
HOW-TO:

Convert PSD to HTML/CSS

The definitive guide for converting

Adobe® Photoshop® designs into HTML/CSS.

R.002

Introduction

Step 1: Analyze

1

4

Step 2: Write 27

Step 3: Check 117

Ending 138

C O N T E N T S

Introduction 1

This guide is for you.

It’s for you if you want to learn how to convert a
design, made with Adobe Photoshop, into a
HTML/CSS document.

It’s a step-by-step guide that explains (mostly)
everything you need to know to get started.

You should already be familiar with basic concepts
of HTML & CSS (e.g. display, float, etc.) and so on.

Some basic Photoshop knowledge is required too.

It comes packed with a ready Photoshop design,
called Monoplate - exclusively made for this guide.

The converted files of Monoplate are available.

There’s also a blank folder of HTML & CSS files
that you can start with and implement Monoplate,
side by side, along with this guide.

Introduction 2

The blank folder already has the framework that is
being used in this guide called F2fw.

F2fw is a free and open-source framework built for
converting designs: http://artmov.com/f2fw

Just to recap, your package contains these:

• the Photoshop design, Monoplate.psd
• the converted HTML/CSS files of Monoplate
• a blank folder of HTML/CSS for learning along
 with this guide, side by side.

What do you need before you start:

Text editor
You can use any text editor you’re familiar with.

TextMate for Mac OS X or Notepad++ for Windows.

Adobe Photoshop CS5.5
You need Photoshop CS 5.5 to open Monoplate.psd
design file.

Web browser
Google Chrome is a good and fast browser that you can
use for this guide, if you don’t have it yet.

Screenshots from these pages are from Google Chrome.

Start.

Introduction 3

Analyze
Analyzing the design before getting to work

Before you start converting a design it’s important
to make an analysis on how that design, made in
Adobe Photoshop, was done.

Imagine that the converting process is like a lego
game that has been already built by a kid. You need
to break that fnished piece into smaller ones.

The basic concept of a converting process is to take
any given design, break it down into smaller pieces
and see which of those can be reproduced with CSS
properties or which can’t, and so on.

You start by taking a look at your design and ask
questions, such as:

• which parts can be made with CSS properties?
• which parts can’t and needs cropping?

Open your Photoshop with the Monoplate.psd file and
do just that for a few minutes.

Analyze 5

It’s going to be a good start if you ask these type of
questions (what can be reproduced with CSS properties or
not) before you write any HTML or CSS code.

This step gives you a higher speed when you start to
write the code since you already have a check list to
start with. You write faster, better and your project
is going to be easier to manage.

Take a few moments, do a quick analysis over the
design and decide, from the very beginning, which
and what.

“ Take your time. Have a look at your design. Try to
see and understand how it was made and what you
can break into smaller pieces to start with.

Analyze 6

Also, don’t neglect the small details. In the end, they
are the ones to make a huge difference.

In more familiar terms, check out and identify parts
such as: header, footer, menu etc. These are the
most common elements found on a web page.

See how they are made, what they are made of
(e.g. borders, gradient backgrounds, etc.) and gather just
enough information to have the bigger picture.

“ Take a look at your design before you start to work;
analyze it, gather your information, and then start.

At this stage try to focus on the big parts, rather on
the small details. Don’t forget those, but leave them
for later.

In Monoplate case have a look at how the header is
done: a left-to-right black-gradient bar, no?

How is the big picture going to look?

Analyze 7

When you are at this step, ask:

• which elements can be reproduced with CSS?
• which can’t and I need to crop them?

You can also find a mix between portions that can
be done with CSS properties and portions that
needs cropping (e.g. custom buttons).

Start by doing this analysis on Monoplate.

You should already have Monoplate.psd open. Zoom
in at the top part of it, the top bar part.

This is where you start from.

1

Analyze 8

Look at the top part (#top) and you’ll notice that the
background has dotted gradient lines. Crop this into
a new image: top.png.

You can choose any selection to crop from, but try
to get its minimum functional size (e.g. without any
graphical interruptions when its being repeated).

A 50x50 pixel selection is good for this background,
but a 2x40 pixel one is much better. It includes the
2px width as the minimum size required to have the
image properly shown when being repeated.

Have a look at the next comparison.

“ Crop any images to the most minimum functional
size, both vertical and horizontal, in order to reduce
its size as much as possible.

Analyze 9

This is a random cropped section of the top bar of
Monoplate at a 50x50 pixels selection.

It looks good enough, but its size can be improved
even further if you had a 2x40 pixels selection.

