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Algorithmic Architecture or the Computer 
as a Double?
What should be the exact scope of the computer’s involve-
ment with architectural design? This question has been
present since the beginning of computer aided architec-
ture. It played, of course, a fundamental role in the first
reflections and experiments regarding a possible com-
puted or cybernetic architecture in the 1950s and 1960s.
It did not disappear with the advent of post-modernism.
The latter’s concern with the linguistic dimension of archi-
tecture and urban design and the possibilities of formal
exploration offered by the computer went hand in hand1.
It is only during the last decade, with the spectacular
development of computer graphics and the fascination
exerted by the strange forms, the blobs and others that
began to float on the designers’ screens that this ques-
tion was momentarily suspended. Now that this fascina-
tion is beginning to fade, the issue is back with all its
complexity. There is no better proof of it than Algorithmic
Architecture, since this book is primarily addressing the
problem both at a technical and at a philosophical level.

Typically, the positions regarding the role of the computer
in architectural design fall into two categories. For many
designers, the computer is just an advanced tool running
programs that enable them to produce sophisticated
forms and to control better their realization. For those
designers, although the machine does alter significantly
the nature of the architecture that is produced, it is not
necessary or even desirable to enter into the details of
its inner processes. Despite their claim to the contrary,
the greatest part of the blob architects fall into this cat-
egory. Kostas Terzidis belongs clearly to the other camp
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composed of those who think that it has become
unavoidable to enter into the black box of programming
in order to make a truly creative use of the computer. 
In this perspective, a large section of his book is devoted
to the exploration of what the mastery of scripting tech-
niques can bring to architecture.

More than these technical insights, the main interest of
Algorithmic Architecture may very well lie in the relation
it establishes between the detailed examination of the
possibilities offered by the computer and more general
interrogations, of a philosophical nature, on the design
process.

One of Terzidis’ fundamental tenets is that design is not
properly an invention, the creation of something absolutely
new. It should rather be considered as the result of an
unveiling or a rediscovery process. There is something
almost pre-Socratic, or, to take a reference closer to our
time, neoclassical, in this conception of design as a kind
of return to an existing state of things that has fallen into
oblivion. The pre-Socratic perspective would be to con-
sider after Empedocles or Parmenides that nothing comes
out of nothing and that the new is just the extant seen
from a different vantage point. Neoclassical aesthetics and
design theory starts as for it from the assumption that
the quest for beauty is about recapturing the fresh inspi-
ration that prevailed at some point towards the origin 
of art, an inspiration that accounts for the enduring value
of archetypes. Part of Terzidis’ ambition lies precisely in
rethinking some of architecture’s most fundamental
archetypes in the light provided by computation.

There is something both disturbing and stimulating in a
conception of design centered on the unveiling or the
rediscovery. The disturbance becomes even more pro-
found when Terzidis tells us that we shouldn’t consider
the computer as an extension of the mind, but rather as
a partner in the design process with fundamentally differ-
ent aptitudes and ways to reason. The computer is the
Other of the human mind, not its mirror. There, the pos-
sible points of reference are to be found rather in the first
years of computer aided architecture, when pioneers like
Nicholas Negroponte, the founder of the Massachusetts
Institute of Technology Media Lab, were presenting the
introduction of computing in the design process as a 

viii Foreword



dialogue between partners or “associates”2. However,
Terzidis’ perspective differs because of its insistence on
the radical otherness of the computer.

But is this radical otherness fundamentally different from
the estrangement from ourselves we experience day after
day in the midst of any creative process? Something
comes out from a region of our mind that we generally
don’t know much about, something that is both intrigu-
ing and secretly familiar. Kostas Terzidis is probably right
in underlining the resemblance between invention and
recognition. Without this familiarity, the new would be 
literally unthinkable. Its newness is nevertheless the prod-
uct of an interior estrangement somewhat comparable to
the distance that separates us from the computer.

At that stage, one might argue that the algorithmic 
procedures of the machine still remain fundamentally
different from the way we think. But there again, a closer
examination reveals a more ambiguous situation. For our
mind follows rules in order to avoid the excessive famil-
iarity that might otherwise defuse the originality of the
creative endeavor, and these rules are usually as constrain-
ing as the algorithmic procedures run by the computer.
In other words, the otherness that Terzidis attributes to
the machine is also present in ourselves, in the apparent
opposition between the creative impulse and the set of
rules that enable us to control it. Is this opposition real?
We know that rules can trigger imagination and that
spontaneity always obeys to some hidden principles. The
dichotomy between the spontaneous and the regulated
has more to do with a polarity than with a clear-cut 
separation between two opposite faculties. One part of
our inner self is constantly escaping regulation while the
other tends to function in an almost mechanical way.
Towards the end of the eighteenth century, the father of
the Encyclopédie, the French philosopher Denis Diderot,
was already wondering up to what point the mind is
unpredictable and to what extent it could be compared
to a machine3. Two centuries later, we are still in the
midst of this conundrum.

The genuine excitement that Kostas Terzidis’ book pro-
vokes might very well have to do with the perspectives he
offers on this fundamental question. What if the radical
other revealed by the computer was actually inside us,
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waiting for the machine to actualize it? If such was the
case the computer might very well be more like a mirror
showing us a reflection or a possible double of ourselves
than a creature from another world. One thing is sure;
architecture always appears as a compromise between
rules and their contrary. Its expressive power might very
well have to do with the secret analogy between this hybrid
status and the intimate nature of our creative process.
Ultimately, Kostas Terzidis’ Algorithmic Architecture is
about this analogy. It is not a book on computer and
architecture. It is a book on architecture.

Antoine Picon
Professor of the History of Architecture and Technology,

Graduate School of Design, Harvard University

Endnotes
1There is more generally a strong link between the perspectives
opened by computation in architecture and the emergence of 
contemporary architectural theory; for further discussion, see 
A. J. Magalhaes Rocha, Architecture Theory 1960-1980: Emergence
of a Computational Perspective, doctoral dissertation submitted to
the MIT Department of Architecture, Cambridge, Massachusetts,
2004.

2See for instance N. Negroponte, “Towards a Humanism through
Machines”, in Architectural Design, September 1969, pp. 511-512.

3Cf. J. Proust, Diderot et l’Encyclopédie, Paris, Armand Colin, 1962.
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Computation is a term that differs from, but is often confused
with, computerization. While computation is the procedure of
calculating, i.e. determining something by mathematical or
logical methods, computerization is the act of entering, pro-
cessing, or storing information in a computer or a computer
systemi. Computerization is about automation, mechaniza-
tion, digitization, and conversion. Generally, it involves the
digitization of entities or processes that are preconceived,
predetermined, and well defined. In contrast, computation is
about the exploration of indeterminate, vague, unclear, and
often ill-defined processes; because of its exploratory nature,
computation aims at emulating or extending the human
intellect. It is about rationalization, reasoning, logic, algo-
rithm, deduction, induction, extrapolation, exploration, and
estimation. In its manifold implications, it involves problem
solving, mental structures, cognition, simulation, and rule-
based intelligence, to name a few.

The dominant mode of utilizing computers in architecture
today is that of computerization; entities or processes that
are already conceptualized in the designer’s mind are
entered, manipulated, or stored on a computer system. In
contrast, computation or computing, as a computer-based
design tool, is generally limited. The problem with this sit-
uation is that designers do not take advantage of the com-
putational power of the computer. Instead some venture
into manipulations or criticisms of computer models as if
they were products of computation. While research and
development of software involves extensive computational
techniques, mouse-based manipulations of 3D computer
models are not necessarily acts of computation. For
instance, it appears, from the current discourse, that
mouse-based manipulations of control points on NURBS-
based surfaces are considered by some theorists to be
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acts of computingii. While the mathematical concept and
software implementation of NURBS as surfaces is a prod-
uct of applied numerical computation, the rearrangement
of their control points through commercial software is
simply an affine transformation, i.e. a translation.

Presently, an alternative choice is being formulated that
may escape these dialectically opposed strategies: algo-
rithmic architecture. It involves the designation of software
programs to generate space and form from the rule-based
logic inherent in architectural programs, typologies, build-
ing code, and language itself. Instead of direct program-
ming, the codification of design intention using scripting
languages available in 3D packages (i.e. Maya Embedded
Language (MEL), 3dMaxScript, and FormZ) can build 
consistency, structure, coherency, traceability, and intelli-
gence into computerized 3D form. By using scripting 
languages designers can go beyond the mouse, tran-
scending the factory-set limitations of current 3D software.
Algorithmic design does not eradicate differences but
incorporates both computational complexity and creative
use of computers. For architects, algorithmic design
enables the role of the designer to shift from “architecture
programming” to “programming architecture.” Rather than
investing in arrested conflicts, computational terms might
be better exploited by this alternative choice. For the first
time perhaps, architectural design might be aligned with
neither formalism nor rationalism but with intelligent form
and traceable creativity.

Contrary to common belief, the word algorithm is not
Greekiii. Its origin is Arabic, based on a concept attributed to
an 8th century Persian mathematician named Al-Khwarizmi.
An algorithm is a procedure for addressing a problem in a
finite number of steps using logical if-then-else operations.
In contrast, the word allo is indeed Greek and is the root of
the word else, alter, and other which means that we do
not know where it came from, foreign, strange, bizarre, odd,
or perhaps, best, alien. To stretch even further the word
allo can be associated with the a-logical. Yet, just because
something is referred to as illogical it does not mean that
it may not have its own internal logic, foreign though and
perhaps incomprehensible for those outside of it. In a
metaphorical sense, allo reminds us of an anecdote of a
man sitting on one side of a river and asking somebody
on the other side “how do I get to the other side?” And the
other person responds “you are on the other side.”
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As the current theoretical discourse in architecture seems
to elude around digital phenomena, a crucial critical dis-
cussion is emerging as a means to address, understand,
clarify, and assess the elusive nature of this discourse.
Issues related to virtuality, ephemerality, continuity, mate-
riality, or ubiquitousness, while originally invented to explain
digital or computational phenomena, are utilized today in
the context of a traditionally still material-based architec-
ture. What is the nature of their use? Is materiality subject
to abstract digital concepts? What is (or is not) important?

The purpose of this book is to foster the dialogue about
digital design, media, and technology and to challenge
the basis of contemporary digital design arguments. The
intention is to identify, distinguish, and offer a critique 
for current trends, tendencies, and movements in digital
culture. Through diverse views it intends to develop a
direction of thought into a proposed framework to sustain
discourse that will challenge what is rapidly becoming
the mainstream.

The structure of this book does not follow a traditional
theory-based philosophical book format. It is not a com-
puter programming/language tutorial book either. Even
though there is a series of design work illustrated, it is not
a design/graphics art book per se. Following the tradition
of architecture as a conglomeration of various design
fields, engineering, theory, art, and recently computation,
the challenge of this book is to present a concept that, like
architecture, is a unifying theme for many diverse disci-
plines. An algorithm is not only a computer implementa-
tion, a series of lines of code in a program, or a language,
it is also a theoretical construct with deep philosophical,
social, design, and artistic repercussions. Consequently,
the book presents many, various, and often seemingly dis-
parate points of view that lead to the establishment of one
common theme which is the title of the book.

The first chapter is a trace back to the origin of design as
a conceptual activity. It is based on an alternative defini-
tion of design, that of schedio, a Greek word that instead
of pointing towards the future to where design is supposed
to be materialized, it strangely points backwards in time
where primitive archetypes are awaiting to be discovered.
This reversion serves the purpose of defending a pre-
Socratic philosophical position that claims that “nothing
comes out of nothing and nothing disappears into nothing,”
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indirectly negating the existence of novelty, a concept upon
which modern design is based. In this chapter a critical
standpoint is developed that seeks to assess the value of
origin, archetype, and memory during the conceptual phase
of design.

The second chapter seeks to identify, define, assess, and
criticize a strange concept that emerges in computational
processes, that of otherness. Introduced originally as an
inversion of the traditional inference mechanism “if-then,”
this mechanism uses the alternative “else” as its point of
departure. In doing so, it seeks to define the inconceiv-
able, impossible, or unknown, concepts that by definition
are out of the sphere of human understanding. Similarly,
the notions of randomness, complexity, or infinity, arise as
discrete quantifiable algorithmic processes that can be
codified, implemented, and tested using computers. In
this chapter, a conceptual framework is sought as the
means to address design issues.

The third chapter is a historical and critical perspective
on the recently emerging area of algorithms in architec-
ture. It is differentiated from CAD or computer graphics
in the sense that algorithmic processes are not neces-
sarily based on computers. The questions that arise in this
chapter are mainly associated with a historical overview
and criticism of successes, pitfalls, and misunderstandings
of the use of computation in design and architecture.
Another interesting theme in this chapter is the compar-
ative analysis between tool makers and tool users in the
field of design.

Chapter 4 is a brief tutorial that introduces, explains, and
articulates the use of scripting in architectural design. It
starts with the basics of scripting, i.e. variables, arith-
metic and logical operations, data structures, attributes,
and procedures, and then progresses into more complex
algorithms that have a high potential value in design:
Boolean operations, stochastic search, fractals, cellular
automata, and morphing. For each algorithm code, expla-
nations, and examples are given. The purpose of this
chapter is to show, clarify, and demystify the creation of
algorithms and to provide some core examples that can
be used as paradigms in different contexts.

The next two chapters, 5 and 6, are both illustrations of
architectural design work that use algorithms, some of
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which were introduced in Chapter 4. The themes
addressed are hybrid, synergistic, and poetic because
the purpose here is to show a combined logic between
humans and computers.

Chapter 5 is titled Amphiboly and it seeks to illustrate
notions of ambiguity, ambivalence, and equivocation using
computational schemes. The purpose is to investigate the
possible ways that certain unique human characteristics
can be expressed through algorithmic synthesis of forms.
Three projects are presented: a parasite structure, a mor-
phed high-rise, and a Boolean concert hall.

Chapter 6 is titled Periplocus, a Greek word that denotes
an artificial complexity that is not based on quantitative
means. The purpose is to show how intricate structures
can emerge from simple algorithms whose beauty lies
not in the complexity of the output or the number of lines
in the code but rather in the articulation of a few ele-
ments in intricate ways. Three projects are presented: a
subtle repetitive pattern for a house of worship, a sto-
chastic-based residential high-rise, and a library gener-
ated out of its program.

Finally, the last chapter is a stream of thoughts, reac-
tions, and criticisms on the ideologies developed in this
volume. The discussion is presented in the format of an
online multi-logue between the author and students of
architecture, design, and media arts. A series of interest-
ing thoughts emerge in the course of the discussion ulti-
mately establishing a collective critical framework and
challenging not only the author’s positions but also the
current mainstream discourse.

Endnotes
iIn its colloquial sense, computerization refers to the process of
furnishing with a computer or a computer system.

iiSee Cuff, D., “Digital pedagogy: an essay: one educator’s
thoughts on design software’s profound effects on design thinking
and teaching,” Architectural Record, September 2001. In this art-
icle, Cuff considers that computing is “one of the most important
transformations of the contemporary profession” and that today
“computing has become a populist skill.”

iiiIf it were Greek it would have meant pain (algos). Algo-rithm
would simply sound like the “rhythm of pain.”





Design is a term that differs from but is often confused
with planning. While planning is the act of devising a
scheme, program, or method worked out beforehand for
the accomplishment of an objective, design is a conceptual
activity of formulating an idea intended to be expressed in
a visible form or carried into action. Design is about con-
ceptualization, imagination, and interpretation. In contrast,
planning is about realization, organization, and execution.
Rather than indicating a course of action that is specific
for the accomplishment of a task, design is a vague,
ambiguous, and indefinite process of genesis, emergence,
or formation of something to be executed but whose start-
ing point, origin, or process is often uncertain. Design is
about the spark of an idea and the formation of a mental
image. It is about the primordial stage of capturing, con-
ceiving, and outlining the main features of a plan and, as
such, it always precedes the planning stage.

Etymologically, the verb design is derived from the prefix
de- and the Latin verb signare, which means to mark, mark
out, or sign. The prefix de- is used not in the derogatory
sense of opposition or reversal but in the constructive
sense of derivation, deduction, or inference. In that con-
text, the word design is about the derivation of some-
thing that suggests the presence or existence of a fact,
condition, or quality. In Greek, the word design is
σχε.διο(pron. schedio), which is derived from the root
σχεδο.ν (pron. schedon), which means nearly, almost,
about, or approximately. Thus, by its Greek definition,
design is about incompleteness, indefiniteness, or imper-
fection, yet it is also about likelihood, expectation, or
anticipation. In its largest sense, design signifies not only
the vague, intangible, or ambiguous, but also the strive
to capture the elusive1.

1 The strive to capture the elusive



Traveling further back into the origin of the Greek word
σχεδο.ν (pron. schedon) one may find that it is derived
from the word ε.σχειν (pron. eschein)2 which is the past
tense of the word ε.χω (pron. echo) which in English means
to have, hold, or possess. Translating the etymological
context into English, it can be said that design is about
something we once had, but have no longer. The past
tense in the Greek language is referred to as indefinite
(αο.ριστος) and, as such, it is about an event that did
occur at an unspecified time in the past, hence it could
have happened any time between a fraction of a second
and years ago. So, according to the Greeks, design is
linked indirectly to a loss of possession and a search into
an oblivious state of memory. This linguistic connection
reveals an antithetical attitude towards design that, in
the Western culture at least, is about stepping into the
future, a search for new entities, processes, and forms,
frequently expressed by the terms novelty or innovation.
Before adventuring any further into this Greek paradox, it
may be useful to examine the notion of innovation and
novelty within the context of design, and specifically archi-
tectural design.

Innovation is a term amply used in association with the
process or products of design. It is defined as “the act of
beginning or introducing something for, or as if for, the first
time.” Surprisingly, there is something strange about the
definition. It appears to be a semantic twist within the
definition of innovation itself. It involves the conjugation
“as if” which means literally “in the same way that it would
be if” asserting the possibility of an equivalence between
existence and the perception of existence. While the
adjective “for” is a definite indicator that connects an
object, aim, or purpose to an action or activity, the con-
jugation “as if” involves a hypothetical conjecture posed
over the truthfulness of the statement. Such a definition
is, to say the least, paradoxical, contradictory, and prob-
lematic in the sense that while the definition itself is 
supposed to lead towards a definite assertion, it involves
also the possibility of negating the same assertion; if the
assertion is that innovation is indeed about the first 
time then it is contradictory also to assume that such a
uniqueness can also be perceived as such, because then
it implies that something that may not be first may 
also be assumed, presented, or perceived as first, which
is an apparent contradiction. In other words, the definition
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of innovation involves a possibility of a deliberate, 
unintentional, or accidental flaw: if something is perceived
as such then it must be such. This syllogism brings up an
important hypothesis about perception: that it is possible
that something can be constructed to appear as such 
or that an audience may be conditioned to perceive
something as such. In either case, the definition of 
innovation seems to suffer from the lack of two of the
most fundamental principles of every definition: clarity and
truthfulness.

Because of its pioneering nature, innovation is frequently
associated with originality. Originality is defined as the
quality or state of preceding all others in time. Innovation
is also defined as the act of introducing something new,
i.e. something that comes into existence for the first time.
However, unlike innovation, originality is about a point of
departure, a source of knowledge, an archetype, a pri-
mordial mark at which something comes into existence,
an ancestral origin whose genetic material transcends
throughout the following generations. Unlike innovation,
the importance of originality is to be “first in order” and
this quality is not a matter of perception but rather a
matter of necessity. While the intention of both processes
may be similar, their logical directions are antithetical. If
innovation leads towards one direction, then the search
for originality leads towards the opposite. Innovation may
be seen as a process of adding one more leaf to the tree,
whereas originality can be seen as the process of adding
one more root.

In tracing back to the origin one is forced to travel from
the leaves backwards towards the roots. This process
involves at least two modes of thought: reduction and
reversion. While the notion of reduction can be associ-
ated with decrement, lessening, or diminishment, it can
also be associated with abstraction, simplification, and
idealization. Similarly, reversion is about regression, set-
back, or recall, yet it can also be about return, reassess-
ment, and reconsideration. The reason for this is that the
prefix re- is used not in the negative sense of backwards
or regress, but rather in the positive sense of again or
anew. Interestingly, the term innovation is commonly
associated with progress, advancement, growth, and
expansion, terms that ironically are also considered to be
the opposites of reduction and reversion.

The Strive to Capture the Elusive 3



In architectural design, the notion of innovation has been
a founding, axiomatic, and guiding principle. Within the
modernist tradition of novelty, the search for innovation
may have become a misguiding rather than a guiding
factor in design. While the shock of the new may have
provided in the early 20th century an escape from the
traditions of the past, its constant use in the world of
fashion today and the everlasting struggle to introduce
something new for, or as if for, the first time defies its
original purpose. Novelty is a primordial fascination of
the human mind, yet its perception seems to be highly
illusory, conditioned, and influenced. As Wes Jones points
out, “we believe that newer is better. Not because it is 
a fact in each individual case, but because it is an
inevitability in general.” While many theorists are con-
cerned with the value of newness, it may also be useful
to explore the question of “what is new?” Just because
something appears to be new or is labeled as new, it does
not mean that it is essentially new. Like a magician’s
show, the appearance or disappearance of objects in a
scene generates a primordial fascination from the view-
point of the audience; yet not from the magician’s 
viewpoint3. Novelty requires more than just appearance.
As in the case of innovation versus originality, novelty is
usually about the striking, different, or unusual but it can
also be about the first, seminal, or original. A difference
in appearance does not necessarily justify novelty. If
something is seen from a different angle, is rotated upside
down, or a piece is added that does not mean that the
result is new, yet it may appear to be as if new. In con-
trast, an original concept involves newness in a productive,
seminal, and influential way.

As mentioned earlier, the notion of design, according to
the Greeks, is associated with the past instead of the
future. Such an assumption appears almost antithetical
to the predominant notion of design as a process that
leads towards the derivation of novelty. How can the past
be of such significant importance, especially as a recollec-
tion of past lost thoughts? If, according to the Greeks,
design is about something that we had but do not have
any more, hence it is lost somewhere in the past, what
is its connection to something that is about to become
the future, i.e. a novelty? Why would they bring up such
an unexpected and obscure relationship? Is it possible
that novelty in the sense that we understand it today,
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according to the Greeks, does not exist per se and any-
thing new is just an illusion?

If we look deeper into pre-Socratic philosophers such as
Xenophanes, Parmenides, or Zeno, one of the common
agreements between them was the assumption that
nothing comes out of nothing and nothing disappears
into nothing; nothing can just pop up or vanishes without
a trace. Such an assumption is very important to under-
stand their reluctance to conceive, accept, or understand
the concept of novelty in its modern sense. If everything
is indestructible then change is nothing but a transfor-
mation from one state into another; the appearance or
disappearance of parts is only phenomenal; nothing is
added or subtracted. Therefore, if something emerges,
appears, or claims to be new, then it must be nothing
but an illusion, because if it is not, then it would contra-
dict the initial premise of preservation. Such logic, while it
may appear to be simplistic or absolute, is also very pow-
erful because it does not allow thoughts to be affected
by sensory phenomena. What is most significant about
this logic is that it sets a paradigm in which knowledge
about reality is based upon reason and therefore strives
to be truthful, while human opinion of appearance is based
upon our senses, which are not only unreliable but also
misleading4. According to this logic, design as a mental
process of creation can be seen as bounded by the limits
of preservation: any newly conceived thought, process,
or form is nothing but a reordering of previous ones.
However, if we consider this possibility, then we are con-
fronted with the problem of origin: as every “new” idea
depends on its previous one, then there must be an origin,
a starting point, a root or roots out of which everything
spurs, tangles, and multiplies offering glimpses of what
appears occasionally to be “new.” Hence, we are led to
the conclusion that the origin, like its material counter-
part, must be fixed, eternal, and indestructible. And since
novelty involves the negation of existence (i.e. something
that did not exist before), novelty is impossible. It is only
a sensory illusion5.

In English, the word existence is derived from the prefix
ex- (i.e. forth) and the verb sistere, which in Latin means
to cause to stand up or come to a stop. Thus, etymolog-
ically the meaning of the word existence can be associ-
ated with the action of appearance or arising. In Greek,
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the word existence is υ. παρξη which is derived from the
prefix υπο (hypo-), i.e. under, below, or beneath, and the
noun αρχη. (arche), i.e. beginning, start, or origin6. Thus,
similarly to design, existence is not only about the distant
past, the beginning of things but also even further, as it
involves a step beyond, below, or beneath the starting
point. But how is that possible? How can something 
lay beyond the beginning? Wouldn’t that result in a new
beginning which then should be displaced again ad infini-
tum? Such a train of thoughts may appear paradoxical
because it is interpreted as a sequential linkage in the con-
text of a beginning and an ending point. As established ear-
lier, in the pre-Socratic spirit, the notion of a beginning must
be rejected (as well as that of an end). Things exist before
their phenomenal starting point and therefore the use of the
prefix hypo- declares the framework, structure, or platform
out of which starting points can be observed. Similar to a
river, its origin is not the spring itself but rather lies far
beyond, beneath, or below its phenomenal emergence.

The verb to become is used in English to denote the
action of coming into existence, emerging, or appearing.
In language, as opposed to formal logic, existence is a
predicate rather than a quantifier, and the passage from
copulative to existential can be misleading. The action of
coming-to-be or becoming does not necessarily have to
be associated with creation, beginning, or emergence, but
rather may denote a process of derivation, transformation,
or transition from one state into another. Transition is
indeed an act of becoming except its connotation is prob-
lematic because as Evans points out “whatever is subject
to the transformation must already be complete in all its
parts”7 a notion antithetical to the traditional view of design
as an accumulative process. For example, the subtraction
of one point from a square may result in a triangle that, in
turn, can be perceived as an action in which “a square
became a triangle.” In this case, the action of becoming
results from an operation of subtraction. Furthermore,
the action of subtraction itself is also an action of
becoming where “a point became nothing.” Such an
action involves the existential operation of instant becom-
ing. The pre-Socratic philosophers rejected such a notion
as absurd, because nothing can just come into being or
suddenly cease to exist. As they rejected traditional
explanations for the phenomena they saw around them
in favor of more rational explanations, they also set the

6 Algorithmic Architecture



limits of human imagination. According to Parmenides, if
something came into being, it is not (ετ. γα. ρ εγε.ντ′, ουκ
ε.στιν), i.e. something that pops out of nothing, cannot
really exist8. Not surprisingly, even today, there is no word
in the English or, for that matter, Greek language that can
denote the instant becoming of an object out of nothing.
While the verb to become is the closest one, it implies a
moment of time in order to originate. The same is true for
the terms emergence, genesis, birth, rise, derivation, start,
or beginning where time is always involved9. Similarly, the
word appearance cannot be equivalent to the word
become because it involves the subjective interpretation of
the existence of an object. Appearance is about the visual
interpretation of the existence of something that is coming
into sight. Surprisingly, the most common word used by
people to denote sudden appearance or disappearance is
the word magic, but this also carries an illusionary, unreal,
perhaps deceptive connotation. A connotation associated
with the belief that it is the result of a supernatural event.

It can be argued that coolness, fashion, style, the
unapologetically fashionable, desirable, and ephemeral10,
are not about the new but instead are deceptive obfus-
cating methods of establishing an authority on art, archi-
tecture, and design without offering the means to truly
lead towards novelty. In contrast, theories, experiments,
or technologies that point out the potential limits of the
human mind, seek to identify novelty as a quality that
exists beyond the limits of the human mind. If there is nov-
elty, in the existential sense, it must be sought beyond,
below, or beneath its phenomenal appearances as an
already existing entity that is out of human knowledge.

Novelty therefore must be the result of discovery. While
knowledge about the lack of existence is impossible, the
lack of knowledge about existence is possible. In other
words, the discovery of the existence of something is
indeed new, as it pertains to the body of knowledge that
it adds to. It is about the existence of something that was,
until it was discovered, out of the set of human knowledge.
Unlike mere compositional rearrangement of existing ele-
ments into seemingly new entities, a discovery is a revela-
tion of something that existed before but was not known.

