 98
styles, 87–89

properties
common settings, 33
CSS, 10
of Document Object

Model, 19
in Dragonfl y, 24
Firebug, 7–9
hovering over, 9, 90
inherited, 64–65
prefi xed, 251
in Safari, 27
table limitations,

210–212
pseudo-classes/elements

inspection visibility, 12
types of, 40–41

Q
queries, media, 235–240

R
ragged fl oats, 190–198
readability of graphs, 226
read-only properties, 19
relative positions, 137
remysharp.com (Web site),

233
reset styles, 33, 90
reverse-specifi city order

(Firebug), 8
RGB alpha color, 246–248
ridge borders, 79–80
robertnyman.com

(Web site), 251

Robinson, Alex
(developer), 131

root elements, 84
rotating elements, 256,

257, 258
rounded corners

with Chrome, 177
with Firefox, 177
with Internet Explorer,

172–178
with pre-CSS 3, 172–177
with Safari, 172, 177

row headers, 208–210
rules

element matching, 20
overriding, 45
pseudo-element-driven,

12
reverse-specifi city order

(Firebug), 8
in Safari, 27
with styles, 46

Rundle Method, 85

S
Safari

Firebug in, 12
rounded corners with,

172, 177
table columns in, 211
tools for, 26–28

sans-serif fonts, 75
saturation (color), 248
scaling

browser routines, 200
transforms, 258–261

282

INDEX

scalloped corners, 175
screen readers, 81, 83, 86
scripting

graphs, 229–230
JavaScript

for backwards-
compatibility, 232,
233

with diagnostic style
sheets, 32

properties, 19
settings, 81
support for older

browsers, 232
turning off , 13
upgrading with, 36–38
Web sites, 233

Web sites, 233
scrollbars, horizontal, 127
Secure-server links, 62
selective styling

children, 240–243
columns, 243–246

SelectORacle, 30–31
selectors

about, 39
attributes

about, 54–56
classes of, 56–57
as ID selectors, 57–58
substrings, 58–62

child, 62–65
classes, 50–53
content generation,

67–69
diagnosing, 30
IDs, 50–53
importance of, 44–45

matches, 20–21
multiclassing, 53–54
shorthand keywords

omitting, 45–47
overriding, 47–48

sibling, 65–66
specifi city, 43–44
targets with style, 41–43
universal, 49–50, 59

separators
column, 123, 125–126
in Liquid Bleach, 128,

129
server-specifi c CSS,

104–106
shadowy styles, 250–251
shape translation, 261–263
Shea, Dave (developer),

179
shorthand keywords

omitting, 45–47
overriding, 47–48

shorthand properties
Firebug, 7–9
Safari, 27

Show Develop menus, 26
sibling elements

combinators, 214
selectors

about, 65–66
line height values,

76–77
sighted users, 81, 83, 86
simplebits.com (Web site),

124
simulation, child selection,

63–65

sizing
constrained images, 200
em-based layout,

144–147
faux columns, 125, 127
in Firebug, 10
fl oat containment, 114,

115
in Fluid Grids, 140–142
fonts, 48, 75
“Holy Grail,” 135–139
in Liquid Bleach,

128–129
one true layout, 131–132
in Safari, 27
three-column layout, 124
two-column layout,

120–121
skewing elements, 256,

263–265
skiplinks, 81
slash-separated values, 178
sliding doors, 182–187
small-caps, coding, 75
space, closing up, 147
span, 94
specifi city, selectors,

43–44, 49, 57
sprites, 172, 179–182, 185
studio eff ects

about, 159
boxpunching, 169–172
complexspiral, 160–165
CSS

menus, 167–169
parallax, 187–190
popups, 165–167

INDEX

283

rounded corners,
172–179

sprites, 179–182
images

boxing, 198–200
constrained, 200–201

ragged fl oats, 190–198
sliding doors, 182–187

style sheets
class ordering, 56
diagnostic, 31–33
modifying, 35–36
printing, 87, 88

Style tab
about, 7
in Dragonfl y, 24, 25
in Firebug, 8–12

styles
borders, 78–80
browser diff erences, 33
challenges, 22
combining, 58
conditional, 235
disabling, 9, 14, 15
drop shadows, 250–251
Firebug, 7
overwritten, 24–25
printing, 87–89
rebooting, 33–36
reset, 33, 90
rules with, 46
in Safari, 28
selective

children, 240–243
columns, 243–246

shadowy, 250–251
switching off , 14

in tables, 206
targets with, 41–43
toggling between, 19

styling
HTML 5, 232–233
of substring matchers,

58–60
substrings

as attribute selectors,
58–62

matches, 58–62
syntax, Web sites for, 232

T
tables

about, 205
body, 206–208
columns, 210–215
foot, 206–208
graphs, 222–230
head, 206–208
mapping, 215–222
row headers, 208–210

tabs, 182–187
Tan, Jon (developer), 234
targets with style, 41–43
technet.microsoft .com, 106
techniques (layout)

about, 107
absolute positioning,

150–152
adjacent clearing,

118–120
block boxes, 110–112
clearfi xing, 117–118

columns, 120–127
containing blocks,

152–155
em-based, 144–147
fl oat containment,

113–116
Fluid Grids, 140–143
footers, 155–158
headers, 155–158
“Holy Grail,” 135–139
Liquid Bleach, 127–131
negative margins,