Discovery is the act of encountering, for the first time,
something that already existed. In contrast, invention is
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defined as the act of causing something to exist by the
use of ingenuity or imagination; it is an artificial human
creation. Both discovery and invention are about the
origin of ideas and their existence in the context of human
understanding. These two intellectual mechanisms result
from a logic, which tends to argue whether the existence
of certain ideas, notions, or processes is one of the fol-
lowing: either a human creation or simply a glimpse of an
already existing universe regardless of the presence of
humans. The most paradigmatic example of this polemic
is that of geometry itself: the existence of geometry can
be regarded as either a descriptive revelation of proper-
ties, measurements, and relationships of existing forms
or as an arbitrary, postulate-based mental structure that
exists only in the human mind. For instance, Euclidean
geometry was developed originally to measure distances
on the surface of earth and yet, in Euclidean geometry,
platonic primitive shapes, such as squares, circles, or tri-
angles, do not exist per se in nature yet they represent
idealized approximations of natural objects. Likewise,
architecture can be regarded as either a simulation of
the laws and structure of nature or as a world of fantasy
and imagination11.

The notion of an origin is important when discussing the
process of design. Because of its investigative nature
design is always associated with a starting point, a pivot,
out of which style, fashion, or mannerisms result. That
starting point is important for at least two reasons: first,
and most obvious, it serves as a pivotal point of refer-
ence that identifies, categorizes, and determines a wide
range of similar products. Second, and less obvious, is
the fact that an origin belongs to the distant past and as
such it involves the reminiscence of something that was
lost but whose consequences are still present. While
memory is usually about mundane, common, and ordinary
past events, it is also about that which is lost in the 
distant past, the primordial, archaic, and primitive. The
origin, as such, is elusive, evasive, and indefinite yet it is
always present in the form of a sign that points out at the
increasingly distant past. While the struggle to seek for
the latest new new thing may be fascinating, seductive,
or thrilling, it is only because it builds upon a primordial
human weakness, that of the vulnerable nature of the
senses. In contrast, the search for original, universal,
and ideal forms of existence which serve as prototypes,
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archetypes, or models is a glimpse into an already existing
world whose rules adhere to entirely different principles of
those that govern the world of senses.

Thus, in searching for the origin one is challenged to
seek the basic, archaic, and primitive qualities of the first
encounter. The process of recollection is a search for the
truth, whereas the act of concealing will eventually lead
to false assumptions12. The search for truth leads to facts
that will be remembered for a long time while falsity leads
to facts that, while impressive at the moment, will pass
into oblivion. Memory is an associative mechanism for
reproducing past experiences and in its primitive neural
level it is governed by logical operations. Yet, while the
primitive connections that reproduce a past event may be
logical, the higher level entities that are to be remembered
are not necessarily so.

Memory relies on a concept called feedback, that is, the
output of something being fed back into itself as input.
The minimal definition of a feedback involves at least two
consecutive moments of time as a measure of comparison
is established so that an event can be locked and therefore
be “remembered.” In electronics, the basic element for
storing binary information is termed a flip-flop. It is com-
posed of two cross-coupled NOR gates, as shown in
Figure 1.1. If R and S are opposites of one another, then
Qa follows S and Qb is the inverse of Qa. However, if
both R and S are switched to 0 simultaneously, then the
circuit will return what was previously presented on R and
S. Hence this simple logical circuit constitutes a memory
element, or a flip-flop that locks or “remembers” which of
the two inputs S and R was most recently equal to one13.
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Time is therefore “captured” by reversing its order so that an
event can be revisited. The configuration of a memory unit
can be illustrated as a geometrical relationship where two
parallel lines are connected by establishing a cross-coupled
zigzag path. This simple geometrical relationship reveals a
strange paradox: while “before” always knows what comes
after, “after” never knows what lies before it. In other words,
in order to know what will happen, one needs to be where
nobody can go, i.e. in the future. However, future is relative
to where the past starts. If the future of one observer is
observed from the past of another observer, then the past
of the first observer becomes the future of the second. Time
therefore can be reversed momentarily to collect fragments
of time that are called memories.

10 Algorithmic Architecture

S R Qa Qb 
 
0 0 0/1 1/0 
0 1 0  1 
1 0 1 0 
1 1 0 0 
  

1.2
Truth table
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1.3
Feedback (below) and a cross-coupled zigzag path (above)

Symbolically, according to the Greeks, it was Chronos
(Time) who ruled first and what was produced, the children
of Time, were devoured by time. It was only when Time
was conquered and an origin was set to its passing. That
origin, the origin of human thinking, was established out
of the emergence of two newly acquired fundamental
abilities: that of memory (attributed to Epimetheus) and
that of prediction (attributed to Prometheus). As a conse-
quence, it was the realization of the inevitability of death
that initiated history, i.e. the preservation of memory and



the explanation of time as a passing phenomenon. The
ability to make logical syllogisms, i.e. to see the connection
between the notions of before and after is one of the
main characteristics that distinguish intellectually humans
from animals. Without logic there is no ability to foresee
events and therefore make sense out of time. One moment
has meaning only in its relation to other moments: other-
wise they are just fragments deprived of meaning if they
are not related to other fragments. Historically, as the
distinction between the emotional and logical side of the
primitive human mind started to become clearer, humans
started to differentiate their nature from that of animals.
Hybrid creatures that exist in various mythologies such as
the Minotaur, Sphinx, Centaur, or Medusa, represent a
symbolic struggle to identify, differentiate, and demarcate
human nature from that of animals establishing its supe-
riority through slaughter. George Bataille in his work Le
Labyrinthe offers a deeply existential interpretation of the
diacritical couple man/animal and the desire to set free
man’s animality. According to Hollier’s interpretation, 
in Lascaux’s caves Bataille sees as the origin of painting
the desire of man to represent his triumph over the animal
and not as a Narcissisian pictorial urge14. Similarly, in
Aesthetics, Hegel interprets Oedipus’ answer to Sphinx’s
riddle as man’s answer that eliminates any trace of animal-
ity, an answer that makes “know thyself” the unique and
differentiating principle that identifies the human species.
Parmenides’ distinction between truth and opinion is both
evangelism and warning as it sets a departing point away
from the animal logic and identifies a new path of truth but
at the same time warns that this newly discovered world will
be hunted by the other logic it leaves behind.

The primitive, eternal, and universal nature of archetypes
serves not only as a point of departure but also as a point
of reference. Aldo Rossi refers to this nature as archaic,
unexpressed, and analogical15. Yet, he also made a dis-
tinction between history and collective memory. As the
relationship between form and function erodes over time
there is a disjunction in meaning that results in a twist in
the flow of history: where history ends, memory begins15.
The form empty of meaning engulfs its own individuality
and stands alone, away, orphaned, and rootless. Yet, it is
then that remembrance becomes the only way back.
Ironically, souvenir is about the act of remembering and
yet, it is only by forgetting that one can see again things
as they really are; the act of forgetting is not a submersion
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into oblivion but rather the erasure of false connections
and the return to the umbilical origin.

Endnotes
1Precisely, the root of σχεδο.ν (pron. schedon) is derived from
ε.σχειν (pron. eschein), which is the past tense of the verb ε.χω
(pron. eho), that is, to have. Therefore, design literally is about the
reminiscence of a past possession at an indefinite state and at an
uncertain time. Similarly, the word scheme, from the Greek σχη.µα,
means shape and is also derived from the root σχεδο.ν.

2εσχειν (pron. eschein) is also the root of the English word scheme.

3Similarly, in the game of peek-a-boo a baby is mysteriously fas-
cinated by an appearing/disappearing face.

4The Socratic analogy to shadows in a cave illustrates the illusion-
prone nature of the senses and the inability to distinguish reality
(light) from its representation (shadow). The feeling of sensory illu-
sion is so comfortable that attempts to reveal its deceptive nature
is met with fierce resistance (Republic, book VII). While in Plato’s
dialogue Parmenides there is a clear distinction between the
Socratic theory of ideas and Parmenides’ existential philosophy,
both are in agreement on the deceptive nature of the senses.

5To paraphrase a paradox by Zeno, a student of Parmenides, 
it can be argued that novelty resembles an arrow moving forward in
time and as a moving arrow either it is where it is or it is 
where it is not. If it is where it is, then it must be standing still, 
and if it is where it is not, then it can’t be there; thus, it cannot change
position. Of course, the paradox is just a symbolism of the inability to
achieve something out of nothing, i.e. to create something new.

6Alternative versions of the word υ. παρξη (i.e. existence) in Greek
are υπο.σταση which is equivalent to ex-sistere and τοωντι, which
literally means, this which is. .Ον (pron. on), which is the root of the
word ontology, is the present participle of the verb ειµι. (i.e. I am).

7See Evans, R., “Not to be used for wrapping purposes”, AA Files,
vol. 10, 1985, p. 70. In this article Evans makes an elegant distinc-
tion between design as an accumulative process and transforma-
tion as a different type of design where only relations alter.

8Along the line of pre-Socratic thought, the prefixes a-, un- or in-,
when used in the sense of negation, opposition, or contrast to
reality, are absurd, confusing, and pointless. Either something exists
or it does not. The preposterousness that is inherent in the negation
of existence is very apparent in two linguistic constructions namely
the words unknown and unreal. Both are terms that while they
exist as words they are both preposterous.

9Beginnings and endings represents change and transitions such
as the progression of past to future, of one condition to another,
of one vision to another, and of one universe to another. New or
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old do not have existence of their own but rather are seen as tran-
sitions from one state to another.

10Amongst other theorists, Lavin claims that contemporary archi-
tecture should seek for ephemeral qualities that will give modernity
a fashionable "new look." She praises superficial qualities such as
lamination, decoration, or coloration to be catalysts that will signify
the contemporary; in her words “better now than forever”. See
Lavin S. “In a Contemporary Mood” in Hadid Z and P. Schumacher
(eds.) Latent Utopias Wien: Springer-Verlag, 2002, pp. 46-7.

11Perault, the architect of the peristyle of the Louvre, argued that
architecture is a fantastic art of pure invention. He asserted that archi-
tecture really exists in the mind of the designer and that there is no
connection to the natural world. In addition, architecture as an imag-
inative art, obeys its own rules which are internal and personal to each
designer, and that is why most creators are vaguely aware of the rules
of nature and yet produce excellent pieces of art. A similar point is also
argued by Giovanni Battista Vico. In his work The New Science (1744),
Vico argues that one can know only by imagining. The twisting of lan-
guage and meaning can lead one to discover new worlds of fantasy.
He argued that one can know only what one makes. Only God can
understand nature, because it is his creation. Humans, on the other
hand, can understand civilization, because they made it. The world of
civil society has certainly been made by men, and its principles are
therefore to be found within the modification of our own human mind.

12In Greek the word false is λα. θος(pron. lathos) which is derived from
the word λη.θη which means oblivion. In contrast, the word truth is
αλη.θεια (pron. aletheia) which is derived from the negating prefix a-
and the word λη.θη, therefore denoting the negation to forget. Thus,
the connection is that truth is unforgettable and falsity is oblivious; or
rather that truth leads to facts that will be remembered for a long
time while falsity leads to facts that, while impressive at the moment,
will pass into oblivion. The word λη.θη is translated by Heidegger as
concealment therefore reinterpreting the act of forgetting as one
“sunk away into concealedness.” See Heidegger, M., Parmenides,
Bloomington: Indiana University Press, 1992, p. 71.

13See Hamacher, C., Vranesic, Z., and Zaky, S., Computer
Organization. New York: McGraw-Hill, 1984, pp. 520–521.

14See Bataille, G., Visions of Excess: Selected Writings, 1927–1939,
A. Stoekl (ed.). Minneapolis: University of Minnesota Press, 1985,
pp. 171–177. See also Hollier, D., Against Architecture: The Writings
of Georges Bataille. Cambridge: MIT Press, 1989, pp. 57–73.

15See Rossi, A., “An Analogical Architecture”. Architecture and
Urbanism 56 (May 1976). Also in Nesbitt, K. (ed.), Theorizing a
New Agenda for Architecture. New York: Princeton Architectural
Press, 1996, pp. 348–352.

16See Rossi, A., The Architecture of the City. Cambridge: MIT
Press, 1984, p. 7.
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An algorithm is a process of addressing a problem in a
finite number of steps. It is an articulation of either a
strategic plan for solving a known problem or a stochastic
search towards possible solutions to a partially known
problem. In doing so, it serves as a codification of the
problem through a series of finite, consistent, and rational
steps. While most algorithms are designed with a specific
solution in mind to a problem, there are some problems
whose solution is unknown, vague, or ill-defined. In the
latter case, algorithms become the means for exploring
possible paths that may lead to potential solutions.

Theoretically, as long as a problem can be defined in logi-
cal terms, a solution may be produced that will address the
problem’s demands. An algorithm is a linguistic expres-
sion of the problem and as such it is composed of lin-
guistic elements and operations arranged into spelling,
and grammatically and syntactically correct statements.
The linguistic articulation serves the purpose not only to
describe the problem’s steps but also to communicate
the solution to another agent for further processing. In the
world of computers, that agent is the computer itself. An
algorithm can be seen as a mediator between the human
mind and the computer’s processing power. This ability of
an algorithm to serve as a translator can be interpreted
as bi-directional: either as a means of dictating to the com-
puter how to go about solving the problem, or as a reflec-
tion of a human thought into the form of an algorithm. The
latter one will be addressed in more detail later in this
chapter.

Traditionally, algorithms were used as mathematical or
logical mechanisms for resolving practical problems.
With the invention of the computer, algorithms became
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frameworks for implementing problems to be carried out
by computers. While the connotation associated with the
action of giving instructions, commands, or directions 
is subconsciously assumed to be aimed at a sentient
worker, the computer, despite its once human identity, is
not a human being and therefore should not be treated
as such. (Perhaps it would be more accurate if a new
name was given that would reflect more accurately its
true potential, such as portal, transverser, or, hyperion1.)
By liberating the user of a computer from material con-
cerns associated with labor, skill, or complexity or from
emotional factors such as compassion, fatigue, or boredom
computers can be utilized as tireless vehicles that allow
humans to realize, overcome, and ultimately surpass
their own physical and mental limitations. The significance
of this liberation lies not that much in the amount of work
that can be accomplished but rather in the fact that the
human mind is in a position to invent devices that will
help it exceed its own limitations. Furthermore, through
such inventions such as the computer a world is encoun-
tered, that of applied computation, which, while intellectual
in nature, abides to principles, mechanisms, and perform-
ances that lie beyond the realm of the human mind.

An algorithm is a set of instructions given by a human to
be performed by a computer. Therefore, an algorithm can
describe either the way a problem is to be addressed as if
it would be resolved by a human or the way it should be
addressed to be understood by a computer (the notion
of “understanding” here refers to the capacity the com-
puter has to process information given by a human and
not to its conscious interpretation of that information). 

In taking the first case, an algorithm becomes a ration-
alized version of human thinking. As such it may be char-
acterized as being precise, definite, and logical, but at
the same time may also lack certain unique qualities 
of human expression such as vagueness, ambiguity, or
ambivalence. While this may be true as far as the linguistic
expression is concerned, it is not necessarily true for the
products of the language. For instance, one can use
unambiguous words to articulate an ambiguous state-
ment, i.e. “the man saw the monkeys in his pyjamas.” 
In other words, the explicit nature of the statements that
compose an algorithm do not necessarily also reflect the
explicit nature of the output. Likewise, precise platonic
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geometrical shapes can be combined algorithmically to
produce quite ambiguous geometrical forms. Just because
the language elements or even the syntax is rational,
it does not mean that the products will also follow the
same trend i.e., to be rational.

In the second case, an algorithm is seen as a linguistic
expression fitted to the needs of the computer. As such
it becomes an idiomatic language of conformity or adap-
tation to an alien reasoning. The word alien is used here
not as a means of intimidation but rather as an indicator
of an alternative, perhaps parallel, logic to that employed
by the human mind. Contrary to common belief, a com-
puter’s logic, while seemingly a product of the human
mind, is not a subset of it but rather a parallel, if not
superset, to it. When inputting information in the form of
an algorithm for a computer to process, one must adjust
one’s reasoning to the reasoning of the computer-worker
and not to that of a human-worker. Certain qualities of
the human mind such as those that contribute to what
is considered “smart,” i.e. sharpness, quick thought, or
brightness, may not be desirable or even applicable when
dealing with the computer’s reasoning. What is consid-
ered to be smart in one world may be considered dumb
in another world; this is precisely the reason why the two
reasoning systems are parallel, complementary, or perhaps
antithetical. For instance, to find a secret password a
human may exploit context-based conjectures, reductive
reasoning, assumptions, or even spying as strategies 
for saving time and effort. In contrast, a computer can
solve the same problem by simply checking all possible
combinations of all alphanumeric symbols until a match
is found. Such a strategy, referred to as brute force, 
would be considered overwhelming, pointless, naïve, or
impossible by a human investigator. Nonetheless, given
the computational power of a computer such a strategy
may only take a few seconds to check millions of possi-
bilities, something inconceivable to the human mind.

The term inconceivable is used here to denote an inability
to comprehend, and implicitly it refers to the human mind.
Clearly, the term is figurative, metaphorical, or linguistic,
for if it were literal it would contradict itself as a paradox:
how could one conceive that which cannot be conceived?
In the pre-Socratic spirit, the negation of something
negates its own existence2. While it is possible to construct
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a word signifying a negation or an impossibility it does
not mean that what is signified also exists, at least in 
the sense of being actual as opposed to fictional, pred-
icative, or identificatory. So, to say that something was
inconceivable to the human mind means that a now 
perceived as possible thought would not have occurred
to the human mind before. However, within the world of
computation the boundaries of impossibility are yet to be
defined. The power of computation, which involves vast
quantities of calculations, combinatorial analysis, random-
ness, or recursion, to name a few, point out to new
“thought” processes that may have not ever occurred to
the human mind. These “idea generators” which are
based on computational schemes have a profound ability
not only to expand the limits of human imagination but
also to point out the potential limitations of the human
mind. What was inconceivable once may have been so
mainly because it may have escaped the possibility of
existence.

Similarly, the term impossible is used here to denote the
incapability of having existence or of occurring. Yet, the
boundaries beyond which possible starts to be perceived
as impossible tend to change constantly in a world
enhanced by computer-augmented human thinking. Even
within the realm of the human mind those boundaries
seem to expand in a Guinness-wise fashion. For instance,
recently the total number of digits of the constant number
Pi memorized by a human mind is 83,431, held in 2005
by a 59-year-old Japanese person named Akira Haraguchi.
At the same time Japan wants to develop a supercom-
puter that can operate at 10 petaflops, or 10 quadrillion
(10,000,000,000,000,000 or 1016) calculations per
second, which is 35 times faster than the Blue Gene/L,
the current US record holder with 280.6 teraflops – that
is 280.6 trillion calculations a second, numbers thought
to be astronomical a few years ago. Therefore, the bound-
aries of what is considered impossible may be shifting
constantly based on real facts and not conjectures3.
Where is the threshold beyond which something is
impossible – or should we say the threshold below which
something is possible? Theoretically, nothing is impossible.
Even if it seems so at the moment, it may be that such
a possibility has not yet arrived. The old proverb stated
as “if you have all the time and all the resources in the
world, is there anything you cannot do?” may indeed seem
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as a false premise yet it also defines the possibility of 
the impossible.

Contrary to common belief, algorithms are not always
based on a solution strategy conceived entirely in the mind
of a human programmer. Many algorithms are simula-
tions of the way natural processes work and as such they
must not be regarded as human inventions but rather as
human discoveries. Unlike inventions, discoveries are
not conceived, owned, or controlled by the human mind,
yet as abstract processes they can be captured, codified
and executed by a computer system. In this case, the
human programmer serves the purpose of translating a
process external to the human mind to be compiled into
machine language which is also external to the human
mind. For instance, a genetic algorithm is a process that
simulates the behavior and adaptation of a population of
candidate solutions over time as generations are cre-
ated, tested, and selected through repetitive mating and
mutation. The algorithm uses a stochastic search based
on the chance that a best solution is possible and that
computer processing power is effortless, rapid, and precise
from the viewpoint of the human programmer. Yet, noth-
ing in the entire algorithm is about human invention; the
process is called natural selection (a process occurring
in nature regardless of the presence of humans) and the
flow of the calculations is logical or arithmetic (both
processes occurring in nature regardless of the presence
of humans).

Interestingly, algorithms can generate other algorithms;
not only precise, identical, multiple copies of themselves
but also structured text (i.e. code) that when executed will
behave as an algorithm. In fact, the process of compos-
ing an algorithm is also an algorithm in itself, that is, the
algorithm that created the algorithm. This self-referential
property (which may be referred to here as meta-algorithm,
i.e. the algorithm of an algorithm) is important in design
for at least two reasons: first, like algorithms, design can
be seen as a set of procedures that lead stochastically
towards the accomplishment of a goal. In studying the
articulation of algorithms one may be able to discern
similarities with design. While such a study may lead to the
development of procedures that may be useful in design,
more importantly, it may reveal certain clues about design
as a mental process. This possibility opens up a more
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intricate relationship between design and algorithm than
has been previously possible. Rather than using algorithms
to copy, simulate, or replace manual methods of design
(while perhaps desirable), instead they can be studied 
as methodologies that operate in ways similar, parallel,
or complementary to that of the human mind. Second,
along the lines of homo faber homo fabricatus (i.e. we
make a tool and the tool makes us), algorithms can be 
seen as design tools that lead towards the production of
novel concepts, ideas, or forms, which, in turn, have an
effect in the way designers think thereafter. That way of
thinking is incorporated in the next generation of tools
that will, in turn, affect the next generation of designers,
and so on.

It may be assumed that meta-algorithmics, that is, the
creation of algorithms that generate other algorithms, is
a human creation as well. A human programmer must
have composed the first algorithm that, in turn, gener-
ates new algorithms and as such the initial programmer
must be in control of the original idea. However, this is
not necessarily true. Unlike humanly conceived ideas,
where the author is the intellectual owner of the idea,
algorithms are processes that define, describe, and
implement a series of actions that in turn produce other
actions. During the transfer of actions it is possible for a
discrepancy to occur between the original intention and
the actual result. If that happens then, by definition, the
author of the algorithm is not in control of, and therefore
does not own intellectually from that point on, the result-
ing process. Theoretically, ownership of an idea is intrin-
sically connected to the predictability of its outcome,
that is, to its intellectual control. Therefore, in the absence
of human control the ownership of the algorithmic process
must be instead credited to the device that produced it,
that is, to the computer. Such a possibility, however, 
will be objected by those who believe that intellectual
ownership can only be credited to an agent that pos-
sesses enough intelligence to be aware of its ownership,
i.e. possesses consciousness. Unlike humans, computers
are not aware of their environment. Perhaps then it 
may be necessary to define some other kind of aware-
ness that may be only theoretical. This theoretical entity 
then would be the owner and the reason behind these 
intellectual phenomena until they possess a physical  or
legal substance4.
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It is a common belief among architects and designers
that the mental process of design is conceived, envi-
sioned, and processed entirely in the human mind and
that the computer is merely a tool for organization, pro-
ductivity, or presentation. Whatever capabilities a com-
puter may have it lacks any level of criticality and its
visual effects are nothing but mindless connections to be
interpreted by a human designer. It is a common belief
that, at best, the computer can serve merely as a
processor of information provided as data by the designer
and as code by the programmer outputting simply the
results of data processed by algorithms. What makes
this process problematic is the fact that contrary to
common belief algorithms can produce results for which
there is no intention or prediction thereof of their behavior.
Further, algorithms can also produce algorithms that also
are not connected to the intentions or prediction of the
original code. This structural behavior resembles in many
ways Dadaist poetry, or Markov processes. In those
cases, an algorithm functions as a string rewriting system
that uses grammar-like rules to operate on strings of
symbols in order to generate new strings of text. While
the syntax of the resulting text may be consistent with
the grammatical rules, the meaning of the resulting text
is not necessarily associated semantically with the inten-
tions of the original code. For instance, the introduction
of randomness in the arrangement of text can produce
results that are unpredictable, but also accidentally
meaningful. Unpredictability is, by definition, a disassoci-
ation of intention. But unlike chaos, a random rearrange-
ment of elements within a rule-based system produces
effects that, although unpredictable, are intrinsically con-
nected through the rules that govern that system. In the
field of design, similarities may exist on formal, visual, or
structural levels. Computational rearrangement of formal
rules that describe, define, and formulate a certain style
can produce a permutation of possible formal expressions
for that style. For instance, drawing on Andrea Palladio’s
original designs of villas, Hersey and Freedman5 were
able to detect, extract, and formulate rigorous geometric
rules by which Palladio conceived these structures. Using
a computational algorithm, they were able to create villa
plans and facades that are stylistically indistinguishable
from those of Palladio himself. In a similar, almost humor-
ous fashion, the Dadaist engine is a computer algorithm
that produces random text based on rearrangement of
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elements in a grammar. The resulting text, while based on
random processes, is readable, often makes sense, and
in some cases it is surprisingly intelligent. A version of
this algorithm, called the “postmodernism generator,”
composes essays that appear as if they were developed
by a human thinker. While in all of these cases it is quite
apparent that awareness, consciousness, or intention is
missing, the language patterns produced are convincing
enough to lead some to believe that they were authen-
tic, that is, worthy of trust, reliance, or belief, as if they
were produced by a sentient author. In one case, a paper
constructed using the Dada Engine software was allegedly
almost submitted to a conference, which, had it hap-
pened, may have passed Turing’s classic test of computer
intelligence6.

Unlike grammatical attempts to generate seemingly coher-
ent thoughts based on linguistic patterns encapsulated
through sentences, paragraphs, or essays, formalistic
languages have already permeated the inspirational, con-
ceptual, and critical aspects of architecture. Computer
modeling software is being increasingly used by design-
ers to produce form, shapes, or diagrams that while
unaware of their logic are used as a means to address
complex problems. Many architects and designers refer
to their use of computers as intentional, their language
for describing digital practice or formal phenomena has
become part of the mainstream nomenclature, and, as a
consequence, many so-called digital designs have even
been publicized by critics as meaningful. In the last decade,
architects have been using the computer as a device to
generate, discuss, and critique new forms in an attempt
to introduce a new way of thinking about design. While
many have attributed the term “tool” to the computer
because of its role as a device assisting during the design
process, this assumption is not necessarily or entirely
true7. Computational tools are based on algorithms, that is,
processes written by programmers to utilize the arithmetic
and logical capabilities of a computer in order to produce
certain results. As with mathematicians, the invention or
discovery of a mathematical formula does not necessitate
the mathematician’s knowledge of all the possible uses,
repercussions, or consequences of the formula.

Similarly, it is possible that while a programmer has con-
ceived an algorithm that will address a specific problem,
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the same algorithm might be used to address another
completely different problem that was never predicted by
the original author. Further, it is possible that using the
same algorithm but utilizing different parameters than the
ones that were originally designed, may result in a behav-
ior that is completely unexpected. Consequently, when a
designer uses an algorithm to design, the designer may
not be aware, knowledgeable, or conscious of the mecha-
nisms, specifications, or repercussions of the programmer’s
algorithm. The gap of discrepancy that separates the
programmer from the designer is indeed problematic
mainly because of the nature of algorithms. Unlike physical
tools where unpredictability is of a mechanical or chemical
nature, algorithmic tools are abstract, rational, and intel-
lectual in nature and therefore related to the human
mind. So, in that context, the output of an algorithm must
be associated to a human mind, either the programmer
or the designer. Anything else would be absurd because
it would involve an intellectual process without the pres-
ence of a human mind. Therefore, critique on the output
of an algorithm must be associated to the designer who
creatively used the algorithm or to the programmer that
made the algorithm available to the designer. In other
words, it always has to be a human being responsible for
anything that resembles intellectual behavior. However,
if someone abandons the humanistic premise and intro-
duces an intellectual entity that, while not identical, never-
theless resembles the human mind, then a different
interpretation of design might be possible. Under such a
possibility, the human mind is enhanced, complemented,
or synergized with an intellectual entity of a computa-
tional nature, independent of a human presence, which we
will call here otherness, or, in Greek, allo. The reason for
the existence of such an entity and its disconnection to the
human mind is due to the unpredictable, inconceivable, and
impossible nature of its origin. In other words, its existence
starts where the human mind fails. Consequently, any 
intelligent behavior by this entity is not a matter of chance,
accident, or disguise but rather the output of an allo-logic
whose complexity is beyond human comprehension. Armed
with such allo-reasoning the human mind can be described
as a cyborg, not in the mechanical or electrical sense, but
in that of an intellectual one.

While the computer is a device conceived, designed, and
built by humans, the processes running within its circuits
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are not necessarily a human invention as well. Like math-
ematics or geometry, computation is not an invention but
rather a discovery. It is not necessary for a human being to
exist in order for computational processes to occur. In other
words, computation is of an independent nature and can
be implemented on various devices including the computer
or, to some extent, the human brain. Otherness is that part
of computation that would be described by humans as
inconceivable, impossible, unpredictable, or unbelievable,
not as linguistic terms but as undiscovered concepts. And
yet the possibility that something may exist beyond the
comprehensible defines the notion of otherness, that is, of
something else. While the human mind has the ability to
combine events from the past in order to predict their pos-
sibility of existence in the future, otherness is about those
possibilities that were missed, overlooked, considered
impossible and therefore omitted, or those whose chance
of probability were too far into the future or lost into the
oblivious past8. In any case, their chance to exist is being
brought to life by devices that have the ability to perform
calculations far more complicated than any human brain or
brains together can. However, it is important to mention
here that certain tasks or events observed in nature are
indeed impossible, yet they are not intellectual. In contrast,
impossible tasks related to human thinking are by definition
intellectual and, as such, challenge not only the intellectual
nature of the human mind but also its own existence.

For the last five decades, beginning with early CAD pro-
grams and continuing through high-end computer graphics,
modeling, and animation systems, architects have been
increasingly concerned with the possible loss of control
over their own designs due to the powerful yet compli-
cated, if not mysterious, nature of computers. This con-
cern has led them to position themselves within a wide
spectrum of speculations about the effect of computers
on design that ranges from complete rejection, elitism,
or demonization of their use as design generators to the
complete antithesis, that of adoration, worship, or popu-
larization of their use. When comparing avid computer
users to those reluctant to engage with them it is neces-
sary to overlook many significant and distinguishing 
differences in order to identify at least one common
theme: the assessment that there is something different,
unprecedented, and extraordinary about the computer
as it compares to traditional manual tools.
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Both non-users and users agree that the effect comput-
ers will have on design whether desirable or not will be
significant, profound, and far-reaching. This agreement
is based on an important yet peculiar relationship between
design and its tools. It is apparent that design is strongly
dependent on the tools utilized and, reversely, tools have
a profound effect in design9. Traditionally, this dependency
is controlled by the human designers who decide which
tool is to be used when and where as well as the range
of possibilities a tool has for addressing, resolving, or
accomplishing a design task. Further, it is possible that
the use of tools may also have further implications in the
process of addressing a task: just because a tool is avail-
able, a task is now possible, or, further, a tool implies 
a task. However, a problem arises when the tool is not
entirely under the control of its user. In the case of a
computer as a tool, the results may be unexpected, sur-
prising, or unpredictable even by the users themselves.
While such moments of surprise may be advantageous,
enlightening, or perhaps even undesirable, they do exhibit
a theoretical interest because they challenge the basic
premise of what a tool is or how a tool should behave.
Further, such behavior may lead to alternative ways of
executing the task that were not intended and may lead
to results often superior than intended. Such a possibility
in turn challenges one of design’s most existential quali-
ties, that of intention. Is intention necessary in design?
Is intention a human privilege only?

Intention is a term used often in the context of 
consciousness. The definition of intention is associated
with a plan on action, a determination to act in a certain
way, a thoughtful and deliberate goal-directedness. In all
cases, intention is attributed (at the absence of any other
source) to the human mind as the source of intention.
Further, intention is also associated with design, because
design is traditionally considered an act of conscious
decision-making with an intention in mind. The problem
with this approach is that it assumes that behind every
decision a conscious mind must be present. However, if
we disassociate the act of decision-making from the
involvement of a conscious plan, if we simply accept that
decisions can be made by unconscious agents, then a
more intricate relationship between decision and intention
emerges than has been previously possible. Rather than
confining the act of deciding within the human domain 
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a more loose interpretation of decision-making can be
established that includes other decision agents not nec-
essarily human. In such a context, the notion of intention
does not have to be associated with its source but rather
with the process itself. For instance, a design decision
may be made by an algorithmic process not intended by
the designer, yet as the result of the decision may have
been assessed as “successful” the designer may adopt
it as one’s own idea. In this case, intention was assigned
after the fact. While such action is impossible within a
humanist world, it is so only in the absence of anything
else. Because, if a human is not responsible for an inten-
tion then who is?

In response to a possible shift away from the traditional
view that the human mind is the central point of refer-
ence for any intellectual activity, two theories have been
dominant; either a self-referential reconfirmation of the
uniqueness of the human mind as the only conscious,
sentient, and intelligent system that exists or an acknowl-
edgement that the quantitative limitations of the human
mind and the superior computational power of the com-
puter are indications that the human mind is not as central
and unique as previously thought. Humanistic approaches
to new knowledge have traditionally stressed the impor-
tance of self-determination and rejected any dependency
on supernatural, mystical, or magical phenomena. In doing
so they endorse the ability of humans to rationally deter-
mine, evaluate, and justify their actions. Implicit, however,
in this determination is the assumption that humans must
be in control and therefore be reliable for their thoughts,
morality, and actions and not rely on supernatural means.
The notion of control is therefore central to the humanis-
tic position. Nonetheless, while the notion of predictability
(and consequently responsibility) is typically linked to human
control, its negation implies the presence of a supernatural
alien realm. Such an alien realm can be unveiled through
inductive algorithms since such processes embed an equiv-
ocal ability to connect logical patterns with electronic pat-
terns. In the field of design, the notion of unpredictability
challenges one of its traditional modes of thought where
typically the designer is in full control of the tangible or vir-
tual representation of one’s design ideas.

Designers and architects have traditionally maintained
control over their design work by employing explanatory,
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analytical, generative, or representational ideas directly
linked to the principles of human understanding and
interpretation. Of course, any human-centric approach is
associated by definition with subjective phenomena and
personal interpretations. Within that realm, any logic that
deals with the evaluation or production of form must be,
by default, both understandable and open to interpretation
and criticism. The problem with this approach is that it
does not allow thoughts to transcend beyond the sphere
of human understanding. In fact, while it praises and cel-
ebrates the uniqueness and complexity of the human
mind, it becomes also resistant to theories that point out
the potential limitations of the human mind10.

Intellectual property is defined as the ownership of ideas
and control over the tangible or virtual representation of
those ideas. Traditionally, designers maintain full intellec-
tual property over their designs or manifestations thereof,
based on the assumption that they own and control their
ideas. This is not always the case with algorithmic forms.
While the hints, clues, or suggestions for an algorithm may
be the intellectual property of the designer–programmer,
the resulting tangible or virtual representations of those
ideas is not necessarily under the control of their author.
Algorithms employ randomness, probability, or complexity
the outcome of which is unknown, unpredictable, and
unimaginable. If there is an intellectual root to these
processes it must be sought in a world that extends beyond
human understanding11. Both the notions of “unknown”
and “unimaginable” escape from human understanding
since both negate two of the last resorts of human intel-
lect, that of knowledge and imagination. An algorithm is
not about perception or interpretation but rather about
exploration, codification, and extension of the human mind.
Both the algorithmic input and the computer’s output are
inseparable within a computational system of comple-
mentary sources. In this sense, synergy becomes the key-
word as an embodiment of a process obtainable through
the logic of mutual contributions: that of the human mind
and that of the machine’s extendibility.

There are often misconceptions about the computer as a
machine (i.e. a box with electrical and mechanical inter-
connections) and its role in the process of design. Design,
like many other mental processes, at the information-
processing level has nothing specifically “neural” about it.
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The functional equivalence between brains and comput-
ers does not imply any structural equivalence at an
anatomical level (e.g. equivalence of neurons with circuits).
Theories of information processes are not equivalent to
theories of neural or electronic mechanisms for informa-
tion processing12. Even though, physically, computers may
appear to be a set of mindless connections, at the infor-
mation level they are only a means of channeling math-
ematical and logical procedures13. However, there is
indeed a fundamental difference between the quantitative
nature of computation and the abstract holistic nature of
human thinking.

Is design thought quantifiable? In response to this ques-
tion, two options appear to be possible; either that design
is a process based upon finite elementary units, such as
bits, memes, nodes, atoms, etc. or that it is a holistic
process with no beginning, end, or any in-between meas-
urable steps. The negation of discreteness implies a con-
tinuity of thought that permeates throughout the process
of design but is confined within the boundaries of human
domain. By definition, subjectivity depends on interpre-
tation and only humans are in a position to do so (yet).
Certain intellectual activities, such as intuition, interpre-
tation, choice, or meaning are considered human quali-
ties that can hardly be quantified, if ever. In contrast, the
discretization of design opens up a multitude of possibili-
ties as it invites discrete mathematics to be involved in the
design process, such as logic, set theory, number theory,
combinatorics, graph theory, and probability.

Discretization of design by definition can be addressed,
described, and codified using discrete processes executed
today by discrete numerical machines (i.e. computers).
However, the problem is that discrete/quantitative design
provokes a fear of rationalistic determinism that is long
considered to be a restraint to the designer’s imagination
and freedom14. Such resistances have attempted to dis-
credit Computer-Aided Design (CAD) products or processes
as inadequate, irrelevant, or naïve. According to the
humanistic position, design is considered a high-level
intellectual endeavor constructed through uniquely human
strategies, i.e. intuition, choice, or interpretation. Such the-
oretical design models negate computation as a possible
means for design realization mainly because it is based on
discrete processes that are finite and, as such, restrictive. 
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In contrast, human thought appears to be continuous,
infinite, and holistic. However, in practice neither case
alone seems adequate enough to serve as a concrete
model for design because both suffer from a lack of
autonomy. Human designers fail to compute extreme
quantitative complexity and computational processes fail
to justify consciously even simple decisions. However,
these disjunctions result from a logic that seeks to com-
pare two separate, disjointed, and unconnected processes,
neither of which has any effect on the other. While tradi-
tional human strategies have a long history of success in
design, computational strategies are not exclusive, divi-
sive, or restrictive, but rather alien, foreign, different, and,
as such, incomparable. Rather than investing in arrested
conflicts, both strategies might be better exploited by com-
bining both. What is considered smart in the one world
may be considered naïve in the other and vice versa, but by
combining both, a common strategy can always be available.

For example, any painting can be represented as a finite
grid of finite colors. The exhaustion of all possible com-
binations of all possible colors within the grid of pixels
eventually will reproduce any painting that was ever cre-
ated in the history of humanity and, as a consequence,
any painting yet to be created. Formally, such an argu-
ment can be written in the following way:

P = {(x, y, c) x, y, c ∈ N, 0 ≤ x < w, 0 ≤ y < h,0 ≤ c < d}

where w = 132, h = 193, and d = 2. In this case, the
possible combinations are 2(132 × 193) = 107669. While the
possibility of creating a specific painting, i.e. Matisse’s
Icarus15, from a random arrangement of colors may
appear to be “almost impossible” it is indeed not so;
specifically it lies somewhere between 1 and about 107669

possibilities. If there is a possibility, however remote it
may be, there must be a chance that it will occur. While
the human mind may be bounded to the limitations 
of quantitative complexity, its computational extension,
the computer, allows those boundaries to be surpassed.
The notion of “impossible” is no more the assessment of
human imagination but rather a degree of probability16.

In contrast to this example, assessing the notion of pos-
sible can be enhanced by another model. This model is
based on the idea that, in search of a known target, not
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all possibilities are equal. Certain possibilities may have
a higher chance of success than others. This possibility
of possibility opens up a more intricate relationship than
has been previously possible. Rather than simply enu-
merating all possible patterns in search for a known one,
genetic algorithms assess each random step. By assess-
ing the degree of promise that a certain pattern has, the
notion of selection is introduced in the decision-making
process. The selection starts from a population of com-
pletely random patterns and occurs in steps (i.e. gener-
ations). In each step, the fitness of the whole set of
patterns is evaluated, multiple patterns are stochastically
selected from the current population (based on their fit-
ness), modified (mutated or recombined) to form a new
pattern, which becomes current in the next step of the
algorithm. For example, using the previous example,
instead of assuming that each random pattern is equal
in importance and therefore going through all of them
until a perfect match is found, a preferential selection
may occur instead. The number of iterations in the case
of Icarus will be reduced quite significantly from 107669

to merely 3,280,000 (i.e. 3.28 × 106).

Randomness is often associated with lack of control,
arbitrariness, and incoherence but more importantly the
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possibility of a random occurrence is essentially depend-
ent on time. Possibility is the state occurring within the
limits of ability, capacity, or realization in response to
both time and resources. So, the question arises as to
whether there is anything that cannot be done if one has
infinite time and infinite resources? If anything is poss-
ible, then isn’t merely thinking of something in itself its
own definition of being? Information, the root of knowl-
edge, is derived from the prefix in- and the noun forma-
tion. In its linguistic context, information means giving
form, figure, shape, and therefore organizational struc-
ture to, apparently, formless, figureless, and shapeless
notions. Information should be understood not as a pas-
sive enumeration of data but rather as an active process
of filtering data, not in the trivial sense of awareness, but
in the strict sense of logical proof. While the quantity and
composition of external data may appear to be infinite,
random, or incoherent logical filtering will lead progressively
to an ordered formation. Unlike blind randomness, certain
algorithms (i.e. genetic) are capable of selectively control-
ling the shaping of information. Such algorithmic events
result from factors that are neither arbitrary nor predictable
yet seem to be guided by some sort of intelligence. While
these events are made possible by simulating natural
processes without involving human intelligence, it is
inevitable to assume that some human intelligence is
involved in the selection of the natural process that best
fits the problem of randomness. Human intelligence arises
as an act of preference.

Preference is the grant of favor or advantage to one over
another. It is a subjective formation of an idea that leads
eventually to choice. As subjective actions are dictated by
one’s own criteria, a problem arises when such actions
refer back to the same person. For instance, an architect,
in designing a house for a client, is trained to observe,
detect, and address certain preferences of the client.
Yet, when the client and the architect are one and the
same person, then preferences tend to elude one’s own
mind. This happens either because one is not able to
comprehend fully one’s own mind or because one may
miss certain aspects. “While one knows what one knows,
one certainly does not know what one does not know.”
This seemingly self-evident statement is not so, in at least
two ways. First, the assertion that one is unaware of
one’s own ignorance is impossible within the sphere of



In mythology, Ulysses introduced himself to the Cyclops
as “nobody.” Later on, when the Cyclops was looking for
help nobody would help him because nobody hurt him.
This last statement is self-consistent within its own lin-
guistic context but not if one gets out of the context and
assigns the name “nobody” to somebody. Then the whole
statement has a different meaning, yet undetected for
those inside the system. Godel’s incompleteness theorem
claims that within any consistent formalization of a quan-
tifiable system a statement can be constructed that can
be neither proved nor disproved within that system. The
beauty of Godel’s argument is not only in pointing out a dis-
crepancy in reasoning but, most importantly, in revealing
the existence of an alien realm that bounds the known
universe.

Allo can be defined as a representation of something
else, not in the sense of a metaphor, but in the realistic
sense of referring to something unknown and therefore
evasive, whose entrance point, gateway, or portal can be
glanced through by negating reason and venturing instead
on alternative paths. Allo is by definition a-logical as it
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2.2
The relationship between one and another is not the same as with
one and itself

that person’s knowledge; for if it were true then one
would know what one does not know, which is an appar-
ent contradiction. Second, the fact that the statement is
in quotes means that it is being stated by a third person
in which case the lack of knowledge of ignorance may be
viewed as such from the third person’s viewpoint. In other
words, only a third person may be able to detect the
incompleteness of another person’s knowledge.



arises when the if-then clause fails. Yet, while it is not illog-
ical, devoid of logic, or senseless, it represents those 
possibilities that are out of the bounds to which the first
logic can apply. Allo is not human; it is a human discovery 
that helps describe, explain, and predict lack of knowledge.
It demarcates the end of human reasoning. It is the oppo-
site of “is”; allo is everything else.

Endnotes

1Hyperion means “beyond-one” and is also the name of a Titan,
father of Sun, Moon, and Dawn who was considered to be the god
of observation.

2Parmenides said: wV ουκ e.stι mh eι.ναι = what is not, cannot be
identifying a key separation between “what is” as a logical predicate
and “what is” as a visual interpretation. See Popper, K., The World
of Parmenides. London: Routledge, 1998, pp. 70–72.

3A set of graphs and tables that describe, assess, and project 
the potential of computers appears in the latest book of Ray
Kurzweil. See Kurzweil, R., The Singularity is Near. New York: Viking,
2005.

4The problem of ownership, jurisdiction, and responsibility of one
human over another is perhaps best documented in the laws of
slavery. If a slave makes a great discovery does it belong to the
master, and vice versa if a slave makes a fatal mistake should the
master be responsible instead?
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Observing a system from outside still lies inside another system



5See Hershey, G. and R. Freedman, Possible Palladian Villas: (Plus a
Few Instructively Impossible Ones). Cambridge: MIT Press, 1992.

6The Turing test is a proposal for a test of a machine’s capability
to perform human-like conversation. Described by Alan Turing 
in the 1950 paper (Alan Turing, “Computing machinery and 
intelligence.” Mind, vol. LIX, no. 236, October 1950, pp. 433–460),
it proceeds as follows: a human judge engages in a natural lan-
guage conversation with two other parties, one a human and the
other a machine; if the judge cannot reliably tell which is which,
then the machine is said to pass the test. It is assumed that 
both the human and the machine try to appear human. In order
to keep the test setting simple and universal (to explicitly test the
linguistic capability of some machine), the conversation is usually
limited to a text-only channel such as a teletype machine as Turing
suggested.

7Architects such as Neil Denari, Greg Lynn, or Peter Eisenman use
the term tool to describe computational processes yet none of
them has any formal education in computer science.

8Marcos Novak points out that while the clause “if-then” is a syllogis-
tic structure that leads on to new knowledge, the clause “if-then-else”
involves the alternative “else” that may point to the opposite of
knowledge, that is, to “that which does not follow from its roots,
or, indeed, that whose roots can no longer be traced, or have
become irrelevant, or are unknown, or follow from principles outside
previous understanding.” See Novak. M., “Alien space: the shock of
the view,” article reproduced from Art + Technology Supplement of
CIRCA 90, pp. s12–13.

9In the words of Marshall McLuhan “first we build the tools, then
they build us.” Perhaps, Stanley Kubrick and Arthur Clarke’s 
movie “2001: Space Odyssey” is a good fictional example of this
possibility.

10Strange as it may sound, acknowledging lack of control is, in a way,
more human than rejecting it. Humanism is not about rejecting any-
thing that threatens human control but rather about accepting 
limitations and working towards solutions.

11Sir Karl Popper argued that the world as a whole consists of
three interconnected worlds. World One, is the world of physical
objects and their properties – with their energies, forces, and
motions. World Two is the subjective world of states of conscious-
ness, or of mental states – with intentions, feelings, thoughts,
dreams, memories, and so on, in individual minds. World Three is
the world of objective contents of thought, especially of scientific
and poetic thoughts and of works of art. World Three is a human
product, a human creation, which creates in its turn theoretical
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systems with their own domains of autonomy. See Popper, K. R.,
The Logic of Scientific Discovery. New York: Harper & Row, 1968.

12The works of Herbert Simon and Allen Newel in the 1960s and
1970s are undoubtedly some of the best examples of the study of
artificial intelligence.

13Greg Lynn, in Animate Form. New York: Princeton Architectural
Press, 1999, p. 19, describes machine intelligence “as that of
mindless connections.”

14Colin Rowe’s criticism on Alexander’s Notes on the Synthesis of
Form and consequently extending it to all value-free empirical
facts is that they are only “attempts to avoid any imputation of
prejudice.” See p. 78 in Rowe, C. and F. Koetter, “Collage city”,
in Architectural Review 158, no. 942, August 1975, pp. 66–90.

15Icarus, the son of Daedalus (creator of the Labyrinth), is a
metaphor for an impossible task, consequent failure, yet eternal
remembrance. Of course, any bitmap image of those dimensions
would require the same number of calculations.

16A single processor working 1000 GIPS can only perform 1018

operations in a year. So, if 10400 computers will work in parallel
(because the problem is not sequential), they will be finished in 
a year; or 10800 computers in half a year. In other words, 107K is
indeed an impossible number for us but not necessarily so for a
network of computers.
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Algotecture is a term coined here to denote the use of
algorithms in architecture. This term differs from the pop-
ular terms CAD or computer graphics in the sense that
algorithms are not necessarily dependent on computers
whereas the former are, at least, by definition. This dis-
tinction is very important as it liberates, excludes, and
disassociates the mathematical and logical processes
used for addressing a problem from the machine that
facilitates the implementation of those processes. Such a
use involves the articulation of a strategy for solving prob-
lems whose target is known, as well as to address prob-
lems whose target cannot be defined. Within the realm
of computer graphics, solutions can be built for almost
any problem whose complexity, amount, or type of work
justifies the use of a computer. For instance, in architectural
practice, inputting data points, calculating structural ele-
ments, or printing large line drawings are tasks, or prob-
lems, that require the use of the computer even though
they can be performed manually. Yet, there are some prob-
lems whose complexity, level of uncertainty, ambiguity, or
range of possible solutions required a synergetic relation-
ship between the human mind and a computer system.
Such a synergy is possible only through the use of algorith-
mic strategies that ensure a complementary and dialectic
relationship between the human mind and the machine.

In the world of design, and in particular architecture, the
problems designers are called upon to solve are not nec-
essarily solvable in the traditional sense of finding a path
between A and B. Apart from specific quantitative local-
ized subproblems that occur within some standardized
patterns of construction, the general formal, aesthetic,
or planning considerations are barely addressable as dis-
crete solvable problems. Consequently, it may be more
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appropriate to use the term problem-addressing rather
than problem-solving. Whatever the choice is, an algorithm
serves as a means for articulating the problem whether
solvable or addressable. More importantly, because of its
translational power, an algorithm can carry out that artic-
ulation one step further and process it using a computer’s
arithmetic and logical power. The combination of both
systems, that is, that of the human and that of the com-
puter, is where the true power of algorithms lies. An algo-
rithm is not a game, a cool name, another tool, or an
obscure engineers’ conspiracy but instead it is a way of
thinking, and because of its newly introduced counter-
part, the computer, it allows human thoughts to extend
beyond their limitations. Because design is a way of think-
ing intrinsically weaved with the most existential human
characteristics, that of logic, artificiality, creativity, and
identity, algorithms serve as the means to explore beyond,
in parallel, or in lieu of traditional established ways of think-
ing. The notion of addressability versus solvability is impor-
tant in design because it allows the algorithms to address
a problem offering hints, suggestions, or alternatives which
may never have occurred to the human designer. In such
a synergetic relationship the unpredictable, impossible,
or unknown are not factors of fear but rather invitations
for exploration.

In design, algorithms can be used to solve, organize, or
explore problems with increased visual or organizational
complexity. In its simplest form, a computational algorithm
uses numerical methods to address problems. Numbers
are often regarded as discrete quantitative units that are
utilized for measuring, yet in computational terms num-
bers can be constructed that can address an infinite
degree of division thus exhibiting theoretical continuity.
The basic linguistic elements used in algorithms are con-
stants, variables, procedures, classes, and libraries and the
basic operations are arithmetical, logical, combinatorial,
relational, and classificatory arranged under specific gram-
matical and syntactical rules. These elements and oper-
ations are designed to address the numerical nature of
computers while at the same time provide the means for
composing logical patterns. For example, pixels on a com-
puter screen are numerical elements defined by their color
value and their x and y coordinates, but at the same time
they can be addressed as visual compositions defined by
logical patterns.
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Historically, algorithms have been used quite extensively
in architecture. While the connotation of an algorithm
may be associated with computer science, nonetheless
the use of instructions, commands, or rules in architec-
tural practice are, in essence, algorithms. The rationali-
zation of the design process in an architectural practice
involves by necessity the use of structured, discrete, and
well-defined instructions for the accomplishment of design
projects and the distribution of labor among the designers
of a project. Implicitly within the concept of a design
algorithm is perhaps the assumption of a lack of formal
or aesthetic sensitivity due to the rational and techno-
cratic connotations associated with mathematical and
logical processes. The dominant mode for using computers
in architecture today is a combination of manually driven
design decisions and formally responsive computer
applications. The problem with this combination is that
neither the designer is aware of the possibilities that
computational schemes can produce nor the software
packages are able to predict the moves, idiosyncrasies,
or personality of every designer. Therefore, the result is a
distancing between the potential design explorations and
the capacity built into computational tools. Designers
often miss the opportunity opened up to them through
digital tools, merely because of lack of understanding that
computation can be part of the design process as well. 

While some digital designers are claiming to be great
fans, users, or explorers of digital design, a lack of knowl-
edge on what really constitutes digital design contributes
towards a general misunderstanding; the use of computer
applications is not per se an act of digital design. Digital,
in the true sense of the meaning, is about the reduction
of a process into discrete patterns and the articulation of
these patterns into new entities to be used by a computer.
Digital is an achievement of the collective organizational
properties of computers not the intrinsic nature of the
appearance of their products. In other words, digital is a
process not a product. If it is seen as a process, then the
emphasis is placed on understanding, distinguishing,
and discerning the means by which design can enter the
world of computation, and not the other way around. 
The world of computational design is quite different from
the manual world of design. Terms, concepts, and
processes that are seen as inconceivable, unpredictable, or
simply impossible by a human designer can be explored,
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implemented, and developed into entirely new design
strategies within the digital world. Instead, what is happen-
ing is the use of computers as marketing tools of strange
forms whose origin, process, or rationale of generation is
entirely unknown and so they are judged on the basis of
their appearance often utilizing mystic, cryptic, or obfus-
cating texts for explanation.

In the last two decades, architecture has transformed from
a manually driven tool-based design and practice profes-
sion to a computer-driven form-based design and global
practice. This transformation, while impressive, has not
yet reached its full potential. Partially because of the lack
of computational education of architects or the plethora of
confusing literature on digital design, there is hardly any
bright examples of using computers in their full potential
as design tools. Corporate architectural practices, such
as SOM, NBBJ, or RTKL, use the computer simply as an
efficiency tool while continuing to develop design through
traditional manual means, and prominent avant-garde
practices, such as Gehry, Morphosis, or Zaha Hadid, use
the computer as a means of marketing and presentation,
despite their unsubstantiated claims to the opposite.
Occasionally, there are some young architects fresh out
of school who may be able to use computational methods
in design. Yet the majority of architecture practices, despite
their appearance, are still developing ideas through their
own human minds or by simplistic NURBS-based formal
mongering.

Design, as defined by a few prominent theorists, is about
virtuality, not actuality1. In its conception it is about
something vague, indefinite, and uncertain, not neces-
sarily the sudden appearance of a form (for that would
be certain) but rather about a combination of thoughts
that lead to the inception of a form. Algorithmic logic is
about the articulation of thoughts and a vague struggle
to explore possibilities of existential emergence. When
composing an algorithm one is dealing with a symbolic
language whose vocabulary, syntax, and meaning is
closely dependent on the features of a digital computer.
In contrast to a physical language which is dependent on
its communicative power between human beings, algo-
rithms are based on a language which is dependent on its
communicative power between a human and a computer.
Such a dependency is not superior, inferior, or equivalent
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but rather complementary. On communicating a task to
a human being one is forced to take under consideration
the limitations or capabilities of a human being which are
known, pre-estimated, and predictable. However, on
communicating a task to a computer one should not
assume the same capabilities or limitations of a human
being. The computer is not a human mind. It is not a
human designer. It is rather a counterpart to human
imagination, a source of ideas, and a portal into another
world new to the human mind.