147–150
one true layout, 131–135
outlines, 108–110

text
alignment, 101
image replacement of,

84–86
irregular fl ow, 190

theopalgroup.com
(Web site), 30, 31

three-column layout,
121–124

tips
about, 73
block-level links, 89–90
borders, 78–80
bulleted lists, 93–100
elements

display suppression,
80–82

off -screen, 83–84
visibility suppression,

82–83
fonts, ordering, 75

14_684160-bindex.indd 28314_684160-bindex.indd 283 10/5/10 8:05 PM10/5/10 8:05 PM

284

INDEX

image replacement,
84–86

line height, 75–78
margins, 90–92
padding, 90–92
printing

images, 85–86
styles, 87–89

validation, 74
wrapper div, 100–103

toggling between styles, 19
tools

about, 5
Dragonfl y (for Opera),

22–26
Firebug, 6–12
IE9.js, 36–38
Internet Explorer Devel-

oper Toolbar, 17–22
menus, 18, 23
rebooting styles, 33–36
SelectORacle, 30–31
Web Developer Toolbar,

13–17
Web Inspector (Safari),

26–28
XRAY, 29–30

Tools menu
in Dragonfl y, 22–23
Internet Explorer

Developer Toolbar,
17–18, 21

in Web Developer
Toolbar, 16–17

transforms
2D, 256–259, 261–263,

265–266
coordinates X/Y in,

259–261, 263–265

matrix, 267
multiple, 266
positioning, 257, 262
scaling, 258–261

translation, shape, 261–263
transparency, quality, 186
two-column layout,

120–121

U
UA (user agent) styles, 7
unhidden submenus, 168
unit/unitless values,

76–78, 81
universal selectors,

49–50, 59
UNIX

fi le system path, 105
wildcard, 59

updating conveniences, 13
user agent styles (UA

styles), 7
useragentman.com (Web

site), 232

V
validation

about, 16
markup language

with, 32
sources of, 74
tools, 20

values
ordering

fonts, 75
transforms, 267

units/unitless, 76–78, 81

vendor prefi x, 177
vertical alignment, 94
vertical percentages, 218
video elements, 233
visibility suppression,

82–83
visually impaired users, 81,

83, 86

W
W3C validation tools, 74
w3.org

attributes, 55, 56, 58, 59
child selectors, 65
on color, 79
validation tools, 74

Web Developer Toolbar
(WDT)

alternative for, 17–22
tools, 13–17
Web site for, 13

Web Inspector (Safari),
26–28

Web sites
accessites.org, 31
alanhogan.com, 106
alistapart.com, 69, 135,

140
chrispederick.com, 13
code.google.com, 36, 232
complexspiral.com, 113
css3generator.com, 232
css3pie.com, 232
css3please.com, 232
for diagnostic style

sheet, 31
for Dragonfl y, 22, 23
for drop shadows, 251

INDEX

285

ecsstender.com, 232
evolt.org, 194
for Firebug, 6, 12
for fl oat containment,

113
for Fluid Grids, 140
getfi rebug.com, 6, 12
gradients/glrzad.com,

232
grep-style wildcard, 59
for HTML 5 patterns

and syntax, 232
JavaScript support for

older browsers, 232
jontangerine.com, 234
keithclark.co.uk, 232
mathamazement.com,

268
meyerweb.com, 31, 35,

164, 222
mozilla.org, 13
for one true layout, 135
opera.com, 22, 23
for patterns, 232
peterwilson.cc, 106
positioniseverything.net,

118, 131
for ragged fl oats, 194

remysharp.com, 233
robertnyman.com, 251
for scripting, 233
for SelectORacle, 30, 31
simplebits.com, 124
for syntax, 232
technet.microsoft .com,

106
theopalgroup.com, 30,

31
useragentman.com, 232
w3.org

attributes, 55, 56, 58,
59

child selectors, 65
on color, 79
validation tools, 74

for Web Developer Tool-
bar (WDT), 13

westciv.com, 29, 30, 232
wikipedia.org, 268
wildcards, 49, 59
zachstronaut.com, 106

WebKit, 178, 179
westciv.com (Web site), 29,

30, 232
wikipedia.org (Web site),

268
wildcards, 49, 59

Wilson, Peter (developer),
106

Word documents, links, 62
wrapper div, 100–103

X
X coordinates

fi nding, 216
in transforms, 259–261,

263–265
XHTML, 56
XRAY

Information menu, 14
tools for, 29–30

Y
Y coordinates

fi nding, 216
in transforms, 259–261,

263–265

Z
zachstronaut.com (Web

site), 106
Zip archives, links, 62

AVAILABLE
ONLINE OR

AT ALL GOOD
BOOKSHOPSA SMASHING

new Series

S
B

N
: 9

78
-0

-4
70

-6
84

15
-3

S
B

N
: 9

78
-0

-4
70

-6
66

85
-2 1-32779-074-0-879 :