The problem with algorithmic logic in design is that fixed
interrelationships between numbers and concepts appear
to some designers as too deterministic. In fact, many
designers are not interested in the mathematics of a
design composition but rather in the composition itself.
While this position may be interpreted as a defense
mechanism against the possible rationalization of design,
it becomes also an obstacle in exploring the limits of a
possible rationalization of design. Computer systems that
are referred to as CAD systems are in essence collections
of algorithms each of which addresses a specific graphi-
cal design issue. A user of a CAD system, i.e. a designer,
makes use of these algorithms without knowledge of
how they work and consequently is unable to determine
the full value of their potential. While CAD systems helped
designers significantly to organize, speed up, or commu-
nicate ideas using high-level commands, only a few CAD
systems offer the means to combine those commands
algorithmically in ways that would allow one to explore
“out of the box” possibilities or to break down the com-
mands in ways that would allow one to explore what is
“under the hood.” Further, very few designers have the
knowledge to understand the computational mechanisms
involved in a CAD system, or, reversely, very few CAD
developers are also equally accomplished designers.

Architectural design has a long history of addressing
complex programmatic requirements without a specific
design target. Unlike other design fields where the target
is to solve a particular problem in the best possible way,
architectural design is open-ended, in flux, and uncertain.
Codified information, such as standards, codes, specifi-
cations, or types, simply serve the purpose of conforming
to functional requirements, yet are not guarantees for a
successful design solution. Deciding under uncertainty
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requires experience, intuition, and ingenuity. Ingenuity is
an inventive skill of imagination, creativity, and resourceful-
ness, and should not be confused with imitation, problem
solving, or planning.

To identify the problem of design in general, and of archi-
tectural design in particular, it is necessary to describe
and understand the process of design. While many defini-
tions and models of design exist, most agree that “design
is a process of inventing physical things which display
new physical order, organization, form, in response to
function.”2 However, since no formula or predetermined
steps exist which can translate form and function into a
new, internally consistent physical entity, design has been
held to be an art rather than a science. It is considered
to be an iterative, “trial-and-error” process that relies
heavily on knowledge, experience, and intuition.

Traditionally, intuition is a basis of many design theories,
often referred to as “black box” theories. According to
them, design, as well as its evaluation, tends to be highly
subjective. While such a position relieves the designers
from explaining, justifying, or rationalizing their decisions
and actions, it also enables the designer and a circle of
critics to exercise authoritative power. The problem with
this is not necessarily in the lack of objective criteria but
rather in the lack of rational consistency. If design is to
be studied as a process, then a series of reasonable,
justifiable, and consistent steps should be established.
The presence of intuition as a source of inspiration, deci-
sion, or action is considered arbitrary, obscure, and, as
such, “black.”

In contrast, another set of theories defines the design
process as a problem-solving process. According to the
latter, design can be conceived as a systematic, finite,
and rational activity. As defined by researchers over the
past 40 years, for every problem a solution space exists,
that is, a domain that includes all the possible solutions
to a problem. Problem-solving then can be characterized
as a process of searching through alternative solutions in
this space to discover one or several which meet certain
goals and may, therefore, be considered solution states.
Alternatively, a problem space does not always necessi-
tate the identification of a solution as a target, but instead
may involve simply addressing the problem for possible
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alternative solutions that are not known in advance. 
In many cases, the solution to a design problem may
deviate from the original objectives. For instance, a
Markov process is a finite state algorithm with probabilities
for each transition so that a next state is found given that
the current state is known. In that way, a design problem
may be addressed not only in a deterministic but also in
a probabilistic manner.

In the early 1960s, a need for rationality in the design
process was beginning to gain ground, due primarily to
the rise of the computer, as an arithmetic and logical
device. If design is a conceptual interaction between the
context’s demands and the adjustments of the form, then
there may be a way to encode it as a process by making
an abstract picture of the problem, which will retain 
only its abstract structural features, i.e. an algorithm. By
introducing set theory, structural analysis, and the theory of
computation as tools for addressing the design problem,
quantitative elements or events associated with the design
problem could be represented by Boolean variables, that
is, logical binary variables3 and later by fuzzy logic, that is,
partial truth variables. This approach was followed by a
flurry of related research into the field of design. But the
rationalization of design was much more far-reaching. 
It introduced computers into the design process by sug-
gesting which aspects of the design process are amenable
to systematization and which are not. While some steps
during the design process are based on rational decisions,
some are not. This suggests that the design process is
open-ended and that it entails frequent changes of mind
or changes of constraints and that a computer-based design
system should permit them to occur.

However, because of the large number of constraints to
be simultaneously considered in an architectural design
problem, it would be difficult to meet them all. The com-
plexity of the design problem is so great that a designer
would be unable to arrive at an appropriate solution
unless a new way could be found to break down the
problem into subproblems and use a non-deterministic
approach to solve them. While hierarchical approaches
are key factors in addressing extreme complexity, they
are also prone to loss of the holistic picture of a design
problem, where perhaps the whole is not simply the 
sum of its parts. For instance, one of the areas where the
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computer was helpful to an architect is in space alloca-
tion, that is, in resolving the programmatic requirements
of a building (spaces, footage, orientation and neighbor-
ing conditions) and arranging the spaces under the
requirements’ constraints. However, while the resulting
space allocation schemes were indeed correct, or at
least optimally placed, the overall schemes lacked cer-
tain organizational, aesthetic, or identifiable characteris-
tics. Yet, many of these systems are still used in
engineering design where the objective is to optimize an
overly complicated design without any aesthetic con-
cerns. In architecture these systems are used in a sug-
gestive manner, that is, at a sufficiently early stage of the
design process where a large number of possible
schemes are sought and the best ones are chosen for
further development.

Another approach to addressing architectural design as
a problem-solving process is that of structural linguistics.
Here, the designer attempts to structure the problem 

3.1
Output of a space allocation program
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by grouping the constraints into thematic areas (e.g.
zoning, circulation, structure), and proceeding to design
by considering each group of constraints more or less
independently. This information is converted into linguis-
tic structures through the use of transformational rules.
Then, the designer represents these linguistic structures
in the form of sentences4, that is, specific sets of archi-
tectural elements which include not only the elements
but also the rules which allow a designer to combine
them into feasible and meaningful architectural compo-
sitions. The aim of this approach became one of writing
algorithms for the generation of feasible and meaningful
architectural “sentences.” Structural linguistic algorithms
have been written for the design of buildings, or rather, for
designing parts of buildings. Over half of these algorithms
have been concerned with space allocation problems,
some of which resulted in formal definitions or languages
which the computer can be programmed to resolve5.

Some theorists have argued that many problems cannot
be solved algorithmically6, either because the procedure
leading to their solution is ill-defined or because not 
all the information needed to solve them is available 
or accurate. Such problems make it necessary to use
heuristic and adaptive decision procedures. Heuristic
methods typically rely on trial-and-error techniques to
arrive at a solution. Such techniques are, by definition,
much closer to the search-and-evaluate processes used
in architectural design. In adaptive procedures, the com-
puter itself learns by experience7, that is, by creating a
database of information based on external observation of
the designer’s decisions. This approach became the basis
system, known as expert systems. Here knowledge about
a specific area of human expertise is codified as a set of
rules. By means of dialogue with the user, the system
arrives at a solution to a particular problem. New knowl-
edge is provided by the user to the knowledge base with-
out a programmer having to rewrite or reconfigure the
system. The ability of the system to justify conclusions
and to explain reasoning leads to further systematization
of the design process, but also, sometimes, to paradoxes
in the computer’s reasoning.

Because of its quantitative nature, the study of complexity
involves by necessity computational methods as means of
analysis, simulation, and synthesis of systems that involve



large amounts of information or information processing.
Unlike traditional methods of analysis and synthesis,
computational schemes offer a degree of rationality that
allows them to migrate into computer-executable programs.
Such a possibility opens up enormous potential than 
has been previously possible; rather than utilizing mere
human-based intelligence in resolving design problems,
a complementary synergetic relationship between humans
and computers becomes possible. Ideally, in such a frame-
work, both parties can contribute each one’s unique
strengths in an attempt to seek, explore, invent, or discover
principles and methods of design. Computing becomes the
essential link between the two systems.

As a result of growing computer capabilities, the rationaliza-
tion of design engendered a great number of expectations.
Unfortunately, most of these expectations were not met,
perhaps because machine intelligence was overestimated.
Architectural design is a much more complicated process
than many other design processes because it entails factors
that cannot be codified or predicted. The heuristic processes
that guide the search rely not only on information pertinent
to the particular problem, but also on information which is
indirectly related to it and inferred by the context. In addition,
all the information that pertains to the design process does
not exist from the beginning. Therefore, many decisions are
made during the design process based on information that
emerges later that is often impossible to predict.

These problems, as well as the practical needs of archi-
tectural offices, led to changes in the approach. Rather
than competing with, emulating, or replacing designers,
the approach in the 1970s was predicated on the belief
that they should assist, complement or augment the
design process. The machine was introduced as an aid
to instruction, as a mediator for the goals and aspirations
of the architects. The computer could communicate with
architects by accepting information, manipulating it, and
providing useful output. In addition to synthesizing form,
computers are also able to accept and process non-
geometric information about form. Therefore, it is neces-
sary for architectural design languages to be invented to
describe operations on building databases. One pioneer-
ing effort in this area is GLIDE, a language which allowed
the user to assemble buildings8. Another approach in the
direction of computer-augmented architectural design was
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the manipulation of architectural forms according to rules9.
Basic structural and functional elements were assembled
to make volumes (elements of composition) which, in turn,
were assembled to make buildings. All elements were
stored in the computer’s memory in symbolic form, and the
user operated on them by manipulating symbols in accord-
ance with rules derived through the classic academic
tradition.

As design began to be increasingly thought of as a sys-
tematic and rational activity, many of its empirical and
experimental rules were explored. By operating on sym-
bolic structures stored in the computer’s memory and
manipulating them according to rules, computers could
reason about, or even predict, the behavior of a simu-
lated environment. The machines were made to carry out
a “make-believe” happening, a simulation. Numerous sim-
ulation models were formulated and much progress was
made toward simulating design states10. These models
simulated the states of a designed environment and the
transitions from one state to another. Yet, no model was
formulated which could encompass both the relation-
ships between the components of a building and its 
environment. Even though simulation models are valu-
able tools for predicting and evaluating performance, their
contribution to the architectural design process has been
marginal. They leave the interpretation of the symbols
they represent and the relationships between them to the
designer. The transition from one design state to the next
must be done by the designer with little or no assistance
by the computer.

Augmented design failed to improve the architectural
design process and products. The majority of the sys-
tems that have been installed worldwide are used for
drafting or site planning, which are not, in themselves,
essential steps in the process of architectural design11.
Perhaps the reluctance of CAD research to improve the
architectural design process and products is probably
due to the fact that most of the researchers did not con-
sider the idiosyncrasies of architectural design. In archi-
tecture, design quality is reflected in forms and their
relationships. Many architects and theorists have argued
that what distinguishes a well-designed building from one
that is poorly designed can only be found in the morpho-
logical relations that the former embodies. “One can have
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a beautiful idea of winning a chess game. One can brutally
win a chess game in a very inelegant way. But there can
be an elegance in the process of winning itself, that is
poetic.”12

Form-based design is viewed as an activity, which entails
invention and exploration of new forms and their relations.
Various methods of analysis have been employed in the
search for new forms: formal analysis involves the inves-
tigation of the properties of an architectural subject.
Compositional principles, geometrical attributes, and mor-
phological properties are extracted from figural appear-
ances of an object. In contrast, structural analysis deals
with the derivation of the motivations and propensities
which are implicit within form and which may be used 
to distinguish the difference between what is and what
appears to be.

One approach to form-based design is that of shape
grammars13. They were developed to carry out spatial
computations visually and are used to generate designs
based on production rules. A shape grammar consists of
rules and an initial shape. There are two types of shape
grammars. In standard grammars, each rule is defined
explicitly by a pair of shapes separated by an arrow. 
The shape on the left side of the arrow determines the
part of the shape to which the rule is to be applied. 
The shape on the right side of the arrow determines 
the shape that results when the rule is employed. In this
context, shape grammars contribute rationality, consis-
tency, and traceability where finite production rules are
applied. Shape grammars can be associated with linguis-
tic patterns and therefore illustrate meaningful statements
that may in turn produce languages of design. However,
as shape grammars are based on a clearly defined set of
rules leaving no place for ambiguity, they have been used
extensively for the generation of patterns, diagrams, and
floor layouts.

An interesting variation of shape grammars is that of frac-
tal generative systems. Based on a scheme, formulated by
the German mathematician Von Koch, a fractal process
consists of an initial shape (the base) and one or more
generators. From a practical point of view, the generator
is a production rule: each and every line segment of the



base is replaced by the shape of the generator. The imple-
mentation of an interactive computer program has been
reported by Yessios which allows the fractal to be gener-
ated one at a time or at multiple increments, backwards or
forwards. As described by Yessios, “a building typically has
to respond to a multiplicity of processes, superimposed
or interwoven. Therefore, the fractal process has to be
guided, to be constrained and to be filtered. The fractal
process has to be ‘mutated’ by the utilitarian requirements
of the functionalities of a building.”14

Another approach to formalistic design is that of morphing.
It involves two important principles of architectural form: sta-
bility and change. Morphing is not exactly a form-making

A Brief History of Algotecture 49

3.2
Studies on fractal processes for the Frankfurt Biocentrum by C. Yessios and P. Eisenman



procedure because the subject of transformation must
already be complete. During a transformation, only rela-
tions change. No new elements can be introduced or
removed; nothing is added or subtracted from the scene.
However, the illusion of movement, often described as
“frozen music,” has been argued to have a high archi-
tectonic value15. It illustrates the forces designers have
referred to, as “punctured volumes,” “compressed planes,”
“interpenetrating spaces,” or “agitated surfaces.” One pio-
neering exploration of morphing in architecture has been
reported by Terzidis16. According to him an initial shape A
can be transformed to a target shape B by applying any
number of in-between steps. All the points of shape A are
mapped onto shape B and vice versa. Furthermore, once
the rules of transition have been established, the transition
can be allowed to continue extrapolating beyond its target.

In contrast to automated or augmented design, form-
based design has the advantage of allowing one to delve
into the idiosyncrasies of architectural form. Its disadvan-
tage is that it is perceived as being too iconolatric, super-
ficial, and conformist17. As a consequence, form-based
design has been regarded suspiciously as combining the
icons of historical architecture and technological devel-
opment at a surface level.

Because of its uncertain, indefinite, and ambivalent nature
there is hardly a single or unified definition of design. The
problem with this, however, is that because words are just
shells into which notions are packed, the misuse of lan-
guage may alter one’s genuine relation to notions18. In
fact, it appears that the terms design and planning are
often used interchangeably as one and the same thing.
While in the world of arts and architecture design is asso-
ciated with human creativity, ingenuity, and intuition, in
the world of engineering a more rational, confined, organ-
ized, and methodical model exists. It suggests functional-
ity, performance, and conformity, while, at the same time,
it may be resistant to emotion, humor, allegory, metaphor,
or analogy. As the world of science seeks, within diverse
disciplines, to find a set of principles that govern the field
of design, a need arises to integrate two seemingly con-
trasting worlds, that of science and that of the arts.

What makes design problematic for scientists and engineers
is that they have maintained a doctrine of rationalistic
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determinism in their fields. It is the theory that the exer-
cise of reason provides the only valid basis for action or
belief and that reason is the prime source of knowledge.
Because of its clarity and efficiency, rationalistic determin-
ism has traditionally been a dominant mode of thought in
the world of science. The problem with this is that it
assumes that all human activities abide to the same
principles. In contrast, design, as defined in the arts and
architecture, is based on quite different, if not opposite,
principles. Rather than following a rationalistic model,
designers often employ the acceptance of empiricism,
authority, spiritual revelation, metaphor or analogy as
sources for their design inspiration. In addition, they quite
often defy the rules of scientific planning and scheduling.
This mode of thought, which we call here intuition, comes
in contrast to the dominant model of science where
rational, methodical, and systematic processes exist.
More than ever now, as design enters the world of sci-
ence, or as science enters the world of design, a comple-
menting and harmonious mix of both thought processes
is needed.

In some design practices, rational and intuitive approaches
to design have been incorporated quite successfully
within the same business structure. For instance, archi-
tectural practice is a business model where intuitive
design is a significant part. Here intuition is separated
from the production phase where sketching, brainstorm-
ing, iterative drawings, visual analogies, and metaphori-
cal notions are utilized. The project management and
scheduling at that stage consists only of mere deadlines
rather than processes or methods. Once a design idea is
agreed upon, the architects move into the production
phases where most business models and methods are
applicable. What makes architectural practice most excep-
tional is that it is the same people that are involved in both
intuitive and rational activities. In contrast, in other cre-
ative business practices, such as, for instance, the movie
industry, different people are involved in different activi-
ties each of which is an expert within one’s own domain.
Therefore integration of different talents and expertise
becomes a major business management challenge.

For the last three decades, beginning with Christopher
Alexander’s Notes of the Synthesis of Form and Robert
Venturi’s Complexity and Contradiction in Architecture
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and continuing through a plethora of formal studies and
computational methods19, designers, architects and urban
planners have been primarily concerned with increased
complexity involved in the design of buildings, urban
areas, and cities. Research and professional practice
have attempted to automate traditional “manual” meth-
ods of production using computer-aided design tools and
to consider architectural schools and offices as hubs for
crosspollination between diverse engineering disciplines.
When comparing architectural design and other software-
intensive engineering design disciplines it is necessary to
overlook many significant and distinguishing differences
in order to identify at least one common theme: the 
use of computational methods to address excessively
complex tasks.

Complexity is a term used to denote the length of a
description of a system or the amount of time required
to create a system. From networks and computers to
machines and buildings there is a great deal of effort
spent on how to understand, explain, model, or design
systems whose scope, scale, and complexity often chal-
lenge the ability of designers to fully comprehend them.
While complexity may be a characteristic of many natural
systems or processes, within the field of design the study
of complexity is associated with artificial, synthetic, and
human-made systems. Such systems, despite being human
creations, consist of parts and relationships arranged 
in such complicated ways that often surpass a single
designer’s ability to thoroughly comprehend them even if
that person is their own creator. Paradoxical as it may
appear, humans today have become capable of exceed-
ing their own intellect. Through the use of intricate algo-
rithms, complex computations, and advanced computer
systems designers are able to extend their thoughts into
a once unknown and unimaginable world of complexity.
Yet, the inability of the human mind to single-handedly
grasp, explain, or predict artificial complexity is caused
mainly by quantitative constraints, that is, by the amount
of information or the time it takes to compute it and not
necessarily to the intellectual ability of humans to learn,
infer, or reason about such complexities.

Both architects and engineers argue for the deployment of
computational strategies for addressing, resolving, and sat-
isfying complicated design requirements. These strategies
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result from a logic, which is based on the premise that
systematic, methodical, and rational patterns of thought
are capable of resolving almost any design problem.
While this assumption may be true for well-defined prob-
lems, most design problems are not always clearly defined.
In fact, the notion of design as an abstract, ambiguous,
indefinite, and unpredictable intellectual phenomenon is
quite attuned to the very nature of the definition or per-
haps lack of a single definition of design. Yet, the mere
existence of certain ambiguous qualities such as amphiboly,
indefiniteness, vagueness, equivocation, ambivalence, or
coexistence serve as patterns, metaphors, and encapsu-
lations that facilitate in detecting, understanding, and
addressing complex notions. The most paradigmatic
example of this practice is the case of architect Frank
Gehry. In his office, design solutions are not sought
through methodical computer-aided design methods but
rather by the use of encapsulated symbolic schemes,
such as metaphors, allegories, or analogies. The design
teams spend countless hours of thought, modeling, iter-
ative adjustment, and redesign based on the metaphor
of a crinkled piece of paper or an ambiguous napkin
sketch. Complexity emerges not as a sum of the parts
but rather as a reference to a model that serves the 
purpose of a metaphor. Rather than using direct, explicit,
or unequivocal terms to communicate, designers often
use instead ambiguous, tacit, or metaphorical means. 
For instance, designers often use non-verbal means of
communication such as sketches, drawings, analogies,
expressions, gestures, or metaphors. What makes verbal
communication so problematic for creative people is that
it is too literal, leaving little, if any, ground for interpreta-
tion. It assumes that for every notion or idea there is a
word or a phrase to describe it, but that may not be the
case for those yet to be defined design concepts. In con-
trast, implicit and tacit information suggests much more
than their spoken counterparts.

Any scientific approach to design needs to take into con-
sideration, not only systematic, methodical, and rational
models, but also alternative approaches that address the
nature of design as an indefinite, ill-defined, and intuitive
process. The ultimate goal of a design project is the
development of an innovative frame breaking solution 
or process. Innovation involves originality and originality
involves departure from previous practices. Design is about
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the fresh, new, unusual, and inventive. More often than
not, design projects stand out not only because they sat-
isfy the requirements but mainly because they are imag-
inative, unexpected, and ingenious.

While the original goal of CAD was to free the designer
from repetitive, tedious, or time-consuming tasks, it also
sought to empower the designer with the means to explore
beyond the traditional framework of manual design. The
desire to implicate a digital mode of thought within the
design process was intimately linked to the nature of
computation and its close association with that of design.
If design is to be considered a systematic, finite, and
rational activity then a computational scheme could be
devised that would encapsulate, codify, and reflect the
process. Further, such a scheme could be transferred
and processed using a computational device such as a
computer. The initial thought was that because com-
putation employs complex processes, such as simula-
tion, optimization, permutation, or transformation, such
processes could be applicable, useful, if not catalytic in
addressing design problems. However, due to the complex
nature of the processes, very few designers were in a posi-
tion to understand and implement them in a meaningful
way in design.

As most of the researchers in CAD were primarily con-
cerned with the technicalities of converting design ideas
into digital tools, none, if any, was also concerned with
using those tools to actually design. Apparently, the design
sensitivities involved in creating a tool are not the same 
as those involved with using one. The unprecedented
potentiality of the new CAD tools brought a high expecta-
tion of how to change the way designers work, create,
and think. Therefore, a paradigm shift was sought from
within the designer’s world, one that would occur by
employing the newly created CAD tools. However, it may
be argued here that the long awaited paradigm shift
occurred not in the designer’s mind but in the program-
mer’s mind. It is the programmer that invented the tool and
set out the workspace, capabilities, and limitations for the
designer to work within. CAD software developers are meta-
designers, i.e. designers of design-systems. In contrast, the
traditional designers-turned-digital are merely spectators to
a world that extends beyond their comprehension. For the
last two decades, beginning with Eisenman’s visions and
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Lynn’s curvilinearity and continuing through an over-
whelming plethora of so-called digital design studies,
architects have been primarily concerned with the formal
manifestation of scientific theories using the computer
as a medium of expression. Instead of using computational
theories as the structural foundation for architectural
experimentation, they employed humanistic philosophical
theories of the 60s and 70s to explain the complexity of
the forms they produced using computers. These practices
have attempted to seek for a theoretical foundation of 
digital phenomena within the scope of classic humanistic
methods, i.e. observation, explanation, or interpretation.
While such methods are among the fundamental sources of
knowledge, they cannot explain the realm of computational
phenomena because these extend beyond the sphere of
human understanding. Concepts such as randomness,
infinity, limit, infinitesimal, or even more elaborate con-
cepts such as complexity, emergence, or recursion are
incomprehensible by the human mind not because 
they are metaphysical, magical, or mysterious but rather
because they depend on intellectual means that are
external and foreign to the human mind. Instinctively, in
the absence of anything else, humans throughout their
history have always tried to overcome their material nature
by seeking concepts and ideas that are out or independ-
ent from their own existence. Perhaps for the first time,
through the invention of the computer, a device originally
intended to serve people, ironically they were faced with
phenomena that demarcated the limits of the human mind
and cast some light into the corners of an alien world.

While humanistic approaches praise and celebrate the
uniqueness and complexity of the human mind they also
become resistant to theories that point out its potential
limitations. Late modernist, phenomenological, or cultural
critical theories differ significantly from those of mathe-
matics, linguistics, or computation in that the former use
as reference the human consciousness whereas the latter
seek to separate the subject from the object, seeking
instead principles that lay out or are independent of
human existence. The use of human presence as a wit-
ness of phenomena is a strong underlying framework upon
which humanistic theories are based. In contrast, scientific
theories tend to quantify events objectifying their effect in
order to avoid human interpretation. In the architectural
theories of the past 20 years, a certain predominant
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group of theoreticians, following the traces of humanistic
philosophies, have been seeking to find origins, sources,
or connections between humanism and digital phenomena.
This approach is understandable and expected especially
by a group of people that have a deep understanding of
humanistic philosophies. The problem, however, with this
approach is that it doesn’t take under consideration alter-
native theories, concepts, or methods that are perhaps
alien, foreign, and even antithetical to the dominant tra-
ditional humanistic philosophies.

Most computational theories become incomprehensible,
unintelligible, or incomplete if they are not understood as
part of a complementary interaction between the mind
and the computer. Because of the external nature of
computation, mere reading, studying, or speculating on
its theoretical implications is not sufficient enough to grasp
its hidden mechanisms. In contrast, actual implementa-
tion (i.e. programming) reveals mechanisms, events, or
phenomena that defy human explanation. In architecture,
this dichotomy was expressed by two antithetical thought
camps, formulated by two dialectically opposed ideologies:
that of tool-makers and that of tool-users. The first 
ideology, rooted in the principles of computation, strived
to offer the means for design explorations using computers
as vehicles. The main protagonists of this ideological 
camp are software developers, computer scientists, and 
mathematicians. In contrast, the second ideology sought
to connect humanistic philosophies with digital phenom-
ena. In doing so it had to search for ideas or principles
within the humanities that may explain or address digital
phenomena. For instance, Lynn argues that the plasticity
of computer generated forms may be associated with
Deleuze’s descriptions of smoothness and continuity, as
if software is associated with softness. While this may
hold some value at a phenomenal level, it certainly holds
no truth at a mathematical level. Polynomial-based curves
or surfaces, i.e. NURBS, exhibit a continuous and smooth
behavior only when implemented on a computer system.
It is the numerical representation, processing power, and
display resolution of a computer system that makes the
plasticity possible, something unknown and perhaps irrel-
evant to Deleuze20. However, concepts such as numeri-
cal processing or resolution are not human and therefore
cannot be credited. Instead, in the absence of a sentient
identifiable human creator, a philosopher’s position seems
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more appropriate. In such a way, humanism is credited,
praised, and celebrated by its fellow supporters in a self-
referential manner. This anthropocentric attitude is even
clearer in Lynn’s comparison of a computer with a pet21.
The use of the words domesticate and wilderness are char-
acteristic of an anthropocentric and human-dominating
attitude rather than a synergistic and collaborative one.

What makes algorithmic logic so problematic for archi-
tects is that they have maintained an ethos of artistic
sensibility and intuitive playfulness in their practice. In
contrast, because of its mechanistic nature, an algorithm
is perceived as a non-human creation and therefore is
considered distant and remote. Traditionally, the dominant
mode for discussing creativity in architecture has always
been that of intuition and talent, where stylistic ideas are
pervaded by an individual, a “star,” or a group of talented
partners within the practice. In contrast, an algorithm is
a procedure, the result of which is not necessarily credited
to its creator. Algorithms are understood as abstract and
universal mathematical operations that can be applied to
almost any kind or any quantity of elements. For instance,
an algorithm in computational geometry is not about the
person who invented it but rather about its efficiency,
speed, and generality. Consequently, the use of algorithms
to address formal problems is regarded suspiciously by
some22 as an attempt to overlook human identity and
creativity and give credit instead to an anonymous,
mechanistic, and automated procedure23. In any case,
algorithms are encapsulations of processes or systems
of processes that allow one to leap and adventure into
the world of the unknown whether natural or artificial.
They are not the end product, but rather a vehicle for
exploration. What distinguishes these processes from
common “problem-solving” is that their behavior is often
non-predictable and that frequently they produce patterns
of thought and results that amaze even their own creators.

Computation is a term that differs from, but is often con-
fused with, computerization. While computation is the
procedure of calculating, i.e. determining something by
mathematical or logical methods, computerization is the
act of entering, processing, or storing information in 
a computer or a computer system24. Computerization is
about automation, mechanization, digitization, and con-
version. Generally, it involves the digitization of entities or
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processes that are preconceived, predetermined, and well
defined. In contrast, computation is about the exploration
of indeterminate, vague, unclear, and often ill-defined
processes; because of its exploratory nature, computation
aims at emulating or extending the human intellect. It is
about rationalization, reasoning, logic, algorithm, deduc-
tion, induction, extrapolation, exploration and estimation.
In its manifold implications, it involves problem-solving,
mental structures, cognition, simulation, and rule-based
intelligence, to name a few.

The dominant mode of utilizing computers in architecture
today is that of computerization; entities or processes
that are already conceptualized in the designer’s mind
are entered, manipulated, or stored on a computer system.
In contrast, computation or computing, as a computer-
based design tool, is generally limited. The problem with
this situation is that designers do not take advantage of
the computational power of the computer. Instead some
adventure into manipulations or criticisms of computer
models as if they were products of computation. While
research and development of software involves extensive
computational techniques, mouse-based manipulations
of 3D computer models are not necessarily acts of 
computation. For instance, it appears, from the current
discourse that mouse-based manipulations of control
points on NURBS-based surfaces are considered by some
theorists to be acts of computing25. While the mathe-
matical concept and software implementation of NURBS
as surfaces is a product of applied numerical computation,
the rearrangement of their control points through com-
mercial software is simply an affine transformation, i.e. a
translation.

When comparing contemporary practicing architects such
as Thom Mayne, Frank Gehry, and Peter Eisenman it is
necessary to overlook many significant and distinguishing
differences in order to identify at least one common theme:
the use of the computer as an exploratory formal tool and
the increasing dependency of their work on computational
methods. The most paradigmatic examples of the last
ten years invest in computationally generated partis and
diagrams. Through computation, architecture transcends
itself beyond the common and predictable. In contrast,
computerization provokes Whorfian effects: through the
use of commercial applications and the dependency on
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their design possibilities, the designer’s work is at risk of
being dictated by the language-tools they use. By unknow-
ingly converting to the constraints of a particular computer
application’s style, one runs the risk of being associated
not with the cutting-edge research, but with a mannerism
of “hi-tech” style.

A paradigm shift is defined as a gradual change in the col-
lective way of thinking. It is the change of basic assump-
tions, values, goals, beliefs, expectations, theories, and
knowledge. It is about transformation, transcendence,
advancement, evolution, and transition. While paradigm
shift is closely related to scientific advancements, its true
effect is in the collective realization that a new theory or
model requires understanding traditional concepts in
new ways, rejecting old assumptions, and replacing them
with new. For T.S. Kuhn26, scientific revolutions occur
during those periods where at least two paradigms coexist,
one traditional and at least one new. The paradigms are
incommensurable, as are the concepts used to under-
stand and explain basic facts and beliefs. The two live in
different worlds. The movement from the old to a new
paradigm is called a paradigm shift.

Traditionally, the dominant paradigm for discussing and
producing architecture has been that of human intuition
and ingenuity. For the first time perhaps, a paradigm shift
is being formulated that outweighs previous ones27.
Algorithmic design employs methods and devices that
have no precedent. If architecture is to embark into the
alien world of algorithmic form, its design methods should
also incorporate computational processes. If there is a
form beyond comprehension it will lie within the algorith-
mic domain. While human intuition and ingenuity may be
the starting point, the computational and combinatorial
capabilities of computers must also be integrated.

In developing computer programs one is forced to ques-
tion how people think and how designs evolve. In other
words, computers must be acknowledged not only as
machines for imitating what is understood, but also as
vehicles for exploring what is not understood. The entire
sequence of specifying computer operations is similar to
that of human thinking. When designing software for nat-
ural language understanding, knowledge representation,
inference, or learning, one is actually transferring to a
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machine processes of human thinking. The computer
becomes a mirror of the human mind, and as such it
reflects its thinking. Therefore, design can be explored as
a mental process not only by observing human behavior,
but also by observing the machine’s behavior. To do this,
it is necessary to perform individual operations with sub-
stantial independence; that is, the entire sequence of
operations must be such that there is no human inter-
vention from the time data is entered until the results are
obtained and that design decision-making mechanisms
be built into the machine itself. This does not mean that
a “computer-designer” is to be created even though 
that may be desirable eventually. Rather, it suggests the
attainment of independence in solving particular design
problems. Thus, the designer can observe via the computer
one’s own decision-making process and compare it with
that of others.

Originally the role of computers in architecture was to
replicate human endeavors and to take the place of
humans in the design process. Later the role shifted to
create systems that would be intelligent assistants to
designers, relieving them from the need to perform the
more trivial tasks and augmenting their decision-making
capabilities. Today, the roles of computers vary from
drafting and modeling to form-based processing of archi-
tectural information. While the future of computers appears
to include a variety of possible roles, it is worth exploring
these roles in the context provided by the question: “Who
designs?” If one takes the position that designing is not
exclusively a human activity and that ideas exist inde-
pendently of human beings, then it would be possible to
design a computational mechanism which would associate
those ideas.
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An algorithm is a computational procedure for addressing a
problem in a finite number of steps. It involves deduction,
induction, abstraction, generalization, and structured logic.
It is the systematic extraction of logical principles and the
development of a generic solution plan. Algorithmic strate-
gies utilize the search for repetitive patterns, universal prin-
ciples, interchangeable modules, and inductive links. The
intellectual power of an algorithm lies in its ability to infer
new knowledge and to extend certain limits of the human
intellect. An algorithm may be compared to the steps in
a recipe; the steps of gathering the ingredients, preparing
them, combining them, cooking, and serving are algo-
rithmic steps in the preparation of food. Obviously, the
number, size, and quality of ingredients, the sequence
and timing of events, as well as the serving and presen-
tation of the final product are key factors to a recipe.
Theoretically, an algorithm is the abstraction of a process
and serves as a sequential pattern that leads towards
the accomplishment of a desired task. For instance, the
algorithm for cooking potatoes may be composed of the
following steps:

1. Peel
2. Boil
3. Cut
4. Serve

If the steps are reversed or one more step is added or
deleted, alternative recipes may be created that produce
different results. These results may be better, the same,
or worse than the original intention. However, as in cook-
ing, alterations, randomness, or accidents in the process

4 Scripts, algorithms, and other
predicaments



may lead to new solutions, none of which was known in
advance and whose newly emerged identity often differs
significantly from the originally intended target. In these
cases, the algorithm serves as a pattern of thought that
helps in understanding the problem, addresses its possible
solutions, and/or is a vehicle for defining new problems.

The common definition of the term algorithm involves the
word finite as it relates to a number of distinguishable,
countable, well-defined and therefore limited, bounded,
or determinable series of steps. However, while such an
assumption ensures that the description of a solution to
the problem, i.e. an algorithm, is composed of finite steps
this does not mean that the problem itself has to be
finite, bounded, or deterministic. For instance, a common
practice in the world of algorithms is something referred
to as an “infinite loop” – such a situation is regarded as
a misfortune and often results in a termination. While the
steps that describe an infinite loop may be finite and spe-
cific, the resulting situation is indeterminate and infinite.
For instance, the simple repetitive pattern defined through
the following statements:

A = false;

start:

if A is false then A = true;

if A is true then A = false;

go to start;

leads to an infinite cyclical argument where A changes
between true and false with no end. Yet, the series of
statements are indeed finite, well defined, and accurate.
Consider now the following simple algorithm:

start:

A = random number between 0 and 10;

If A is greater than 5 then exit

Else go to start;

In this case, there is a temporary uncertainty about the
generation and occurrence of a number greater than 5 to
terminate the loop. While eventually such a possibility is
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almost certain, its time of occurrence is not necessarily so.
The series of statements are finite yet lead to indetermi-
nate, uncertain, and unpredictable behavior.

In the following sections of this chapter basic structures
and processes of MEL scripting1 will be introduced in
order to understand, clarify, and illustrate some of the
mechanisms, relationships, and connections behind the
forms generated. This is not intended to be an exhaus-
tive introduction to scripting but rather an indication of
the potential and a point of reference for assessing the
value of algorithms.

Variables
A variable is a symbolic representation of a changing data
value. Variables can be created using letters preceded by
a dollar sign. As long as there is no empty space a variable
name should be valid. For example, $a, $sum, $value,
$randomNumber are all valid names. Variables, once
defined, are case sensitive, i.e. $temp is not the same
as $Temp. Case sensitivity applies also to commands,
i.e. move is not the same as Move, or polyCube is not
the same as polycube.

To assign a value to a variable simply use the = sign and
place the data value to the right side. For example, $a = 5
will assign 5 to variable $a, or $x = 3.5 will assign 3.5 to
variable $x (until a new value is assigned). We distinguish
two types of arithmetic data: integer numbers (whole) and
float numbers (fractional).

A variable can also accept data from a command whose
output may be unknown. For example, $r = rand(0,10)
is a case where the output of a random process that 
creates random numbers between 0 and 10 will be
assigned to $r. In this case, we will not know what the
value of $r is until we print it out using the print command.
For example,

$r = rand(0,10);

print $r;

These two sentences separated by a semi-colon (;) will
assign a random number and print it on the screen.
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Variable data types
We use variables to hold data. Variables can be of different
types: if we hold whole numbers we called them integer
variables and use the symbolic name int, if hold characters
we call them strings and use the name string. There are
four variable data types

Operations
We have two types of operation: arithmetic and logical.
Arithmetic operations are addition (+), subtraction (−),
multiplication (*), and division (/). There is also an oper-
ation called remainder (%) and returns the remainder of
the division between two numbers. For example,

$a = 5;

$b = 2;

$c = $a + $b;

In this case $c will become 7. In the following example:

$c = $a % $b;

$c will become be 1, because 5 divided by 2 is 2 and
the remainder is 1. In brief:

Table 4.2 Arithmetic operations

Operator Use Description

+ op1 + op2 Adds op1 and op2
− op1 − op2 Subtracts op2 from op1
* op1 * op2 Multiplies op1 by op2
/ op1 / op2 Divides op1 by op2
% op1 % op2 Computes the remainder of 

dividing op1 by op2

Table 4.1 Variable data types

Type Description Example

int Integer numbers −1, 0, 4, 100
float Fractional numbers 2.3, −0.1, 23.45
string Characters and words “a,” “apple,” “12”
vector 3D coordinates < <1.1,2.2,4.1>>, <<0,0,0>>
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Logical operations are those that involve the truth or falsity
of the comparison between two variables. Those opera-
tions are greater (>), greater or equal (>=), equal (==), not
equal (!=), less (<), and less or equal (<=). The logical
operation is performed using the command if followed by
parentheses containing the logical operation. As an alter-
native condition we use the else command. For example,
the statement:

$a=3;

$b=4;

if($a > $b) {

print $a;

}

else {

print $b;

}

The “if” statement tests the truthfulness of the
operation and if it is true executes the following 
commands enclosed between the curly brackets 
{ and }. In general, curly brackets group statements 
that need to be executed sequentially as a group. In 
the following example we will determine the truthful-
ness of a logical statement whose operand data is 
unknown.

$r1 = rand(0,10);

$r2 = rand(0,10);

if($r1 == $r2){

print $r1;

}

The “if” statement here is used to determine whether the
random number $r1 is equal to the random number $r2.
Notice that the equality test uses the symbol == instead
of the data assignment symbol =.
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Repetition
A repetition statement is referred to as a loop. It consists
of the command for followed by parentheses containing
three parts: an initial condition; a termination condition;
and a pace of repetition. For example,

for($i=0; $i<10; $i=$i+1){

print $i;

}

is a loop that will initiate a variable $i to 0, terminate when
the variable is 10, and increment in steps of 1. At each
loop, it will print out the value of $i. The result would be

0123456789

Notice that the loop starts at 0 and exits at 10, so 9 is
the last printed element. However, as a total, the printed
elements are 10.

The statement $i = $i + 1 can be also expressed as $i++.
The ++ symbol means “add 1 to ….” In contrast the
symbol −− means “subtract 1 from ….” So, below are
various loops:

for($i=0; $i<20; $++)

for($i=10; $i>0; $i−−)

for($x=−10; $x<10; $x=$x+2)

The first loop will start at 0, stop at 20 and increment by 1.
The second loop will start at 10, stop at 0, and decrement
by 1. The third loop will start at −10, stop at 10, and incre-
ment by 2.

Table 4.3 Logical operations

Operator Use Returns true if

> op1 > op2 op1 is greater than op2
>= op1 >= op2 op1 is greater than or equal to op2
< op1 < op2 op1 is less than op2
<= op1 <= op2 op1 is less than or equal to op2
== op1 == op2 op1 and op2 are equal
!= op1 != op2 op1 and op2 are not equal
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There are two commands associated with loops: continue
and break. “Continue” will skip one loop and “break” will
exit the whole loop. For example, the following loop:

for($i=0; $i<20; $i++){

if($i==4)continue;

if($i>7) break;

print $i;

}

will produce the following printout: 0123567. 4 is skipped
and after 7 the loop is abandoned.

By using simple arithmetic operations one can produce
various number patterns. For instance,

for($i=0; $i<20; $i++){

$x = $i/2;

print $x;

};

will produce the following number pattern (notice that $i
is integer so fractional values will be omitted)

00112233445566778899…

Similarly, the following formulas will result in the following
number patterns:

Table 4.4 Repetition patterns

Formula Result

$x = $i/3; 00011122233344455566
$x = $i/4; 00001111222233334444
$x = ($i+1)/2; 011223344556677889910
$x = ($i+2)/2; 1122334455667788991010
$x = $i%2; 01010101010101010101
$x = $i%3; 01201201201201201201
$x = $i%4; 01230123012301230123
$x = ($i+1)%4; 12301230123012301230
$x = ($i+2)%4; 23012301230123012301
$x = ($i/2)%2; 00110011001100110011
$x = ($i/3)%2; 00011100011100011100
$x = ($i/4)%2; 00112233001122330011
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Arrays
An array is an ordered set of data. We can have arrays of
integers, floats, strings etc. We define an array by using the
[] symbol. For example:

int $evenNumbers[];

string $listOfNames[5];

The above arrays define 0 and 5 elements respectively.
An array can be initialized with data values using the {}
operation. For example:

int $numbers[4] = {3, 5, 2, 1};

float $temperatures[6] = {103.4, 101.0, 99.3, 98.2,
97.3, 98.1};

string $colors[3] = {“brown”, “red”, “green”};

To extract the value of an array member we use an index
starting from 0. So, in the following example:

int $numbers[4] = {3, 5, 2, 1};

print($numbers[0]); //should be 3

print($numbers[3]); //should be 1

Once we create an array we can fill it with data and then
access them. For example:

int $evenNumbers[];

for($i=0; $i<50; $i++){

$evenNumbers[$i] = $i * 2;

}

print($evenNumbers[31]); //should be 62

The command size() returns the size of an array as an
integer number. The commands clear() and sort() will
clear and sort arrays respectively. For example:

int $x[30];

print(size($x)); //will be 30

clear($x);

print(size($x)); //will be 0
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Geometrical objects and transformations
Maya has geometrical objects such as curves, surfaces or
solids that have names in MEL. For example, a curve is
called “curve,” a NURBS surface is called “nurbsPlane,” a
sphere is called “sphere,” or a polygonal cube is called
“polyCube.” For example, to create a sphere, the command
“sphere,” typed in the editor, will generate a default
sphere. These geometrical commands are listed in the
Help->MEL Command Reference. To modify the
parameters of any geometrical object we use modifiers
called flags that are also listed in the MEL command ref-
erence. For example, the command:

sphere –r 5;

or

polyCube –w 1 –d 0.5 –h 3;

will create a sphere of radius 5 and a polygonal cube of
width 1, depth 0.5, and height 3. Each flag is defined by
a minus sign, a name (or initial) and a data value, i.e.
“–w 1” means width of 1 unit.

By default all objects are situated at the 0,0,0 origin 
at the object’s center. To change the location, orien-
tation, or size we use the move, rotate and scale
commands. Each command takes three numbers that
represent the x, y, and z value of the transformation. For
example,

sphere –r 1

move 10 3 5.5

rotate 30 0 45

scale 1 2 1

will create a sphere of radius 1 and then move it at 
location 10, 3, 5.5, then rotate it by 30 degrees in the
x direction, 0 degrees in the y direction and 45 degrees
in the z direction and finally scale the object twice in the
y direction but leave it intact in the other directions (1 is
the identity operator for scaling). Each transformation also
has modifier flags associated with the transformation. The
most important flag is −r (−relative) which moves, rotates,
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or translates an object relative to its previous location.
So, for example, in the previous example:

move –r 10 3 5.5

will move the sphere 10, 3, 5.5 units away from its pre-
vious position to location 20 6 11 (as opposed to the
absolute location of 10,3,5.5 which is the default state
when no flag is used).

Attributes
A geometrical object may be composed of subelements,
i.e. a polygon-based (polyCube) is composed of faces,
edges, and vertices and a NURBS-based (cube) surface
composed of isoparms and control points. The location of
these elements can be addressed using the . (=dot) sep-
arator in the form

Object.element

For example, for a polyCube named MyCube, we can
extract its first vertex in the following manner:

$p = pointPosition MyCube.vtx[0];

The pointPosition command returns the actual coordinates
of the point in Cartesian space.

To get the attributes associated with an object we use
the getAttr command. So

$r = getAttr MyCube.rotate

will return the xyz rotational angles of MyCube in the vari-
able $r. These values, in turn, can be extracted as

float $rx = $r[0];

float $ry = $r[1];

float $rz = $r[2];

In this case $r is an array with three elements that cor-
respond to the values of xyz in the order 012.

Similarly, the xyz translational coordinates of MyCube can
be obtained using the command

$t = getAttr MyCube.translate
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This array $t holds the xyz coordinates of the center of
the object. To get the actual location of each vertex we
use the pointPosition command (above).

Sometimes the name of an object may be a variable, 
i.e. $object_name. If we use the getAttr command the
system will return an error because the following

$t = getAttr $object_name.translate

is confusing. So, instead we create the actual com-
mand as a string and then execute it using the eval
command:

$t = eval(“getAttr ” + $object_name + “.translate”);

Sequential transformation
Using loops, geometrical objects, and transformations
we can place objects sequentially creating rhythm, repe-
tition, or progression. For example, the following code
will generate 12 cubes of half-unit and place them in
equal distance of 2 units in the x direction:

for($x=0; $x<12; $x++){

polyCube –w 0.5 –d 0.5 –h 0.5;

move ($x*2) 0 0;

}
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Similarly, the following code will generate a series of 
15 cubes, scale them along the z axis, move them 1 unit
apart, and progressively rotate them by 10 degrees in the
x direction:

for($x=0; $x<15; $x++){

polyCube –w 1 –d 1 –h 1;

move ($x) 0 0;

scale 0.5 0.5 5;

rotate ($x*10) 0 0;

}
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4.2
Rotational progression

We can also introduce randomness in the process by
adding (or subtracting) a randomly generated value. For
example, the following code will create 20 sequential
cubes whose height will be random:

for($x=0; $x<20; $x++){

$r = rand(-3, 3);

polyCube –w 1 –d 1 –h (5+$r);

move ($x*2) 0 0;

}



The remainder operation(%) can also be used to create
repetition at variable distances. Because the remainder
of the division of any number by a divisor will always be
0 if the divisor is divided exactly we can use this property
to create rhythm. For example:

for($x=0; $x<40; $x++){

if($x%5= =0) continue;

polyCube –w 1 –d 1 –h 1;

move ($x*2) 0 0;

}
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will skip one every five cubes because the remainder of the
division of $x with 5 is 0 every time $x is a multiple of 5.

Loops can occur in one direction, but also in two or three
directions. For example, the following code:

for($y=0; $y<10; $y++){

for($x=0; $x<10; $x++){

polyCube –w 1 –d 1 –h 1;

move ($x*2) ($y*2) 0;

}

}

will produce a series of rows of cubes in the x direction (as
seen in the inner x loop) but then will produce sequences
of rows in the y direction (as seen in the outer y loop).
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The command rand($min, $max) will create a random
number between $min and $max. For example:

$r = rand(−5, 5)

will create a random fractional number (i.e. 2.1 or −4.1)
between −5 and 5.

Randomness can always be introduced as a deviation
from an orderly placement. For example, adding a random
number to an existing location will produce the following
code and effect:

for($y=0; $y<10; $y++){

for($x=0; $x<10; $x++){

polyCube –w 1 –d 1 –h 1;

$r = rand(−0.2, 0.2);

move (($x+$r)*2) (($y+$r)*2) 0;

}

}
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The amount of randomness added to an orderly pattern
can be subtle enough to create a balanced composition
of order and disorder.

Multi-Booleans
Geometric Boolean operations are used to articulate the
presence or absence of material substances. Theoretically,
there are three boolean operations, OR, AND, and NOT,
that correspond to logical operations. However, in the con-
text of solid objects, these operations correspond to union,
intersection, and difference. While the minimum operands
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4.7
Order and randomness (class project by M. Snyder for course GSD2311 taught by Kostas
Terzidis in Fall 2005 at Harvard University)

4.8
Disturbed landscape (class project by C. Shusta for course GSD2311 taught by Kostas Terzidis
in Fall 2005 at Harvard University)
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A union B A intersection B A difference B

4.9
Boolean operations

for these operations are always two, combination or repet-
itive application of the operations can result in compli-
cated forms.

Traditionally, architects have maintained a logic of accu-
mulative progression during the design process. Because
of the artificial nature of design, architects traditionally
follow a bottom-up approach where elements are com-
posed into objects, and objects into groups to form struc-
tures, systems, and buildings. Iakov Chernikov and other
constructivists, for example, elaborated on the combina-
tion of forms, using the basic concepts of “constructive
combinations,” such as combination, assemblage, pen-
etration, mounting, integrating, coupling, interlacing, and
so on, both statically and dynamically, using hard or soft
materials. These concepts constitute a Boolean design
language, one having the advantage of combining forms in
a manner familiar to architects.

The following code shows a simple method to union mul-
tiple objects and to difference one object from multiple
objects creating holes or niches:

1 seed(5.); //optional, in order to repeat randomness

2

3 for($i=0; $i< 20; $i+ + ){

4 $name = “MyObject” + $i;

5 polyCube -name $name;

6 move (rand(-.5,.5)) (rand(-.5,.5)) (rand(-.5,.5));

7 scale (rand(2.5,3.5)) (rand(2.5,3.5)) (rand(2.5,3.5));



8 } //for i

9

10

11 polyBoolOp -op 1 -name MyResult1 MyObject0 MyObject1; //union the first
two objects

12

13 for($next=2; $next <20; $next+ +){ // go for the rest

14 $obj_next = “MyObject” + $next; //define the next object

15 $previous = $next - 1;

16 $obj_previous = “MyResult” + $previous;

17 $result = “MyResult” + $next; //define the previous object

18 polyBoolOp -op 1 -name $result $obj_previous $obj_next; //union
the previous with the next

19 }// for next

20

21 rename MyResult19 MyResult0; //rename the object to start the difference
process

22

23 for ($i=0; $i<20; $i+ + ) { //for 30 objects to be differences (i.e. holes)

24 //create a cylinder to be used for subtraction (difference)

25 polyCylinder -n (“MyCylinder” + $i) -h (rand(8,9)) -r (rand (.05,.1));

26 move (rand(-1,1)) (rand(-1,1)) (rand(-1,1)); //move anywhere within
the target body

27 //subtract (difference) the previous with the next

28 eval (“polyBoolOp -op 2 -n MyResult” + ($i +1) + “MyResult” +
$i + “MyCylinder” + $i);

29 }; //for i
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The first line of the code uses the command seed that
initializes a sequence of random numbers. The state-
ment is optional and should be used to produce the
exact same effect of random sequences. Lines 3 to 8 
are a description of creating 20 cubes of various shapes
that overlap one another. At line 11 we union the first
two objects (i.e. MyObject0 and MyObject1) and create



a combined object called MyResult1. We then loop
through the rest of the objects (i.e. 2 to 20) to union
every object with the next one. At each step we create 
a resulting object called MyResult which is used as the
previous object.

At line 21 we are renaming the last and only object in the
scene which is the result of the combined union. We call
it MyResult0. This object will be used as a target for 
difference operations to follow.

We loop through 20 times and create long cylinders that
are dispersed so that they can penetrate throughout the
target object MyResult0. We then subtract each cylinder
from the target object and then use the new object cre-
ated to subtract from it again.

The results of these operations are shown in Figures 4.10
and 4.11.

Similarly, a series of spheres can be subtracted from the
cube or a series of cubes can be subtracted from a cylin-
der. While the original objects are subtracted and there-
fore deleted, their presence is still visible through the
mold that reflects their absence. Absence becomes the
state of not being present.
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4.10
Union of multiple cubes (top) and subtraction of multiple cylinders (bottom)



Stochastic search
A stochastic search is defined here as a random search
in space until a given condition is met. For instance, the
placement of toys in a playpen so that each toy does not
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4.11
Subtracted objects are still present through their absence (class project by C. Shusta for
course GSD2311 taught by Kostas Terzidis in Fall 2005 at Harvard University)



overlap another and they all fit within the limits of the
playpen can be addressed with a stochastic search. The
algorithm will work as follows:

while(no more toys left to place){

choose randomly a position (rx, ry) within the playpen

compare it with all previous toy locations

is there an overlap? (if no then place the 
toy at (rx, ry))

}

This algorithm can use used to place objects within a site so
that there is no overlap (or some other criterion is satisfied).
In the following code, a series of 100 cubes is placed
within an area of 10 × 10.
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1 for($i=0; $i<100; $i++){ //for all objects

2

3 $name = “MyCube” + $i; //create a series name

4 polyCube -w 1 -d 1 -h 1 -name $name; //make a cube

5

6 $range = 10; //define a range

7 $sv=0; //set a safety valve to avoid infinite loops

8 while(true){ //search forever

9 $rx = rand(-$range,$range); //get a random x position (dart)

10 $ry = rand(-$range,$range); //get a random x position

11 $overlap = false; //set a flag a false (until proof of the opposite)

12 for($j=0; $j<$i; $j++ ){ //loop through all the previous 
elements

13 $name = “MyCube” + $j; //get a previous name

14 $px = eval(“getAttr “+ $name + “.translateX”); 
//get the x location of the previous

15 $py = eval(“getAttr “+ $name + “.translateY”);
fi w fj //get the y location of the previous



The algorithm starts with an outer loop where a hundred
cubes are to be placed. First, each cube is named
sequentially as MyCube0, MyCube1, MyCube2, etc. and
then created (lines 3 and 4). A range is defined as 10
and a counter $sv is initialized to be used later in order
to avoid infinite loops (to be called here a safety valve).
Then, in lines 9 and 10 we create random locations and
x and y between negative and positive ranges. If flag is
being set to false that will be used later to determine
whether there’s an overlap or not. Now, we need to loop
back through all the objects that have been created
already (line 12). So, we get the name of each previous
cube and use it to extract the translational value in both
x and y, which we use to determine the distance between
the previous and the candidate. In other words, given a
random location we need to determine whether position-
ing a cube will overlap any of the previous cubes. In line 18
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16 $diffx = abs((float)($rx-$px)); //get the x distance 
between previous and candidate

17 $diffy = abs((float)($ry-$py)); //get the y distance 
between previous and candidate

18 if($diffx < 1. && $diffy < 1. ) // if x and y distance is less 
than tolerance (i.e. 1)

19 $overlap = true; //set the flag

20 – } //for j again

21 if($overlap==false){ //if there is no overlap

22 move $rx $ry 0; // move the cube in the location (the position
satisfies the criterion)

23 textCurves -f “Courier” -t $i; // make a label with its serial 
number to identify it

24 move $rx $ry 0; // move the label to the middle of the new cube

25 scale -r 0.1 0.1 0.1; // scale the label

26 break; //exit the while loop

27 }

28 $sv++; if($sv >1000){print(“not found\n”);break;} //if 1000 
unsuccessful attempts are made exit

29 – }//while (again)

30

31 }; //for $i



we test to see whether the difference is enough to allow
a cube to be placed in between. If the distance is not
enough then set the flag to be true. Else we set the flag
to false. We continue looping for all the objects and if the
flag continues to be false (i.e. there is no overlap) we move
the cube at the candidate random location (line 22). The
next three lines of code create 3D text with the number
of the cube (for identification purposes) and then break
out of the while loop. Line 28 is referred to as a “safety
valve” and its purpose is to force an exit to the loop if an
infinite loop situation occurs. The counter $sv increases
by one at each attempt, so if the number of unsuccessful
attempts exceeds 1000 (or any sufficiently large number)
then the system is forced to exit the loop.