N
B

S
6-35166-074-0-879 :

N
B

S

0-61486-074-0-879 :
N

B
S

7-09966-074-0-879 :
N

B
S

1-32779-074-0-879:
N

B
SS

S SS
7-09966-074-0-879:

N
BBBB

SSSS

www.wiley.com

	Smashing CSS: Professional Techniques for Modern Layout
	About the Author
	Acknowledgements
	Contents
	Introduction
	Part I: FUNDAMENTALS
	Chapter 1: TOOLS
	FIREBUG
	WEB DEVELOPER TOOLBAR
	INTERNET EXPLORER DEVELOPER TOOLBAR (OR TOOLS)
	DRAGONFLY (FOR OPERA)
	WEB INSPECTOR (SAFARI)
	XRAY
	SELECTORACLE
	DIAGNOSTIC STYLE SHEET
	REBOOT STYLES
	IE9.JS

	Chapter 2: SELECTORS
	PSEUDO WHAT?
	TARGETS WITH STYLE
	SPECIFICITY
	IMPORTANCE
	WHAT HAPPENS WHEN YOU OMIT SHORTHAND VALUE KEYWORDS
	SELECTIVELY OVERRIDING SHORTHANDS
	UNIVERSAL SELECTION
	ID VS. CLASS
	ID WITH CLASS
	MULTICLASSING
	SIMPLE ATTRIBUTE SELECTION
	ATTRIBUTE SELECTION OF CLASSES
	ID VS. ATTRIBUTE SELECTOR
	SUBSTRING ATTRIBUTE SELECTION
	MORE SUBSTRING ATTRIBUTE SELECTION
	CHILD SELECTION
	SIMULATED PARTIAL CHILD SELECTION
	SIBLING SELECTION
	GENERATING CONTENT

	Part II: ESSENTIALS
	Chapter 3: TIPS
	VALIDATE!
	ORDERING YOUR FONT VALUES
	ROLLING IN LINE-HEIGHT
	UNITLESS LINE-HEIGHT VALUES
	AVOID STYLE-LESS BORDER VALUES
	CONTROLLING BORDER APPEARANCE WITH COLOR
	SUPPRESSING ELEMENT DISPLAY
	SUPPRESSING ELEMENT VISIBILITY
	THROWING ELEMENTS OFF-SCREEN
	IMAGE REPLACEMENT
	PRINT STYLES
	DEVELOPING PRINT STYLES
	BLOCK-LEVEL LINKS
	MARGIN OR PADDING?
	OUTDENTING LISTS
	BULLETING LISTS
	BACKGROUND BULLETS
	GENERATING BULLETS
	YOU HAVE MORE CONTAINERS THAN YOU THINK
	DOCUMENT BACKGROUNDS
	SERVER-SPECIFIC CSS

	Chapter 4: LAYOUTS
	OUTLINES INSTEAD OF BORDERS
	CENTERING BLOCK BOXES
	FLOAT CONTAINMENT: OVERFLOW
	FLOAT CONTAINMENT: FLOATING
	CLEARFIXING
	ADJACENT CLEARING
	TWO SIMPLE COLUMNS
	THREE SIMPLE COLUMNS
	FAUX COLUMNS
	LIQUID BLEACH
	THE ONE TRUE LAYOUT
	THE HOLY GRAIL
	FLUID GRIDS
	EM-BASED LAYOUT
	NEGATIVE MARGINS IN FLOW
	POSITIONING WITHIN A CONTEXT
	PUSHING OUT OF THE CONTAINING BLOCK
	FIXED HEADERS AND FOOTERS

	Chapter 5: EFFECTS
	COMPLEXSPIRAL
	CSS POP-UPS
	CSS MENUS
	BOXPUNCHING
	PRE-CSS 3 ROUNDED CORNERS
	CSS 3 ROUNDED CORNERS
	CSS SPRITES
	SLIDING DOORS
	CLIPPED SLIDING DOORS
	CSS PARALLAX
	RAGGED FLOATS
	BETTER RAGGED FLOATS
	BOXING YOUR IMAGES
	CONSTRAINED IMAGES

	Part III: CUTTING EDGE
	Chapter 6: TABLES
	HEAD, BODY, FOOT
	ROW HEADERS
	COLUMN-ORIENTED STYLING
	TABLE MAPPING
	TABLE GRAPHS

	Chapter 7: THE (NEAR) FUTURE
	STYLING HTML 5
	CLASSING LIKE HTML 5
	MEDIA QUERIES
	STYLING OCCASIONAL CHILDREN
	STYLING OCCASIONAL COLUMNS
	RGB ALPHA COLOR
	HSL AND HSL ALPHA COLOR
	SHADOWY STYLES
	MULTIPLE BACKGROUNDS
	2D TRANSFORMS

	Index