Figure 4.12 shows the placement of a hundred troops in
an area of 10 × 10 without overlaps.
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4.12
Distribution of 100 cubes within a 10 × 10 site with no overlap
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Fractals
A fractal is a geometric object generated by a repeating
pattern, in a typically recursive or iterative process. Usually,
the outcome shape can be divided into parts, each of
which is similar to the original shape. Fractals are said to
possess infinite detail, and some of them have a self-
similar structure that occurs at different levels of magni-
fication. The term fractal was coined in 1975 by Benoît
Mandelbrot, from the Latin word fractus or broken.

In a fractal process, there are at least two shapes: a base
and a generator. In each iteration, the generator replaces
each segment of the base shape. Theoretically this process
continues infinitely. The algorithm to create fractals con-
sists of a basic procedure that fits a shape between two
points. The process of fitting involves scaling, rotation,
and translation of the generator to fit between two points

Of course, this algorithm can be modified to allow only
overlaps by reversing the logic, or the conditions for
placement can be so complex that they can satisfy vari-
ous architectural conditions (i.e. public space, sun expo-
sure, zoning envelope, etc.).

4.13
A housing development that uses stochastic search to determine the location of its units
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of a segment of the base. The following code shows the
procedure:

1 proc fit (vector $start, vector $end, vector $shape[]){

2

3 // make a curve out of the array points in shape[]

4 string $points = “”; //create an empty string

5 $point = $shape[0]; //get the first point

6

7 for($i=0; $i< size($shape); $i+ +){ //for all points of the shape

8 $point = $shape[($i)]; //extract a point

9 $points + = “ -p “ + $point; //add it to the string

10 }

11 eval(“curve -d 1 “ + $points); //create a curve out of the input points
in $shape[]

12

13 //scale to fit

14 $temp_end = $end - $start; // move the points to the origin

15 float $mag = mag($temp_end); // get the magnitude of their length

16 float $amag = mag($point); // get the magnitude of the length of the
base segment

17 float $scale_factor = $mag/$amag; //get the scaling factor

18 scale $scale_factor $scale_factor $scale_factor;// scale

19

20 //rotate to fit

21 float $anglex = atan2d($temp_end.y,$temp_end.x); //atan2d gives the
angle

22 rotate 0 0 $anglex;// rotate //from the origin to a point

23

24 //move to fit

25 move ($start.x) ($start.y) ($start.z); // move back to the original location

26

27 refresh; //refresh the screen to see the replacement as it happens

28 } //procedure end
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The procedure called fit takes as input a point called
$start, a point called $end, and an array of points that
define the shape to be fitted. Each point is defined here
as a vector. A vector is a data type that contains three
float numbers for x, y, and z, which can be extracted
using the dot operator, i.e. for a vector called $start we
have $x = $start.x; $y = $start.y; and $z = $start.z.

First, we create an empty string to be filled with points
that will later on define a curve. In line 5 we extract the
first point of the input shape (to be used later in line 16).
Then we loop through all the points of the input shape,
extract each point and put them into the variable $point,
and concatenate each point to the string $points (lines
8 and 9). The command size() is used here to extract the
size of the array $shape. After the loop is done, we create
a curve of dimension one (a polyline). This is the generator
shape that will be fitted between points $start and $end.

Next we scale the curve to fit between the two points. In
line 14 we subtract start from end thus bringing the gap to
be fitted to the origin (0,0,0). We then get the magnitude
of the gap as well as the magnitude of the length of the
curve to be fitted. We divide the two magnitudes attending
a factor for scale. We use that factor to scale the curve.

Then we rotate the curve by an angle. This angle points
at the direction of the end point. The command atan2d
returns the angle from the origin to a point. In this case,
the point is the offset end point $temp_end. Finally, we
move the point back to its original location. (The refresh
command is used here as an effect so that we can see the
replacement as it happens.)

The next procedure is the main one where the fractal oper-
ation is called (the identifier global allows it to be called
from everywhere and at anytime):

1 global proc fractal(){

2

3 vector $generator[]; //make an array for the generator

4 $generator = getPoints(“curve1”); //populate the array with the curve1 
(generator) points

5 vector $base[]; //make an array for the base
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6

7 string $list[];

8 $list = eval(“ls -transforms \”curve*\””); //returns an array with the names of

9 //all objects in the scene that match the
word “curve”

10

11 for($j = 1; $j<size($list); $j++){ //we start at 1 because 0 is the generator

12 $base_name = $list[($j)];

13

14 $base = getPoints($base_name); //get the points

15 //once we have the points we erase the shape since we will replace it

16 eval(“delete “ + $base_name);

17

18 for($i=0; $i<(size($base)-1); $i++)

19 //replace the current (i) and next (i+1) points with the 
generator’s array

20 fit($base[$i], $base[($i+1)], $generator);

21 } //for j

22 } // procedure end

The fractal procedure starts by defining two main arrays:
generator and base where the points of the generator
and base shape will be stored respectively. In line 4 a
procedure called getPoints is called that will extract the
points from a shape and put them in an array (this pro-
cedure will be defined later). At this point we assume

Base shape

Generator shape

4.14
A base and a generator shape
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that we have created two curves (of dimension 1) that
are called by default names curve1 (generator) and curve2
(base). It is important that the generator starts at the
origin and that the y-axis is upwards.

In line 8 we use this command to extract all the objects
in the scene that match the word curve. These curves will
be replaced by the generator. So, in line 11 we loop
through all the curves except the first one because that is
the generator. We extract their name and then extract their
points and put them in an array called $base. Once we are
done we delete the base shape because it is not needed
anymore. We then loop through all the points of each
segment of the base shape and replace it with the gen-
erator (line 20).

The next procedure extracts the points of a given curve
and puts them (populates) into an array which it then
returns as an array of vectors:

1 proc vector[] getPoints(string $curve_name){

2

3 //get the number of spans

4 $numSpans = eval(“getAttr “ + $curve_name + “.spans”);

5 vector $points[]; //make a vector array to collect the points

6

7 for($i = 0; $i <($numSpans+1); $i++){

8 $point = eval(“pointPosition “ + $curve_name + “.cv[“ + 
$i + “]”);
//get the cvs

9 float $x = $point[0];

10 float $y = $point[1];

11 float $z = $point[2];

12 vector $v = <<$x, $y, $z>>;

13 $points[$i] = $v; //store the values in points[]

14 } //for i

15 return $points; //return the array

16 } //procedure end
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First, the number of points (i.e. spans) need to be
extracted. We use the geAttr command to extract the
number of spans (line 4), then we loop through all the
spans to extract the position of each control point. We
put these coordinates into a vector array and return it.

Below are some examples using fractals:

step 1

step 2

step 1

step 3

step 1

generator base generator base generator base

step 3

4.15
Various fractals (class project by K. Hopkins for course GSD2311 taught by Kostas Terzidis in
Fall 2005 at Harvard University)

original generator base figureoriginal generator base figureoriginal generator base figure

4.16
Fractals with curves (class project by K. Takeuchi for course GSD2311 taught by Kostas
Terzidis in Fall 2005 at Harvard University)
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Cellular automata
A cellular automaton (plural: cellular automata) is a discrete
model that consists of a finite, regular grid of cells, each in
one of a finite number of states. Time is also discrete, and
the state of a cell at a time slice is a function of the state
of a finite number of cells called the neighborhood at the
previous time slice. Every cell exhibits a local behavior
based on a rule(s) applied which in turn is based on values
in its neighborhood. Each time the rules are applied to the
whole grid a new generation is produced.

4.17
An 8-neighborhood

1 int $xmax = 40;

2 int $ymax = 40;

3

4 //create the lattice of cells

While cellular automata (CA) were developed originally to
describe organic self-replicating systems, their structure and
behavior were also useful in addressing architectural, land-
scape, and urban design problems. From vernacular settle-
ments and social interaction to material behavior and air
circulation, CA may provide interesting interpretations of
urban and architectural phenomena. The basic idea behind
CA is not to describe a complex system with complex equa-
tions, but to let the complexity emerge by interaction of
simple individuals following simple rules. Typical features of
CA include: absence of external control (autonomy), sym-
metry breaking (loss of freedom/heterogeneity), global order
(emergence from local interactions), self-maintenance
(repair/reproduction metabolisms), adaptation (functional-
ity/tracking of external variations), complexity (multiple con-
current values or objectives), and hierarchy (multiple nested
self-organized levels).

The following algorithm was developed as a kernel to
implement cellular automata for architectural purposes:
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5 for($x=0; $x<$xmax; $x++) // loop in x-direction

6 for($y=0; $y<$ymax; $y++){ // loop in y-direction

7 polyPlane -ax 0 0 1 -w 1 -h 1 -sx 1 -sy 1 -name (“MyPlane” +
$x + “x” + $y);

8 move $x $y 0;

9 }

10 //disurb it

11 for($x=0; $x<$xmax; $x++) // loop in x-direction

12 for($y=0; $y<$ymax; $y++){ // loop in y-direction

13 $name = (“MyPlane” + $x + “x” + $y);

14 if(rand(2.) >1.) eval(“setAttr “+$name+”.visibility 0”);
//show or hide

15 }

16

17 int $status[]; //keep a memory of the current state of each cell

18

19 for($gen=0; $gen<10; $gen++) { //the number of trials (generations)

20

21 //first pass: collect information from the neighbors

22 int $idx = 0; //initialize a counter

23 for($x=1; $x<$xmax-1; $x++) // loop in x-direction

24 for($y=1; $y<$ymax-1; $y++){ // loop in y-direction

25 $name = (“MyPlane” + $x + “x” + $y);

26 $visible = 0.;

27 for($i=-1; $i<=1; $i++) // loop by three positions

28 for($j=-1; $j<=1; $j++){ // loop by
three positions

29 if($i==0 && $j==0)continue; 
// exclude the cell itself

30 $nameNeighbor = (“MyPlane”
+ ($x+$i) + “x” + ($y+$j));

31 $v = eval(“getAttr 
“+$nameNeighbor+” .visibility”);
//get value
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32 $visible += $v; //add them

33 }

34 $status[($idx)] = $visible; //remember each cell’s 
neighborhood condition

35 $idx++; //increment the counter

36 }//for y

37

38 //Second pass: apply a simple rule that may amount into a complex
pattern

39 $idx = 0; // initialize the counter

40 for($x=1; $x<$xmax-1; $x++) // loop in x-direction

41 for($y=1; $y<$ymax-1; $y++){ // loop in y-direction

42 $name = (“MyPlane” + $x + “x” + $y);

43 if($status[($idx)] == 3) //rule 1

44 eval(“setAttr “+$name+”.visibility 1”);
//show

45 else if($status[($idx)] >= 6) //rule 2

46 eval(“setAttr “+$name+”.visibility 0”);
//hide

47 $idx++;

48 }//for y

49

50 refresh; //show the pattern as it evolves

51

52 } // next generation

The first two lines define the size of the grid (40 × 40
cells). The first loop starting at line 5 creates a grid of
polygonal planes with a unique name that corresponds
to their x, y location, and the second loop (at line 11)
creates random disturbance of visibility: each plane (cell)
has a 50% chance of being opaque or transparent. Next,
we create an array of integers to store the current state
of each cell (line 17). Now, a loop of 10 iterations corre-
sponding to 10 generations (or number of trials) is initiated
within which there will be two passes; we can now apply
the rules to each cell individually.
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The first pass (line 23) goes for all the cells of the grid
except the ones that lie on the borders, because those
cells have no neighbors on at least one of their sides (in
other implementations the border cells can wrap around
to corresponding neighbors on the opposite side of the
grid). As we reach each cell we recall its name (line 25)
and set a counter called $visible to zero; this counter will
be used to count the number of visible cells in a neigh-
borhood of 3 × 3. So, we loop twice in the x and y direc-
tions from −1 to 1 excluding the case where both counters
are 0 and extract the visibility attribute of each neighbor.
If the visibility is one we increase the counter by one.
This way we are able to detect the number of visible
neighbors on a three by three neighborhood and place
that number in an array ($status).

In the second pass we apply the rules to each cell given
its neighborhood values: we loop in the x and y directions
again, extract the name of the cell (line 42), and then
apply the rules. In this particular case, there are two rules:
(a) if the number of visible neighbors is equal to three then
the cell should be visible and (b) if the number of visible
neighbors is greater than or equal to six then the cells
should be invisible (lines 43 to 46). The last line of code
is a command called refresh and is used here to show the
pattern as it evolves.

Figures 4.18 and 4.19 show examples of the use of CA
in an architectural context.

Hybridization
Hybridization (a.k.a. morphing) is a procedure in which an
object changes its form gradually in order to obtain
another form. Morphing is a gradual transition that results
in a marked change in the form’s appearance, character,
condition, or function. The operation of morphing con-
sists basically of the selection of two objects and the
assignment of a number of in-between transitional steps.
The first object then transforms into the second in steps.
The essence of such a transformation is not so much in
the destination form but rather in the intermediate
phases these transformations pass through, as well as in
the extrapolations, which go beyond the final form. It is the
transitional continuity of a form that progresses through a
series of evolutionary stages.
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Architectural morphing preserves the structural integrity
of the objects involved, that is, an object changes into
another object as a single entity. A cube, for instance,
may be gradually transformed into a pyramid. From the
viewer’s point of view, there are always two objects: the
original (or source), to which transformation is applied,
and the destination object (or target), which is the object
one will get at the final step of the transformation.
However, theoretically, there is only one object, which is
transformed from one state (original) into another (des-
tination). This object combines characteristics of both

4.19
Cellular automata maze (class project by M. Snyder for course GSD2311 taught by Kostas
Terzidis in Fall 2005 at Harvard University)

4.18
Cellular automata as an LCD display wrapped around a building (class project by N. Anderson
for course GSD2311 taught by Kostas Terzidis in Fall 2005 at Harvard University)
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parent objects, which are involved in the transformation
and is called a hybrid object. This object is actually com-
posed of the topology of one object and the geometry of
the other. It is an object in disguise. Although it is topolog-
ically identical to the one parent it resembles the geometry
of the other parent.

Interpolation is a method for estimating values that lie
between two known values2. The hybrid object derives its
structure from its parents through formal interpolations.
While it is easy to derive hybrid children from isomorphic
parents, a challenge arises for heteromorphic parents. In
an isomorphic transformation, a one-to-one correspon-
dence applies between the elements of the two parent
sets, such that the result of an operation on elements 
of one set corresponds to the result of the analogous
operation on their images in the other set. In the case 
of heteromorphism, the lack of homogeneity among 
the parents leads necessarily to a selective process of
omissions and inclusion of elements between the two
sets. The guiding principle in this mapping process is the
preservation of the topological and geometrical proper-
ties of the hybrid object. For instance, in the case of a
square mapped to a triangle, the addition of a fourth
point to the triangle preserves the topology of the square
and yet its disguised location preserves the geometrical
appearance of the triangle.

In the example in Figure 4.20, a square is mapped to a tri-
angle: the hybrid child is a four-sided polygon in which two

k1 P1 k kc Ch k2 P2

0 4 5 0 0 0 7 5 0 0 10 5 0

1 2 5 0 1 0 6 5 0 1 9 3 0
2 2 3 0 2 1 5.5 3 0 2 11 3 0
3 4 3 0 3 2 7.5 3 0 3 10 5 0
4 4 5 0 4 3 7 5 0

4.20
The coordinates of the parents and the hybrid child
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of the vertices overlap and are ordered to form a triangle.
The problem here is to map two counters so that when
the one is counting points from one object to another the
counter kc should skip points from the other object. 
For example, if the one counter k increments as 01234
the counter kc should increment as 00123 (or 01123 or
01223 or 01233). To obtain such behavior, we use the
function kc = k/(p1/p2) or kc = k/(p2/p1).

1 global proc hybrid(string $parent1, string $parent2, float $ratio){

2

3 int $p1pnts = eval(“getAttr “+ $parent1 +”.spans”); //number of
points of parent 1

4 int $p2pnts = eval(“getAttr “+ $parent2 +”.spans”); //number of points of
parent 2

5 int $degree = eval(“getAttr “+ $parent2 +”.degree”);

6 int $numpoints = max($p1pnts, $p2pnts); //child has the number of
points of the biggest parent

7 int $k1 = 0; // counter 1

8 int $k2 = 0; // counter 2

9

10 string $spoints = “”; //string to hold curve values

11 float $point[];

12

13 for($k=0; $k<($numpoints+1); $k++){

14 if($p1pnts>=$p2pnts){ //if p1 is greater than p2

15 $k1 = $k; //counter 1 remains 
as is

16 $k2 = $k/(($p1pnts*1.)/($p2pnts*1.)); } //counter 2
must be adjusted

17 else { //if p2 is greater than p1

18 $k1 = $k/(($p2pnts*1.)/($p1pnts*1.)); //counter 1
must be adjusted

19 $k2 = $k; } //counter 2 remains as is
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The procedure hybrid takes as input the two parents’
names and the ratio of interpolated steps. First, we extract
the number of points of the two parents and their degree
(and this case we’re looking at curves). The number of
points of the child object will be equal to the number of
points of the largest parent. We then initialized two coun-
ters $k1 and $k2, a string $spoints to hold the curve
values, and an array of floats called $point to hold the
points of the child object.

Next, we loop for all the points of the child object and
determine the two counters: depending on which parent
is greater we adjust one of the two counters. Since all
counters are integers any division between them will be
cast to the closest integer. Then, in line 21 we extract the
points of its parent throughout the counters and then
multiply by the ratio in order to obtain the points of the
child object.

The examples in Figures 4.21 and 4.22 illustrate the
pursuit for in-between hybrid objects.

20 // interpolate the values of the child relative to the parents

21 $p1 = eval(“pointPosition “+ $parent1 +” .cv[“+$k1+”] “); //get
parent 1’s points

22 $p2 = eval(“pointPosition “+ $parent2 +” .cv[“+$k2+”] “); //get
parent 2’s points

23 for($j=0; $j<3; $j++)

24 $point[$j] = $p1[$j] + $ratio * ($p2[$j] - $p1[$j]);

25 $spoints += “ -p “ + $point[0] + “ “ + $point[1] + “
“ + $point[2]; //assign child pnts

26 }

27

28 eval(“curve -d “ + $degree + “ “ + $spoints ); //the child 
curve

29

30 }
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4.22
Vertical transitions (class project by J. Paek and C. Santos for course GSD2311 taught by
Kostas Terzidis in Fall 2005 at Harvard University)

4.21
The mid-hybrid object may be defined as either a spherical cube or a cubical sphere
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Endnotes
1MEL stands for Maya Embedded Language. It is a way of 
instructing Maya to execute a series of actions through commands
typed in an editor. It is also referred to as scripting. The difference
between scripting and manual design is in the complexity and
unpredictability of the actions. The human designer may be 
constrained by quantitative complexity and may be unable to 
construct unpredictability since that would negate a designer’s
intellectual control.

In Maya the script editor can be invoked by selecting 
Window->General Editors->Script Editor…. A window with a
divider should appear. The lower part (white) is where you type in
the scripts and the upper part (gray) is the part where Maya
responds to the scripts. In the menu bar at the top you can exe-
cute the scripts by selecting Script->Execute (or simply Ctrl-
Enter). Help for each command can be found at the menu bar
under Help.

A script is composed of variables, operations, and commands
spelled and placed in a specific syntax. If the syntax or spelling is
wrong, Maya will respond with a complaint (in the gray area of 
the editor). A free educational version of Maya is available at
www.alias.com/maya

2The word interesting is derived from the Latin word interesse
which means to be between, make a difference, concern, from
inter- + esse (= to be). Interestingly, the in-between is literally
interesting.





An amphiboly is an ambiguous grammatical construction.
It is a statement whose meaning is indeterminate in a
peculiar way: while the statement has an obvious mean-
ing it also has a hidden or concealed meaning. An amphi-
boly occurs when the construction of a sentence or the
placement of an accent or punctuation allows it to have
two different meanings even if all of its terms are clear.

An amphiboly is an equivocal construction so framed as
to point distinctly at something while, at the same time,
implying the existence of something else. It is an ambigu-
ity that consists not only of the double use of language, but
also of artfully winding into the mind ambivalent sugges-
tions of an ambiguous nature without leading to any unique
direct conclusion. It uses certain clauses, which can be so
connected with other clauses as to divide the mind
between different views or parts of the meaning intended.

The fallacy of amphiboly is caused by faulty sentence
structure, and can result in a meaning not intended by the
author. In contrast, allusions, innuendos, or insinuations
are grammatical constructs aimed at intentionally imply-
ing imputations of an injurious nature to the character 
or reputation of the person referred to without making
any direct accusation. Even though such expressions are
indirect and subtle, they are usually derogatory in nature
aimed at gradually and insidiously introducing a thought by
subtle and artful means.

While amphiboly appears to be accidental it may also be
constructed so as to appear to be as such. While the
possibility of attaching an intention to a seemingly unin-
tended statement implies suspicion, ill will or malice, the
possibility of attaching unintentional sense to an intentional 
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statement opens up a more intricate interpretation than
has been previously possible.

Amphiboly differs from, but may be confused with, equivo-
cation. Equivocation uses a single word to suggest multiple
meanings, whereas amphiboly depends on the structural
sequencing of words in a sentence, which can be inter-
preted in at least two ways with equal justification.
Equivocation is based on the double use of language
whereas amphiboly is based on the arrangement of words
within a sentence. Therefore, an amphiboly can be defined
as an equivocal grammatical expression when, taken as a
whole, it conveys a given thought with perfect clearness
and propriety, and also another thought with equal pro-
priety and clearness.

The word amphiboly is derived from the Greek prefix
amphi-, which means “on both sides” and the suffix -boly
which means “stroke.” The root of the word points to the
existence of two opposite claims the contrast of which
leads to a sense of suspicion not because of a lack of
proof or quantity of information but because of the pres-
ence of contradictory evidence. It is a state of mind caused
by the presence of antithetical clues that hinder the forma-
tion of a unique conclusion. While an amphiboly is about
ambiguity, indefiniteness, and vagueness, it is also about
duality, ambivalence, and coexistence. Rather than
assuming two distinct states linked by an “either-or” rela-
tionship, a “both-and” relationship may occur instead. An
amphibian, for instance, is capable of living both on land
and in water. This property is caused by the integration of
two distinct functions into one.

While the notion of opposition can be caused by the exist-
ence of two distinctly opposite points, it can also be
caused by oscillation of one point between two opposite
states. This possibility opens up a more intricate under-
standing of the notion of contradiction. Rather than
assuming two distinct states linked by an “either-or” or a
“both-and” relationship, an “in-between” ambivalent con-
tinuity may emerge instead. Such a case involves time as
a measure of comparison between these antithetical
states. The complementary duality of these actions ensures
that for every pair of reverse actions the scene returns to
any of its two states, as if nothing ever happened. For
instance, a pendulum’s swing back and forth can happen
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repeatedly and yet at any moment there are only two
possible distinct states. This observation reveals a repeti-
tive pattern of events where time is of no importance.
Instead, the focus is set to the in-between time span when
the swing is understood as potentiality. A folded sheet, for
instance, is not understood as an isolated, independent,
or complete object but rather as a hidden, latent, or 
virtual potentiality to deploy. Rather than approaching
amphiboly as an operation of isolating opposites, it should
be understood as the unification of a complementary pair,
the importance of which lies “in between” as the one
state owes its existence to the absence (or the possible
existence) of the other.

An oracle is an ambiguous statement aimed at predict-
ing a specific future event. It is an amphiboly expressed
in the form of an enigmatic statement or allegory. For
instance, the meaning of the oracle framed as “you will
go and return not die in the war” depends on the place-
ment of the comma before or after the negative word “not.”
If the comma is placed before the word “not,” the phrase
reads “return, not die.” But if the comma is placed after
the word “not” the phrase reads the opposite way as
“return not, die!” Similarly, the oracle to King Cresus
when consulting about a war with Persia: “If you cross
the river, you will destroy a great empire.” This he applied
to the Persian empire, which lay beyond that river, and,
having crossed, destroyed his own empire in the conflict.
What is interesting about oracles is that they both affirm
and negate the ultimate metaphysical questions about
future and existence; by articulating a sentence in the
form of an ambiguous statement, an oracle becomes a
mind game, an enigma, the hidden meaning of which is
to be discovered or guessed. At the same time, it uses a
fault-proof hidden logic: as the only logical means of pre-
dicting future events is by utilizing an if-then hypothetical
clause, an amphiboly cleverly incorporates also the alter-
native “else” within the same statement, pointing at both
the assertion and negation of a possibility all at the same
time. As such, an oracle provides an answer to any ques-
tion simply because its formulation includes all possible
and impossible scenarios.

An oracle differs from a prophecy. While an oracle is an
answer to a specific question, a prophecy is a god-revealed
prediction about the future. Oracles use logic as a premise
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to formulate predictions whereas prophecies deny logic.
While an oracle may appear contradictory, opposed to
common sense, or utilizing absurd terms, eventually it may
be true in fact.

Just because one doesn’t know something that doesn’t
mean that it doesn’t exist. By the same logic, just because
one knows something, it doesn’t mean that it does exist.
An inference is a process of deriving logical conclusions
from premises known or assumed to be true. Thus, while a
conclusion may be true, derived from a truthful, consistent,
and valid inference, the premises it is based upon may be
false. Because inference is a logical process, it is objective,
universal, and traceable; yet the premises of an argument
may be arbitrary. The problem with this is that arguments
can be constructed whose logical consistency may appear
to lead towards a truthful conclusion but whose premises
are accidentally, inadvertently, or perhaps deceitfully false1.

What makes amphiboly interesting for architects and
designers is that it involves two fundamental principles of
form: structural articulation and visual appearance. Ideally,
visual appearance of a form is consistent to its structural
logic. For instance, a tree is a structural system that has 
a formal visual consistency, and vice versa the formal 
manifestation of a tree reveals its underlying structural
system. However, there are cases where the two are 
inconsistent or even antithetical. In other words, out of a
multitude of different structural possibilities there are some
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5.1
Pythia on her Tripod giving an oracle to a pilgrim (from the Vulci
crater by the painter Codrus 440 BC)



that stand out merely because of a perceived discrepancy
between their structure and their appearance. In particular,
when the discrepancy is antithetical then the phenomenon
is referred to as ironic. However, in all cases, the measure
of discrepancy is based on the predicate assumptions
associated with what structure and form is (or should be).
This system of underlying premises is an important frame-
work upon which evaluation, critique, and eventually accept-
ance are established.

Challenging these assumptions, an architectural amphi-
boly is an ambiguous formal construction. It is a form
whose meaning is indeterminate in a peculiar way: while
the form conveys an obvious meaning it also has a hidden
or concealed meaning that is associated with its structure.
An amphiboly occurs when construction, perception of
attributes, i.e. light and shadow, or placement of viewpoint
allows it to have two different meanings even if all of its
structural terms are clear. An amphiboly is an equivocal
construction so framed as to point distinctly at something
while, at the same time, implying the existence of some-
thing else. It uses visual connotations, which can be so
connected with other visual connotations as to divide the
mind between different views of the meaning interpreted.

Order and disorder are assumed to be two fundamental
antithetical conditions in architecture. Order is a term used
to describe the condition of regular or proper arrangement;
its absence, disorder, may denote an infinite number of
antithetical arrangements. One case of disorder is ran-
domness. Randomness is defined as the quality of lack-
ing any predictable order, pattern, purpose, or objective.
Instead of viewing order or randomness as two separate,
distinct, and opposite states, it may be far more beneficial
to study the process of transition from one state to the
other. In such a way, both order and disorder can coexist
within the same organization as one state emerges out
of the gradual absence of the other. To illustrate the point
an example is given: a grid-like structure transforms
gradually into a convoluted scheme with numerous over-
lapping coils or folds revealing complex patterns. While
the upper part may appear as weakening, or crumbling,
or the disintegration of an orderly base, it can also be
read as the result of a mutated alien order. The contrast
of two different orders within the same structure allows
the reading of an in-between zone where one order pro-
gressively transforms into another.
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(Syn) biosis
In biology, a parasite is an organism that grows, feeds,
and is sheltered on or in a different organism while con-
tributing nothing to the survival of its host. It lives in or
on the living tissue of a host organism at the expense of it.
The biological interaction between the host and the para-
site is a type of symbiosis where two (or more) organisms
from different species live in close proximity to one another,
in which one member depends on another for its nutri-
ents, protection, and/or other life functions. The dependent
member (the parasite) benefits from the relationship while
the other one (the host) is harmed by it.
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5.2
Entropy



In Figures 5.4 and 5.5, a fractal-based solid form is 
subtracted from a stack of cubes creating a void space.
The boundary surface is used to extract the construction
curves which then become visible as mullions. The void
space becomes the atrium of a high-rise building hosting
IRS services.
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5.3
A cube (host) is taken over by various types of parasitical formations

5.4
Lattice inscribing the void (left), subtraction from a stack of cubes (center) and final 
form (right)



5.5
Elevation (left) and view from above (right)
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En (dia) meso2

One of the main differences of morphing, as it compares
to deformation, is in the duality of its identity. Deformation
is understood as a change relative to an initial state. As a
point of reference, an archetype is needed to assess the
degree of deformation. However, as the deformation per-
sists, form reaches a threshold beyond which it becomes
“unrecognizable,” meaning that it is impossible to associ-
ate it with its pivotal archetype. That is not the case in
morphing. In fact, as the interpolation persists, the hybrid
form oscillates between the identifiable shapes of its par-
ents allowing comparisons to be made at any point. This
formal atavistic property is very important, as it becomes a
means of expressing change through form itself, and not
through juxtaposition. The duality of its identity is a unique
compositional and unifying theme of the hybrid form.



5.6
The hybrid is an implicit form that suggests a dynamic blending of genetic forces superim-
posed by the subtle reminiscence of its creators

5.7
A cylinder is deformed based on site context (view and sun). Its deformation is captured in
eight steps

5.8
Horizontal sections (left) of a 50-story residential high-rise (right)
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(Syn) diasis3

Boolean algebra involves the partial order on subsets
defined by inclusion, i.e. the Boolean algebra on a set A
is the set of subsets of A that can be obtained by means
of a finite number of the set operations union (OR), inter-
section (AND), and complementation (NOT). Boolean
architecture is an accumulating process that results into
intricate assemblies by combining elements progressively
into increased complexity. In this context, a concert hall
composed of a series of ellipsoid acoustical modules is
presented as an example of Boolean algebra. The project
illustrates not only the aesthetical potential of such oper-
ations but also the structural complexity involved (class
project by Valerie Chatelet and Jean Hwang for course 2311
taught by Kostas Terzidis in Fall 2003 at Harvard University).

5.9
The envelope of the concert hall (plan)
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Endnotes
1See Capaldi, N., The Art of Deception: An Introduction to Critical
Thinking. Prometheus, 1987; Engel, M. and R. Steiner, With Good
Reason: An Introduction to Informal Fallacies. Bedford, 1994; and
Walton, D., Informal Fallacies: Towards a Theory of Argument
Criticisms. Benjamins, 1987.

2The term ενδια. µεσο(pron. endiameso) in Greek means in between.

3The term συνδυ. ασις(pron. syndiasis) is Greek and means com-
bination. It is an operation between couplings, i.e. συν + δυας
(=couple). The unit of the operation is a couple rather than a
single element.

5.10
The envelope embeds specific geometrical relationships between each member of the audience
and the performers on the scene. Ellipsoid is the basic geometrical element. The foci of each
ellipsoid are anchored on the stage and on one of the members of the audience. Each member
of the audience becomes the seed of an ellipsoid that will reflect the sound directly on her/him.
Once as many ellipsoids as members of the audience are created, a Boolean union operation
was applied to extract the exterior surface.





Complexity is a term used to denote the length of a descrip-
tion of a system or the amount of time required to create
a system. While complexity may be a characteristic of
many natural systems or processes, within the field of
design the study of complexity is associated with artificial,
synthetic, and human-made systems. Such systems,
despite being human creations, consist of parts and rela-
tionships arranged in such complicated ways that often
surpass a single designer’s ability to thoroughly compre-
hend them even if that person is their own creator.
Paradoxical as it may seem, humans today have become
capable of exceeding their own intellect. Through the use
of algorithms, computation, and advanced computer sys-
tems designers are able to extend their thoughts into a
once unknown and unimaginable world of complexity. Yet,
the inability of the human mind to grasp, explain, or pre-
dict artificial complexity is caused mainly by quantitative
constraints, that is, by the amount of information or the
time it takes to compute it and not necessarily to the intel-
lectual ability of humans to learn, infer, or reason about
such complexities. Because of its quantitative nature, the
study of complexity involves by necessity computational
methods as means of analysis, simulation, and synthesis
of systems that involve large amounts of information or
information processing.

The word periplocus is Greek and is used here to denote
a special kind of complexity that is not based on the
quantity of information involved. The word itself is com-
posed of the prefix peri- which means around or about
and the root plocus, which is derived from the verb πλε.κω
(pron. plehko) which means to knit. Through its etymolog-
ical roots, periplocus refers to an indirect yet intentional
activity of fabrication. While the closest English word that
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would correspond to the word periplocus would be per-
plexity, it fails to address the connotative subtleties pres-
ent in the Greek version: artificiality, indirectness, and
simplicity. The difference is that the notion of periplocus
involves human intervention as it can only apply to artificial
objects or situations. Further, the notion of perplex involves
intent to create confusion, trouble, or doubt whereas
periplocus, while intentional, is not aimed at deceiving
but rather at the emergence of a product or a situation
that exhibits uncertainty. For instance, the labyrinth was
a periplocus structure not because it had numerous
windings or multiple path choices but rather because it
could artfully disorient one using simple means. In that
sense, it was periplocus because it was conceived by a
human mind, had an indirect effect, and was simple.
Contrary to complexity, periplocus involves simplicity as
an underlying principle.
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6.1
Possible structure (left) and path (right) of the labyrinth

There is often confusion between simplicity and signifi-
cance. While simplicity may imply lack of sophistication,
it also suggests abstraction, clarity, unpretentiousness,
austerity, and straightforwardness. In contrast, complexity
is often regarded by theorists as indicative of sophistica-
tion, novelty, uniqueness, originality, and advancement.
Because of its intricate nature and its limited under-
standing, complexity is associated with superiority, mystery,
extraordinariness, and rightness. In contrast, simplicity has
often been “accused” of being too obvious, boring, unin-
teresting, and suspicious.

While complexity theory per se, as it applies to computation,
cryptography, probability, or randomness, is by definition
complex, the formal manifestation of these processes is,
usually, straightforward. If there is computational complexity



innate to mathematical models, it is not in their form but in
their internal structure and behavior. Structural complexity
is not necessarily an indication of formal complexity and,
vice versa, formal complexity is not necessarily an indica-
tion of structural complexity.

Consequently, the frequent use of the word complex as
a means of description of formal properties is not always
an indication of superior understanding, expertise, or elitism
but often a lack of one’s ability to ensure and convey a
sufficient level of expertise, command, and understanding
of the subject. In such cases, the term complexity is used
as a means of separation, demarcation, possession, or
restricted access. In contrast, simplicity, regardless of its
connotations, demonstrates clarity, approachability, and
mastery of the subject.

The term algorithmic is often connected with complexity.
While the objective or result of an algorithm may be com-
plex, the strategy itself does not necessarily follow that
complexity. In mathematics, it is common practice that
a simple formula generates extremely complex outputs.
For instance, chaos itself is the study of how simple systems
can generate complicated behavior.

In the following examples, simple means are employed
to create complex structures. The design strategies used
are based on repetitive, stochastic, or distributing algo-
rithms that while abstract and universal exhibit various
degrees of uncertainty, perplexity, and intricacy in their
final architectural formation.

Recursion
Recursion (or anadrome in Greek) is a term used to
describe a process in which the definition of an entity
refers to the entity itself. For architecture recursion is an
ontological process that involves the existential formation
of infinitely nested structures through self-replication.
Such processes have a unique structural and aesthetic
architectural value, since they incorporate generative
strategies that encapsulate self-resemblance; the rules
that produce the whole are the same rules that produce
the parts. As an example a series of fractal-based daedaloid
trails is shown in Figure 6.2. The algorithmic logic that
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produces the complex pattern is quite simple: a process
that creates a curve is recursively called so that the 
curve does not intersect itself and re-tracks itself when
the intersections are so many that the system runs out
of space.

Subtle rotations
Iteration or epanalepsis1 is a process of repeated per-
formance of an event. It is invoked by executing the
same set of instructions a given number of times or until
a specified result is obtained. In architecture iteration is
employed as an ordering device that produces repetitive
patterns. Such patterns suggest the presence of motion,
change, or progress as a visual impression.
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6.2
A series of recursive fractal-based daedaloid trails



An ambiguous algorithmic structure for a house of worship
uses fields to create transparency out of solidity and at
the same time has the ability to camouflage its interior-
ity through rotational repetition (class project by Andrew
Saunders for course GSD 2311 taught by Kostas Terzidis
in Fall 2003 at Harvard University).
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6.3
The result of the algorithm is an ambiguous figure that creates transparency out of solidity and
at the same time has the ability to camouflage its interiority

Stochastic search
Stochastic search is a process in which building ele-
ments are placed at random locations in space that 
are then evaluated against a set of constraints to be
accepted if there is a satisfying fit. The random search
space can be adjusted to match the zoning envelope 
and the con-straints can match structural, circulation, or
programmatic requirements. In this particular problem 
a simple program of 200 residential units (50 1-bed 
900 sq. ft, 100 2-bed 1200 sq. ft, and 50 3-bed 1600
sq. ft) was to be placed within a 70 × 70 ft. site (class
project by Julie Kaufman and Brian Price for course GSD
2311 taught by Kostas Terzidis in Fall 2004 at Harvard
University).

Programmatic distribution
A stochastic search is utilized here as the core algorithm
for allocating programmatic spaces within a given site.
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6.4
Top view



6.5
In this image the bottom part is the original field and the top separator allows the parti and
program to emerge

6.6
Elevation views



6.7
View from above

6.8
Horizontal sections: interlocking tower plans
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6.9
View upwards from the ground



The program includes spaces, subspaces, square footage,
and required links to other spaces within the program. The
program for a small 7600 sq. ft library is shown below:
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Public Library

Main Entrance 1000 links to Exit Control
Exit Control 1000 links to Main Entrance
Book Circulation 1500 links to Entrance

Circulation Processing 500
Circulation Desk 400 links to Exit Control

Shelving 100
Supply 200
Office 100

Stacks 600
Periodicals 1000

Stacks 500
Reading 500 links to Exit Control

Reserve Dept 200
Reserve stacks 200

Reserve Desk 100 links to Exit Control
Office 100

Reference 800 links to Exit Control
Stacks 500 links to Exit Control
Public Toilets 300

Interlibrary Dept 700 links to Exit Control and Ref
Office 100
Reserve Desk 400 links to Exit Control
Processing 200

Technical Processing 1100 links to Exit Control
Acquisitions 300

Workroom 100
Bookkeeping 200

Staff Toilets 300
Catalog 500

Bibliography 150
Cataloging 250
Office 100

Administrative 300
Offices 300 links to Catalog

Director 100
Associate Directors 200

7600



The algorithm employs an XY coordinate system that gen-
erates a square range to accommodate available posi-
tions for the program units. The architectural programs of
a library could be satisfied by accumulating a certain
number of such modular units, each of which has its
uniqueness in X and Y values as a spatial entity and its Z
value is determined by the connectivity between each
other. So in one program and its subprograms within, or
in several programs which share their intimacy, their Z
values will be the same thus architecturally being placed
on the same floor level. Otherwise, they will be at differ-
ent levels and connected only by the vertical circulation
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6.10
Steps in the process of allocating program spaces recursively within a 30 × 30 unit square site
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equipments (VCE), a program with its maximum number
of connections that interlink every level. An algorithm
applies the above rules, starting by selecting one unit
and then an agglomeration of direction is chosen ran-
domly so as to provide multiple solutions and flexibility
for the program specifications.

To further enhance the quality of the model as a build-
ing, each position on the coordinate system is evaluated
as to whether to put columns, or a set of VCE, or to open
up as entries, etc. – a reference layer is created upon
which each unit represents positions on the coordinate
system. By certain algorithmic rules, their Z values are
determined and once they reach a designated number,
which is set as a “Yes” answer to the program’s criteria,
it will execute these steps repeatedly in order to add
more architecture elements to the model. In the last
step, all the reference units on the activated positions
will be moved into Z by −1 as to finish the model as its
building basement (class project by Xu Zhou for course
GSD 2317 taught by Kostas Terzidis in Spring 2005 at
Harvard University).

Endnotes

1Epanalepsis is a Greek word that means “to say or do what one
said or did before.” It literally means receive over again.
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1. NEW

In Chapter 1 under the title “The strive to capture the
elusive” I presented the argument that “nothing comes out
of nothing and nothing disappears into nothing” which, if
true, signifies an inability to achieve something out of
nothing, i.e. to create something new.

The argument in the context of novelty may well lie in a
rhetorical question. Basically, I agree with that “nothing
comes out of nothing and nothing disappears into nothing.”
Of course, we could say that everything comes out of
nothing and everything disappears into nothing. Or noth-
ing comes out of everything and nothing disappears into
everything. However, it sounds like a paradox. Even though
someone invents something new, it consists of some
substances. Also, one can make any sentences or mean-
ings; however, they are deemed to have words that have
already existed. That is to say, the paradoxical argument
of novelty may not transcend the boundary of its linguistic
nature.

In a magician’s show, a magician is likely to emphasize
“nothing” before showing his trick; however, nobody
believes there is nothing; moreover, revealing a trick is one
of the most intriguing parts in a show. In this sense, they
seldom think of a magic as novelty. If a magician liked
them to do that, he would call it an illusion. Interestingly,
David Copperfield’s website offers many definitions of
magic. Among them, the last word is illusion: 1. The act
of creating the impossible; 2. To defy mother nature; 3. To
reappear; 4. To levitate; 5. To suspend disbelief; 6. The art
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of making people dream; 7. Making fantasy a reality; 8. To
fly. He likes to call his magic an illusion; however, it is cer-
tain that he just pretends to be able to do that. And then
people are likely to think of his magic as novelty.

When it comes to the term design, we can say that it is
not only the vague, intangible, or ambiguous, but also
the strive to capture the elusive in languages. However,
the term design is attributed to rhetorical expressions as
well as to the act of designing itself. Specifically, like a
child, one starts to create something new before know-
ing the term design. Sculptors deal with forms when they
design. Painters deal with colors when they design. The
linguistic expressions can be said to represent and reinter-
pret our reality, but they are not our reality itself. This gap
may lead us to the argument in the context of novelty.

At last, I’d like to add a passage from Albert Camus: “Why
am I an artist and not a philosopher? Because I think by
words and not by ideas.”

Your argument is quite interesting. The interplay of words in
a sentence may reveal new concepts. However, I would be
skeptical in attributing the concept to the linguistic game,
but rather assume that the concept already existed; it was
the right combination of words that revealed its existence.
For instance, in magic we have two points of view: the trick
(a concept or process conceived in advanced) and its pres-
entation (an articulation to deceive the audience). If you
are able to decipher the right articulation you may be able
to see the truth which was already there. Uncovering the
truth requires trusting your logic rather than your senses.

I am willing to concede, that “novelty,” and “new-ness,”
are more precisely used to describe transformations than
objects. Where I take issue with the material, as it has
been presented, is that it seems that etymology has been
hijacked to serve the theory that a “new” kind of architec-
tural process, practice, design, creation, etc. cannot be
put into words. The use of etymology to espouse the elu-
sive ends up resulting in semantics and self-indulgent
conclusions that “new” words must emerge or that lan-
guage can simply not describe, represent or participate in,
creativity. To say it simply, the belief (I use the word belief
because the word theory seems vague) is based on no word
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appropriately describing “new” because “new” does not
exist. As I said, I’ll give you that “new” probably is not most
accurately used to describe objects, but a whole lot of
ideas have been “new” to me and I’m going to keep using
the word “new” to describe them.

Architecture, like all the arts, is at once engaged in
preservation, observation and maintenance of language
(communicative vocabulary of form and logic) and yet at
the same time architecture is an act of invention, inge-
nuity and imagination (Kostas’ last paragraph) that tran-
scends and transforms language. There are examples in
literature that might make this more apparent.

James Joyce, I think we can all agree, used language in a
“new” way. (Note: I am using the word new to describe the
act of writing.) His work was both engaged in a system of
language and yet, dare I say, original and inventive in the
way he used language.

To relate this back to the material presented, design is
both participatory in a language and emergent from that
language. This is what makes it elusive. Kostas most
clearly expresses this elusiveness in the illustration where
logic (perceived order) and irregularity (perceived disor-
der) are seen as either and both, ambiguous, yet in tran-
sition. For this reason, I am uncertain if Kostas meant to
infer that fashion emerges from design’s “starting point.”
In the first full paragraph of the last page he wrote:
“Because of its investigative nature, design is always asso-
ciated to a starting point, a pivot, out of which style, fash-
ion, or mannerism results.” I would argue that fashion is
elusive, as Wes notes once something is fashionable it is
no longer. Fashion does not result from design’s reliance
on a starting point, because that would mean that fashion
has a starting point. Rather, design propagates fashion’s
elusiveness by no two designs ever starting from the
same point. And each point is “new!” Mannerisms, on the
other hand, are not a part of fashion, per se. Mannerisms
have more in keeping with observation of a language or
decorum. These are the forces that both enable fashion
and yet constrict its desire for absolute novelty. Fashion
can be thought of as the “trace” famously defined by
Derrida. It has no beginning (starting point) and no end,
and can only be traced.
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When Eisenman wrote that “modernism hadn’t begun,”
he did not simply mean to suggest, as Rowe and others
had, that the “Modernists” (Le Corbusier and others) had
not made a clean break with the past. He was also infer-
ring that no architectural style is ever, or can ever be,
entirely “new,” in isolation or autonomous. “Modern,”
and “New,” are aspirations and desires not their result-
ing objects. Mark Wigley’s writing on the “fashioning of
modernity” might best describe the history of the modern
movement’s fashioning.

The purpose of challenging a word is not to eliminate it
but rather to detect, establish, or perhaps, re-establish
its true meaning. The use of etymology is simply a means
to trace its original meaning so as to detect potential
deviations that may or may not reflect its true meaning.
Instead of assuming that a change in meaning of a word
is simply the result of a natural evolution, I tend to be a bit
more skeptical about its intended use. If, after challenging,
a word is found truly to be indeed in the path of an evo-
lution into something else, then fine. But if there is the
slightest doubt then it needs to be investigated further.
Maybe then perhaps new, pneu, or gneu (or whatever it
is named) will cease or continue to be an aspiration or 
a desire.

In Martin Heidegger’s words: “Words and language are
not just shells into which things are packed for spoken or
written intercourse. In the word, in language, things first
come to be and are. For this reason too, misuse of lan-
guage in mere idle talk, in slogans and phrases, destroys
our genuine relation to things.” See Heidegger, M.,
Introduction to Metaphysics. New Haven: Yale University
Press, 2000, p. 15.

I’m not sure what you meant by the “true” meaning of a
word. I guess that I am skeptical of searches for “truths”
because such searches tend to arrive at perceived ori-
gins instead. If I am to understand you correctly, you 
are arguing for a Saussurian structuralism of linguistics. 
I would like to think that contemporary theory has moved
beyond Saussurian structuralism where a one-to-one
relationship exists between signifier and signified. Lacan’s
description of schizophrenia broke down Saussurian
structuralism.
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From Frederic Jameson’s essay “Postmodernism, or The
Cultural Logic of Late Capitalism”:

“Very briefly, Lacan describes schizophrenia as a break-
down in the signifying chain, that is, the interlocking syn-
tagmatic series of signifiers which constitutes an utterance
or a meaning. His conception of the signifying chain
essentially presupposes one of the basic principles (and
one of the great discoveries) of Saussurian structuralism,
namely the proposition that meaning is not a one-to-one
relationship between signifier and signified, between the
materiality of language, between a word or a name, and its
referent or concept.” (72)

Jameson goes on to describe how meaning (and the signi-
fier) is now free to move from signified to signify. The 
signifier is now manifest of a “meaning-effect” and each sig-
nifier’s signification is a product of the generative and pro-
jective meaning given in its relationship to other signifiers.
The “snapping” of the signifying chain leads to a sea of
lost signifiers, without relationships to a signified. The
issue thus becomes not how a “chain of signification” can
be re-constituted or re-constructed, but how the signifier
can move freely from the referent in the present, consti-
tuting meaning in its relationships to other signifiers.

To say this more simply, I don’t think that you can go
back (in the case of language). I entirely agree with you
that a word can, and should, be traced and interrogated
for its origins, its history. But this does not reconstitute a
word’s “meaning.” If it has a “meaning,” it is entirely based
on its current connotation, its relation to other words. This
is how one can use the word “new” for the communication
of its relative meaning rather than an absolute.

While I like some of Heidegger’s writings, I don’t agree with
his understanding of language. One could argue that Joyce
“misused” language. Yet I would not say that Joyce
“destroys our genuine relation to things.” In fact, one of the
few places that novelty (the “new”) emerges is in “misuses.”

While the origin of a word does not reconstitute its
meaning (I agree with you), it does serve as a reference
to detect the original meaning. In doing so one is able 
to see the natural, accidental, or controlled subtleties. 
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I am afraid that detecting the meaning of a word based on
current connotations may be futile. You yourself admitted
that the current use of the word new is not entirely mean-
ingful, i.e. certain uses of it are not entirely accurate and
that another word should be used instead. Why? Why
not keep using the word new “as is” since that is its cur-
rent connotation? What if the connotation is wrong? How
do you trace its falsity?

I think that the “origin” of a word is as elusive as its current
connotation. As I’ve tried to explain in previous postings,
the material (spoken or written) word is just a signifier.
Signifiers, one could say, are ever-changing, not just now
but always. As many post-structuralists have said, the
word “dog” could just as easily mean “cat.” There is no
“truth” to the signifying chain of signifier to signified. This
does not mean that signifiers (words) are insignificant or
that their use should not be precise. It just means 
that there is no “truth” to their use, now or before. And
“precision” does not mean a “right or wrong” (or true or
false) use, but the use of a word with an intention and
an understanding of its current relation to other words.

Etymology is a fascinating study. When I said that I felt it
was being “hijacked” I meant that etymology works as a
“trace” but not as a way to ensure, preserve or resurrect
any “truth” to the signifying chain of a word (signifier) to its
meaning (signified). If anything, etymology assures us of
an extant transformation of language (and architecture),
a kind of continual becoming. And rather than directing
creative thinking toward absolute and eternal truths, 
I would prefer that efforts were directed outward. To quote
Deleuze, as everyone else does: “lines of flight.” Meaning,
for knowledge to expand, and for creativity to occur, nov-
elty must be an inevitability. Desire and aspirations should
be ambitiously pursuing the unattainable, the inconceiv-
able, the unimaginable (impossible?), etc.... the new. For
without acts of singularity and individuation we will not know
what is possible.

The idea that nothing is “new” does not serve the provo-
cation and promotion described above. It begins to sound
exclusionary and nihilistic. One could as easily formulate
an argument that “all is new” as has been argued that
“nothing is new.” But, like Deleuze and Guattari’s “war
machines,” such kind of thinking must be fought vigilantly.
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Dictionary definitions tell part of the story of a living 
language. In fact, dictionary revisions are based on citations
and comparisons from preeminent writers and academ-
ics in order to arrive at a (rational?) contemporary (new?)
definition of a word. Thus using a 2000 year old definition
of a word as evidence of a more “true” definition is about
as convincing as using a 2000 year old tool to show the
capabilities of a tool from the current age. The story is
useful, but the definition cannot be taken with mathemat-
ical precision. In a leading academic environment, our
responsibility should be to lead the dictionary definitions of
certain concepts rather than follow them. The question
remains: is the latest definition of a word new? And is any-
thing new?

The discussion of innovation and discovery prompts a
short dip into the history of physics:

The notion that there is nothing new in the world is indeed
supported by modern science. A cosmological story which
postulates quarks, leptons, and assorted subatomic par-
ticles as the basis for all matter agrees that these par-
ticles have been around since cosmological origins and
before, and have participated in universal transformation
only in their re-combination. There is no allowance for
spontaneous genesis of new matter. Further, no informa-
tion exists without occupying space and matter. Every word
spoken, thought considered, byte stored on a computer,
occupies some assemblage of molecules in space. If the
matter is the same, are the thoughts the same?

(This prohibition of spontaneous genesis in fact is not a
consequence of scientific thought, but at its heart. It is for-
bidden, in rational scientific method, to resolve a problem
with a wave of the hands and “poof!”. This is tantamount
to relying on God. This is actually quite an interesting line
to pursue in itself, since the relationship between science
and society as a whole is especially strong in our era.)

Yet, in Galileo’s cosmology, quarks, leptons, and assorted
subatomic particles did not exist. Thus the story “we” tell
of his time is different than the story “he” told of his time.
Science is a mental construct developed and applied to
that which we experience as physical reality. Newton 
“discovered” gravity. It was a pre-existing force around
which he was able to formulate predictive equations. 
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So the story goes. Yet Einstein reformulated the predic-
tive equations of gravity. It is not a force, he said, it is
curved space. Einstein’s equations using the curvature of
space replicate our measured universe with far more accu-
racy and precision than Newton’s force based model. Does
gravity exist? Do we know what it is? Was it preexisting
and discovered? Something keeps us from spinning off
the surface of the earth and into space, yes. We can cal-
culate and predict with precision what will happen to an
object moving in this environment. Slightly closer to archi-
tecture, the concept of force is essential to the most
basic engineering problems. We trace them through
building structure. We draw force diagrams. Yet the lead-
ing physicists of our day can only propose inconclusive
theories as to what exactly a force might be. Our under-
standing is forever bound up in the intellectual constructs
we use to explain the world we experience.

Ours is a layered existence that rarely encompasses direct
experience of the universe. To the extent one has a direct
experience of reality one might call that experience
essentially not new – or conversely – eternal, there is no
difference when experience transcends the construct of
time (one gets strangely close to the irrational which sci-
ence long ago excluded).

On the other hand, to the extent that our experience is
supported on layers of developed constructs, the possi-
bility of the new is continual, and is part of the complex
development of academic thinking.

Architecture itself is enmeshed within these layers. To
even define this word would result in much sophisticated
bantering among professionals. But the above leads to
the conclusion that architecture is primarily representation
and persuasion, the wielding of Jefferson’s mighty pen.
In practice, the ability not just to conceive of a “good”
design (leave aside the problem of evaluation for a
moment), but the ability to “persuade” a board to proceed
with construction of the design is at least equally important.

To return to the problem of evaluation, while intuition and
a sense of what’s right or wrong may often lead a designer
in a certain direction regardless of whatever rational meth-
ods are currently being taught, and while that sense is
probably related in a complex way to the ideas circulating
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in society at that time, it is the designer’s ability to develop
a persuasive argument for the design – one that fits within
the ideas circulating in society and further develops them –
that will allow the design to live or die. It is the ability to
locate the work intellectually within the discourse – the
development of the construct – that defines the work as
architecture. Perrault said architecture exists only in the
mind of the designer and has no connection to the 
natural world. Twisting his meaning slightly in the light of
the above, I would agree. Architecture, in any form, is a
political act before it is a physical one.

Given that design “is about conceptualization, imagination,
and interpretation” in contrast to planning which “is about
realization, organization, and execution,” the etymological,
seemingly to the past referring interpretation of the word as
“something we once had, but have no longer” could also be
understood as the strongly temporary character design has.

The thought making the design manifest cannot be fore-
seen and is thus to be referred to in the past tense.

“Innovation” in relation with “audience” complemented
by space or place seems to be of importance. Nowadays,
in the information age with real time communication,
information can be spread over the whole globe within
seconds and reaches people at every place at the same
time, whereas in past times information had to be spread
from person to person with space as the retarding. So
things were introduced as being new, although known at
the place of their initial appearance for quite a time.

Defining the “new idea” as the result of looking at existing
elements leads to the conclusion that there is nothing
new. What is important when thinking about the new is to
think about analyzing and taking apart the existing system,
part, or principle and then combining the parts to some-
thing that didn’t exist before. Thus the new evolves from
the old combined with (human) ingenuity.

One of the important points made in this essay seems 
to be the distinction between planning and design.
Planning is concerned with logistics and execution, with
risk-management and “the known.” Design is something
more complex, operating as a nexus of an entire set of
cognitive, social, and physical activities.
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Design contains what Terzidis calls “the unknown or unre-
membered.” As such, the design process doesn’t repro-
duce or represent a pre-existing idealized Platonic form, but
instead acts as an emergent tendency operating within field
dynamics. According to Deleuze, “The field, however, does
not preexist, but is always present as a virtuality.
Determined within and by the plastic events that articulate
it and render it actual.” Therefore, what is intrinsic to design
is always present, but it may exist as a virtuality, or an unre-
membered unknown. While the genesis of an architectural
idea is its own contextual reality, as Terzidis explains, the
interactive space of ideas results in a reordering of realities.
Here again, we might find agreement between Bergson’s
concept of emergence as “making itself in the process of
differentiation,” and Terzidis’ “reordering” as it were.

We could further argue that there is no tabula rasa in
design. Seen from this perspective, design acts are not
just predictable formalizations of thought into spatiality
(i.e. planning), but operate within a modal continuum of
actuality. While the contextual field is pre-existing, the
process of unpredictability, that “what we don’t know yet”
occurs through a reordering and expressive becoming-other.

The idea that the “new” can be so easily converted into
“novelty” is counter-intuitive to the nature of “newness.”
Re-framing the architectural production within the realm
of cultural norms appears to give the sense of the “new”
but on further inspection, the strategies are generally
less than original. But is this really the issue? Successful
artistic production was not so interested in establishing
the “new” more than a perceptual understanding that grew
from contextual references. Minimal art was not “new” in
the manners of representation but the position within the
gallery, relationship to the viewer, and subsequent serial
production was considered “new.”

This is not a concept that should be argued from an etymo-
logical point of view. Jacques Herzog recently articulated,
within the context of Modern architecture, Le Corbusier
wrote extensively and yet the writing is useless without
the buildings themselves.

In a way, the argument is not so relevant within architecture
due to its drawn out period of gesticulation. Fashion works
in much faster and much larger fields of popular culture
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which thrives on the “new” and establishes its value within
the market-place based upon the length of a season.
Ironically, the “new” in fashion is simply the re-working of a
past design, but the fashion world has a very short memory.

Innovation is a different term altogether in the sense 
that it can be quantifiably measured. In today’s terms,
the performative nature of the building can be accurately
predicted, simulated, and constructed. Innovation is not
reliant on a “new” material but merely the considered
response to a set of parameters. Again, the innovation
comes from the differentiation from baseline conditions.

Herzog (in his debate with Moore) makes a quite revealing
statement: he says that he (and his partner) did not seek
to create forms or patterns. They were there. He just dis-
covered them, and as such, they speak for themselves.

As Herzog makes constant reference to Rossi, his teacher,
as a source of inspiration the connection becomes even
clearer: it is about the archetype, origin, archaic, and
unexpressed that they are both seeking.

I remember reading once how Michelangelo believed the
same things about his sculptures (which he favored over
all other art forms). While many would claim divine inspi-
ration, he would say that his sculptures already existed
in the block of stone he was carving. All he was doing was
revealing them. I suppose you could still connect that to
divine inspiration. Either way, one should take a good
deep look at his “unfinished slaves.”

2. Impossibility

If there is a possibility, however remote it may be, there
must be a chance that it will occur. While the human
mind may be bounded to the limitations of quantitative
complexity, its computational extension, the computer,
allows those boundaries to be surpassed. The notion of
“impossible” is no more the assessment of human imag-
ination but rather a degree of probability.

Well, let me just return for a moment to the question of
whether it is possible to calculate ALL the possible com-
binations of pixels in a relatively low resolution 2D image.
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The image was something like 135 × 180 pixels or so,
don’t remember exactly. And we figured that meant some-
thing of the order of 1 × 10^7000 possible combinations.

Given that guesses at the total number of atoms in the
universe, for instance, are something like 3 × 10^90
atoms, 1 × 10^7000 is just too big to work through
here on planet earth. While I believe in the advantages
of using computer power, immense as it may be, to iter-
ate dumb repetitive tasks, there are still numbers, easy
to conceive of, that are impossible to arrive at practically.

Just imagine how we would produce those 10^7000
iterations:

I’ll give you 7 billion computers, one for every person on
earth. And let them all operate at 10 G IPS. And let’s see
how long it takes to process 10^7000 instructions.

10 G processor = 1 × 10^10 iterations/sec

60 * 60 * 24 * 365 = 3 × 10^7 sec/year

(3 × 10^7 S)(1 × 10^10 IPS) = 3 × 10^17 iterations
per year for one computer

multiply by our parallel processing power of 7 billion
computers, and we get

(7 × 10^9)(3 × 10^17) = 2 × 10^27 iterations per year.

We still have 10^6973 iterations left. That year’s work
could be absorbed in a rounding error. And these proces-
sors have been working around the entire globe for the
whole year. No one has done any other work. It’s actually
been a pretty fun year, we’ve all been outside enjoying
each other’s company.

But let’s imagine we develop quantum computing to its
theoretical maximum and we can push our 7 billion com-
puters from a measly 10 G to 100 trillion G. That’s pretty
big, right? Faster than Deep Blue, and far surpassing the
human mind. And say we can do this speed on a scale
of 7 billion computers. That means we get to add just 
14 zeros to our 2 × 10^27 iterations per year and come
up with 2 × 10^41.
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So with this unlikely number of unlikely powerful computers,
we now have 10^6969 instructions left. We will be done in
about 170 years if there are no power failures or wars.

We must also consider that this is an incredibly low res-
olution two dimensional pixel grid that started this whole
process. If we are thinking three dimensions and finer
resolution, add a few hundred or few thousand more
zeros to the exponent, and what do you do with them?

I have a question. If you still think this is in the realm of
the possible, would it be okay for me to present for my
final project, a modeling script beautifully conceived and
yet, due to the potential for organized complexity and
emergence, impossible to fully evaluate, and tell you that
the results will be so meaningful and unexpected that they
will blow all our minds, but that, unfortunately, the proj-
ect is so cutting edge that the computer is still calculat-
ing and it is difficult to tell in how many years it will be
finished?

All in good humor, but I am curious how you can still say
“possible” in the face of numbers like this. (Your previous
response was that either it is achievable, which the above
seems to refute, or that adding intelligence to the search-
ing routine to “learn” patterns as it goes will arrive at the
solution – which is both true and useful, but cutting down
on the iterations is an admission that the large number
of iterations is untenable.)

I guess you are right...

Maybe then it is futile, albeit not impossible. The fact that
we are even talking about a (remote) possibility is indeed
a definition of possibility itself; otherwise we would not be
able to talk about it, would we not? However, as an alter-
native to futility, let’s assume that not all possibilities are
equal. Certain possibilities may have a higher chance of
success than others. This possibility of possibility opens
up a more intricate relationship than has been previously
possible. Rather than going mindlessly through all poss-
ible patterns in search for the lucky one, we can instead
evaluate each random step. By assessing the degree of
promise that a certain pattern has the notion of selection
is introduced in the random process. The selection starts
with a finite group of completely random patterns. In each
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step, the degree of promise (or fitness) of the random 
pattern is evaluated, multiple patterns are stochastically
selected from the current group (based on their fitness),
modified (mutated or recombined) to form a new pattern,
which becomes current in the next evaluation. This process
is referred to as a genetic algorithm. For example, using
the previous example, instead of assuming that each
random pattern is equal in importance and therefore going
through all of them until a perfect match has occurred, 
a preferential selection may occur instead. The number 
of iterations in the case of Icarus will be reduced quite
significantly from 10^7669 to merely 3,280,000.

In brief, blind randomness won’t take you as far as being
a little bit smart. But then again what is smart?

Ultimately the issue of impossibility involves human 
judgment. The real reason of concern here is not whether
impossibility exists as a possibility (i.e. if you can think 
of it, it exists) but rather about whether we as humans 
are in control of the concept. I tend to believe that
Matthew’s and my frustration with the zeros is not really
about the zeros (i.e. the degree of precision) but rather
about our fear of losing control of that concept to some-
body else. How can it be that such an alien to us, hard
to grasp concept (that of 10^7000) can possibly be a
simple routine concept for somebody (or something) else.
Who is that thing? Should we be alarmed?

Where are the boundaries between thinking, being, and
doing? Are there boundaries?

Interestingly, the question of the possibility of artificial 
(or machine based but real) intelligence in computers is
based solely on speed. The binary framework of simple
gates that underlies computation today doesn’t seem to
be as much of an issue. Quantum computing theorizes 
a more continuous condition, based on the vascilations
of a probability cloud, but I think much of that discussion
is also focused on how to pull a definite yes or no out of
an uncertain system. We are again up against the issue
of human need for predictability.

A programming language, the binary machine language
upon which it is built, the hexadecimal transposition which
makes this machine language easy to manipulate in the
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hands of an engineer, the extreme rationalism of math-
ematics, the zero and the base system (base 2 base 6
base 10) are all theoretical conceptions of the mind that
seamlessly translate into the practical space of ordering
beans on a table, or calculating the partitioning of prop-
erty through the stock market. Did they start in the 
mind, or start on the table of beans? Or is there really no 
difference?

If someone programs a random number operation into a
script and chooses the formal result she sees on the
screen, is she exercising a different type of authorship than
someone who accidentally drops a few sticks into an
architectural model and becomes captivated by the new
architectural possibility it suggests? Setting aside the legal
sense, can anyone ever really make a claim to the creative
genesis of a design?

Random numbers may possess the same degree of
unpredictability as stick throwing if outcome is the criterion
for comparison. Yet, this type of unpredictability is not
based on the materiality of the medium used but rather on
the intellectual mechanisms involved. The term intellectual
entails the capacity for knowledge and understanding.
While certain activities (i.e. open color aquarelle, throwing
sticks, etc.) are initiated through intellectual intention to
pursue new knowledge, the materiality of the medium
used is not of an intellectual nature. Material events,
such as chemical changes (i.e. bleaching, burning) or
physics-based events (i.e. throwing sticks, crumbling paper),
may be unpredictable yet are certainly not intellectual. 
In contrast, the computer as a medium has indeed intellec-
tual characteristics as it entails the capacity for knowledge
and understanding. Its ability to uncover unpredictable
events is based on its active logical mechanisms and not
on passive observable chemical reactions. While that may
not matter if the objective is merely the outcome (as they
both look alike), it does indeed matter if one is interested
in the origins of unpredictability and its true nature.

So a computer uses the physical properties of material
(silicone, etc. and electrons running around) to represent
a purely rational conceptual system which is developed
by the mind. Yet the means of the representation (zeros
and ones represented by discrete voltages) is of such a
resolution that the chemical or mechanical properties of
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the material do not affect the representation. You’re call-
ing that intellectual. (I feel another discussion in there….)

The mind uses, as far as the academic world is generally
concerned, a randomly evolved assortment of firing
synapses that, I’m guessing, occur at a resolution which is
dependent upon the chemical properties of the material
from which they are formed. If that is the case, would you
call the mind unpredictable yet certainly not intellectual?

The other question is a quantum computer which relies
on the material qualities of an uncertain electron cloud to
represent this rational conceptual system. If a quantum
computer was to actively use this material quality, does
this mean the quantum computer is also not intellectual?

In other words, is materiality really the issue, or is the issue
the presence or not of a logical, rationally based system
that can be translated exactly into a functioning (and fast
moving) material counterpart as in a computer?

In response to your argument I will attempt to shift away
from the scientific realm and try to address it within the
context of design:

I think the issue we are examining here is whether design
thought is quantifiable? In response to this question, two
options appear to be possible: either that design is a
process based upon finite elementary units, such as bits,
memes, nodes, atoms, etc. or that it is a holistic process
with no beginning, end, or any in-between measurable
steps. The negation of discreteness implies a continuity
of thought that permeates throughout the process of
design but is confined within the boundaries of human
domain. By definition, subjectivity depends on interpre-
tation and only humans are in a position to do so (yet).
Certain intellectual activities, such as intuition, interpreta-
tion, choice, or meaning are considered human qualities
that can hardly be quantified, if ever. In contrast, the dis-
cretization of design opens up a multitude of possibilities
as it invites discrete mathematics to be involved in the
design process, such as logic, set theory, number theory,
combinatorics, graph theory, and probability.

Discretization of design by definition can be addressed,
described, and codified using discrete processes run today
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by discrete numerical machines (i.e. computers). However,
the problem is that discrete/quantitative design provokes
a fear of rationalistic determinism that is long considered to
be a restraint to the designer’s imagination and freedom.
Such resistances have attempted to discredit Computer-
Aided Design as inadequate, irrelevant, or naïve. Design
is considered a high level intellectual endeavor con-
structed through uniquely human strategies (i.e. intuition,
choice, or interpretation). Such theoretical design models
negate the computer as a possible source of design con-
ceptualization mainly because it is based on discrete
processes that are finite and as such restrictive. In con-
trast, human thought is continuous, infinite, and holistic.

This topic that we are discussing is in a sense never
ending, and disputable to no limits. Computers have
allowed us to transcend into a world that is reminiscent
of the Platonic Cave, a space where reality intersects the
human imagination. Computers in their existence are noth-
ing but machines that operate on a series of rules. These
rules do not give them any trace of intellect but pure
mechanical properties based on human manipulation. I am
not sure about the capabilities of the computer for design
conceptualization, but I am confident in using the power
of these machines towards the benefit of implementing a
concept. “As intellect is to opinion, so is science to belief,
and understanding to the perception of shadows.” The
world generated by these machines is a way of visualizing
the “shadows” and their constructability.

Why shouldn’t intuition be able to be replicated by a com-
puter? Isn’t intuition just a natural result of the composi-
tion and networking of our brains? Someone like Wolfram
might argue that the physical world is not continuous,
but made of discrete elements. If matter (and thus a
human brain) is in fact discrete, then it follows that it is
quantifiable and (like the pixelated painting) replicable.
Akin to the discussion that keeps coming up, it seems
highly improbable, but is it impossible?

3. Tool?

The word tool is often used to describe the synergistic
interaction of designers with computers. A tool is defined
as an instrument used in the performance of an operation.
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The connotative notion of a “tool” implies control, power,
dominance, skill, and artistry. A pen, for instance, is a device
that allows one to perform or facilitate the manual or
mechanical work of writing or drawing. The capabilities,
potency, as well as limitations of a tool are known or esti-
mated in advanced. This is not the case with computers.
Neither their capacity or potency is understood, nor their
limitations be pre-estimated. Indeed, designers are fre-
quently amazed by processes performed by algorithmic pro-
cedures, which they have no control or, often, knowledge of.

I believe if someone claims that a design drawn by a
pencil is his or hers for they used it to draw, then a design
generated by algorithms, computers, hammers, sticks, etc.
is also his or hers for they generated those rules, or spent
an effort, for it to happen, etc.… now, let’s look at this:
when we set up a proportion system of geometry for a
building, we are simply taking one thread from a big net
that has millions of relationships… thus, the deeper we
dig into those systems, the more findings we will acquire be
it: relations, proportions, rules, etc.… and yet we call those
our designs, because we say it is a rich system that we set
up thus any finding we have is a result of our design…
same case with a pencil… the only difference is that you
don’t have much of the attributes other than the tip,
angle, how rough or fine, and yet these help generate unlim-
ited design possibilities… just think “calligraphy” … it is all
based on those variations of pencils tips… the only differ-
ence is that these are so obvious they make us believe
that we know how to control it… thus we know every-
thing about it and we can claim everything coming out of
it… but when a tip breaks, and suddenly generates a
certain form of a tip due to some extra force exerted by
the painter’s hand, he or she can find a new stroke type,
etc.… now when it comes to computers, it is just the
same… so I think it is an endless dilemma to discuss
design in terms of ownership in relation to tools….

I believe that when we design, we are only taking some
parts or pulling some threads of bigger interconnected net-
works of relationships… and we always seize the moment
and try to utilize what we know of, but will we be always
late as things are ahead of us… but that does not make
us any less designers than we are.. if we use a computer
or a pen, design in part is a continued seizure of chances,
possibilities, abilities, skills, tools, etc.… from there I
would argue any design happens because I started it, and
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therefore it is mine. Now, there are many directions that
this design can take but one is for sure: that I initiated it!

I agree with you except you have to keep in mind that
there is a thin line that separates pencils from computers:
design is an intellectual activity. While certain activities
(i.e. open color aquarelle, or smudging) may have initiated
through intellectual intention, the materiality of the medium
used is not of an intellectual nature. Material events, such
as chemical changes (i.e. bleaching, burning), or physics-
based (i.e. stick throwing, pencil tip breaking) may be
unpredictable yet are certainly not intellectual. In contrast,
the computer as a design tool implementing processes
such as randomness, stochastic, or recursion has indeed
intellectual characteristics. Its ability to involve unpre-
dictable events is based on its active logical mechanisms
and not on passive observable chemical reactions.

I must agree that computers are nothing more than just
simple tools that implement the thoughts of the designer
(by that I mean a human being). Computers are indeed
tools, simply because they don’t have a mind of their own.
The fact that a computer can implement processes such
as recursion, stochastic etc. does not define intellectual
characteristics. The capability of computers to do these
processes is simply mechanical. Just as a cell phone
rings when someone is trying to reach us so a computer
simply knows what to do because it is programmed.
Imagine if computers really had a mind of their own, then
we would be living in a nightmare where we had no con-
trol over them at all. Even when working with algorithms
we need to be in control of our designs. The act of design
cannot be simplified to only that of drawing a building.
Design implies one’s thought process, mood, attitude,
points of view, soul…, etc. a computer is not programmed
to exhibit such things and it remains a simple tool.

I agree with you. As a tool, I don’t think there is much dif-
ference between the computer and any other tools that
we are using; and I have to admit that no matter which
tools the designer chooses: pen, watercolor, or computer,
the accidence and randomness somehow will happen
and can be part of the creativity in the design process. 
I guess people are more random than computers are.
There are thousands of stories that we are familiar with,
like how to create a new recipe by accidentally putting
something wrong into a food.
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The intelligence of the designer relies on how successful
the handler controls the tools in order to transform acci-
dence to be a piece of creativity with a sense of aesthet-
ics. Since the tools don’t have any feelings, the design
result represents the designer’s artist ideas and spatial
imaginations.

Granted the two approaches are similar in many ways, but
I think you’re missing the point. The difference is not in
how these tools (I hate that word) are used. The difference
is on a more fundamental level: decision making.

Drawing is a mode of representation. CAD is a mode 
of representation. Scripting things like logical loops, con-
straints, and cause–effect relationships is not so much a
mode of representation as it is a mode of generation.
There is a key difference between channeling an idea into
a form (through the conventions of physical drawing,
computer drawing, physical model, computer model) and
channeling a process into a form (something scripting
seems to facilitate nicely).

I do not mean to imply that scripting as a design process
is superior to doing it the conventional way, but it is most
definitely different at its core. Conventional architectural
design is all about making decisions from the top down
(you make the big decisions and continue to make resid-
ual decisions based on what you learn) while scripting
seems to bias the role of human decision making to a
more bottom-up approach (you define some base param-
eters and let the computer make the big decisions).

So, when used in this manner, the computer is not
equivalent to the pencil. The pencil is never actively gen-
erating form, only representing the designer’s idea of it.
The computer, however, can theoretically act as a 
decision maker.

If you’ve ever done an algorithmic project, you may have
noticed that you can’t approach it in the same way you
normally would an architectural project. Already, at the
base of your design decisions, your thinking becomes
radically different. Again, not better, but different. In fact,
my bet is that algorithmic skyscrapers will be spectacular
failures, but the thinking behind how to design them will
be an interesting change of pace.
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It’s useful to understand that a pencil is productive in
design because of its place as a component of a larger
design methodology. Plan drawings, section drawings, and
the notion of scale, for instance, are all powerful rational
concepts which underlie and help to drive “pencil” based
design. When translating an idea between physical built
form and represented form, the ability for a designer to
move ideas on paper between scales and modes of rep-
resentation is made possible through a more or less rig-
orous adherence to a rational system which has been
developed over centuries of design.

Just as my grandmother has great difficulty knowing what
to pay attention to on a website filled with deceptive banner
ads and pop-ups as well as useful content information,
someone unfamiliar with the system of representation will
not understand what the pencil is doing to facilitate design.
Without a comprehension of the system, the representa-
tion loses much of its content and design information.

Renaissance perspective construction is another example
of a system within this system. This is a purely rational
mathematics and geometry based system for the transla-
tion of representation, developed in conjunction with pencil
and paper representation.

Jon Conway’s simplification of Von Neumann’s cellular
automaton is similarly a rational mathematical and geo-
metrical based system. His publication of what was called
the Life game in Scientific American of 1970 prompted an
avalanche of graph paper and pencil explorations into what
the system could deliver. The rationale behind the explo-
rations differs from explorations into, for instance, perspec-
tive construction, in at least a couple of ways. Perspective
has primarily been used to represent “something” precon-
ceived. Not the case with CAs. Also, the rigor with which the
rational system is employed is often not so critical, in gen-
eral, with perspective geometric explorations, whereas it is
understood to be extremely critical, essential in fact, in the
case of cellular automata explorations.

But this is not always the case in design. Scott Cohen’s
designs, both pre-computer and post computer, are based
exactly on a critically rigorous adherence to the rules of a
geometric system, which is allowed to generate, allegedly,
an “unpreconceived” logical geometric result.
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These are all ideas which developed under analysis and
experimentation with rational, human developed, systems.
As it turned out, both renaissance perspective construc-
tion and cellular automata logic required very little trans-
lation to be applied within the logic of a computer. One
could argue, in fact, that it was the humanist love of rational
systems which produced the experimentation which led to
computers.

Computers brought speed, speed which is now used to iter-
ate human logic through unprecedented numbers of loops.
Wolfram’s greatest discovery (despite what he will tell you
about himself, and independently of mathemetica) may
well be the effect of CAs at extremely high resolution –
something only possible with computers (and a heavy
dose of insomnia), but based entirely on human logic.

Speed may at some moment in the future bring us the
rational, controlling, and seemingly psychologically moti-
vated HAL. This seems to have already happened in the
narrow bounds of a master chess player and chess 
playing computer. Speed may bring us the moment in
Planiverse when a human programmed 2D creature sud-
denly speaks a word that was not programmed into its
lexicon. But it’s not clear that, outside of a well con-
structed fictional world, we will feel this is intelligence.

Is a sense of intelligence equivalent to proof that there is
intelligence? Is it possible to ask that question without a
priori believing in a logical system? Is there an independ-
ent, non logically based means to verify intelligence?

To those uninitiated, sufficiently advanced technology is
indistinguishable from magic (Arthur C. Clarke). Does magic
exist?

At this point in history, I have not yet turned on my com-
puter, or sat down after letting it run for several weeks,
and found something unexpected – unless I had pro-
grammed something into it and (ironically) “expected”
something unexpected. I have found things on my com-
puter that were programmed by someone else and came
from my web link to appear on my computer – and in 
this sense the whole internet network may have a more 
powerful potential for dramatically providing something
unexpected in the future.
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But in this sense, I probably come down on the side of the
computer as machine shop: useful for creation of tools,
but not yet providing anything back to me that wasn’t the
expected or expectedly unexpected result of an a priori
human system.

Programming is a way of conceiving and embracing 
the unknown. At its very best, programming goes beyond
developing commercial applications. It becomes a way of
exploring and mapping our own way of thinking. It is the
means by which one can extend and experiment with rules,
principles, and outcomes of traditionally defined architec-
tural processes.

In developing computer programs, the programmer has
to question how people think and how mental processes
develop and to extend them into real dimensions through
the aid of the computers. In other words, computers
should be acknowledged not only as machines for imitat-
ing and appropriating what is understood, but also as vehi-
cles for exploring and visualizing what is not understood.
The entire sequence of specifying computer operations is
similar (albeit not equal) to that of the human thinking.
When designing software, one is actually transferring
processes of human thinking to a machine. The com-
puter becomes a mirror of the human mind, and as
such, reflects its thinking.

Some time ago I was at a conference that investigated
the future of computers in Architecture. I had expected
that the panelists would address the opportunities pre-
sented to architects and designers alike by the advances
in computer aided research. Instead, almost everyone
seemed interested in exploring existing programs, as
opposed to holding a philosophical position driven by their
own concepts… At that time I asked a question to a
panel of experts about the necessity of designers to know
how to program computer code. The answers that I got
from them were very surprising to me, ranging from “what
does programming have to do with design?” to “yes, design
applications should be customizable.” At that point I real-
ized that the question should have been “how much pro-
gramming should the designer know?”

You may already have deduced that I do think that 
programming is an important part of design education
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and practice. Programming involves more than simple
problem solving, because it is the only way to use the
computer to its full capacity, and for challenging known
facts. Programming is the vehicle for obtaining new knowl-
edge, for seeing things that cannot be seen, and for taking
your fate, as a designer and architect, in your own hands.

Let me give you an example of a personal experience.
This example deals with the very basics of architecture:
perspective and three-dimensionality. As we all know, any
CAAD program will allow the designer/architect to project
into space any object/point, and will be able to render it
accurately, as long as the designer/architect does not
challenge the very basis of the architectural projection:
that of a projection being always bound to a formula of
positive numbers.

For example, the mathematical formula for a perspective
projection is f(x,y,z) = (x*t, y*t) where t = d + d/z and d
is the distance of the user to the projection surface.
What if I give d a negative value? Can you imagine what
that would look like? Can you draw the result on a piece
of paper? (it is just a simple formula, isn’t it?) Do you
know of any CAD application that would allow you to mess
around with the perspective projection? I doubt you would
find any such application unless somebody gives you the
application’s code for you to change. But that would
involve two things: the designer/architect knowing how to
program and the developers giving them the code.

In reality, there is an unraveling relationship between the
needs of a designer/architect and the ability of a specific
program to address these needs at all times. This can be
attributed to a number of factors. First, designers are never
really taught how to program (one needs to look no further
than the question/answer “What does programming have
to do with design?”). Schools do teach students how to use
CAD tools, how to play around with applications, but they
do not venture into teaching the language, structure, phi-
losophy, and power of programming.

Secondly, CAD developers rarely release code. You will
be asked what you want, you will be offered interfaces for
customization but you will not be given access to the code.
For good reasons, code is proprietary information, and
information is power. So, if a designer/architect wants 
to mess with the perspective formulas, they will need to
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write the modeling, interface, display, optimization, and
debugging modules on their own. How many people who
either have the time or the know-how to do this do you
know? When are we going to see a Linux-like CAD system?
When are we going to start a community of designers/
architects/programmers sharing common code, for the
advancement of CAAD?

I tend to believe that now, a designer/architect’s creativity
is limited by the very programs that are supposed to free
their imagination. There is a finite amount of ideas that
a brain can imagine or produce by using a CAD application.
If a designer/architect doesn’t find the tool/icon that they
want they just can’t translate that idea into form. And
whenever they see a new icon (let’s say “meta-balls”)
they think they are now able to do something cool. But
are they really doing anything new? If a designer knew
the mathematical principles and some of the programming
behind the newest effects, they would be empowered to
always keep expanding their knowledge and scholarship
by always devising solutions untackled by anybody else.
By using a conventional program, and always relying on
its design possibilities, the designer/architect’s work is
sooner or later at risk of being grossly imitated by lesser-
devised solutions. By cluttering the field with imitations
of a particular designer’s style, one runs the risk of being
associated not with the cutting-edge research, but with a
mannerism of architectural style.

In this light, there are many designers claiming to use
the computer to design. But are they really creating a
new design? Or are they just re-arranging existing infor-
mation within a domain set by the programmer? If it is
the programmer who is asking first all the questions, who
is really setting the parameters and the outcome of a
good design? We saw already the I-Generation (Internet-
Generation). When are we going to see the C-Generation
(Code-Generation) – the generation of designers/archi-
tects that can take its fate into their own hands?…
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