Analyze 10

Much better. This is a 2x40 pixels crop, a portion of
the background trimmed to its minimum.

It’s functional and top.png has a smaller size now.

Analyze 11

Minimizing a crop selection of any given image
ultimately provides you with much lower file sizes,
resulting in a more lightweight web page.

Depending on multiple factors, it can be a save.

In top.png case, a 50x50 crop selection resulted into
a size of 231 bytes, while a 2x40 one gives you 142
bytes. It was a save of 89 bytes.

Back to Photoshop: save the newly image as top.png;
this image is in the /includes/images folder.

You don’t write any HTML or CSS code for now,
you are just doing an analysis over the design and
crop some parts of it.

Save it and move on the next part of Monoplate.

2

Analyze 12

You can find all the images from Monoplate in the
/includes/images folder; the stylesheets are in the
/includes/css folder, and the thumbnails from the
content are in the /includes/pictures.

The header: it has a logo, a menu and a bar from
left to right with a black gradient. The logo and the
menu can be discussed later.

What’s the most effective solution for implementing
the header background? What are your options?

• crop the header’s black gradient background;
• reproduce the background with CSS3 gradients.

By far the best decision for these types of questions
strictly depends on your project requirements.

Each project is different and each has different
needs on compatibility, speed and so on.

3

Analyze 13

A few questions that may help you:

• is speed more important than multi-browser
 compatibility ?
• is the header height going to change ?
• and so on..

Other questions that might come in handy:

? Is the element going to be with dynamic content ?
Is the element size going to change - how ?
What about the height, width or both ?

When you find an element with no upfront requests
about it, try to assume what it is and what is it for.

Here’s a common example for that.

Analyze 14

The title boxes of a tab component will most likely
need to have a dynamic width to allow the title to
expand as needed, while the content box may
require a dynamic height.

A mock-up:

Back to the Monoplate: next is a quick overview of
the two options you have for the #header.

Analyze 15

The first option is to crop the background directly,
just like you did with top.png.

If the requirement is to have the highest level of
multi-browser compatibility, cropping is the solution
(e.g. gradient is shown on all supported browsers).

Let’s have a glimpse at this example where the
height of the header remains unchanged (fixed).

The previous crop you did was the top background,
trimmed to its minimum functional size.

You can apply the same approach here and save a
header.png file, but you’ll basically have two files then:
top.png and header.png.

If the top bar and the header stays fixed in height,
have those images combined to save on the page size
and reduce the number of resources to download.

Analyze 16

Like the top.png image, this new image is cropped to
its minimum size needed.

It has the 2 pixels width for the top part and the
height needed to include the header background.

Analyze 17

The second option is to reproduce the gradient with
CSS3 functionality.

Speed is much more important for Monoplate than
browser compatibility, so make the gradient with
CSS3 gradient (more in Chapter 3; no coding for now).

This reduces the page size by excluding a selection
inside top.png, it keeps a low size. Anytime you can
reproduce elements using CSS, it saves you both
development time and page size.

Move on to the next part: the content itself, named
#page in the Monoplate converted HTML.

4

Analyze 18

“ When you analyze any given design, try to indentify
parts of a element (e.g. buttons, menu, etc.) that can be
easily reproduced using CSS properties.

• can it be fully reproduced using CSS?
 (e.g. buttons with shadows, gradients and so on)

• if not, what parts of it can be reproduced?
 (e.g. buttons with custom background, but 1px border)

Analyze 19

The #page gradient is going to be reproduced with
CSS3, but you can also choose to append it to the
top.png image.

Monoplate is going to use the CSS3’s variant to make
the web faster.

More about this in Chapter 3.

You identified the main parts of the Monoplate and
decided what to crop (top) and what you can do with
CSS (header, page).

Another part of Monoplate are the custom buttons.

You can either analyze them later before you write
the HTML/CSS code for that part or do it now.

Actually, have a look at them now.

Go with an in-depth check on the custom buttons
and see which parts of a state (e.g. default, :hover) can
be made with CSS and which needs to be cropped.

5

Analyze 20

Identity as much as possible what you can do with
CSS properties.

This saves you time.

These can be done with CSS:
The button text shadow
The button shadow
The button border

These can’t be done with CSS:
The lines gradient background

Analyze 21

Divide a button into smaller pieces to see what makes
it a button.

This comparison should help you to find a balanced
method of converting these buttons, using a mix of
CSS properties and cropped images.

Once you identified that (as above), go to deactivate
those effects from the Photoshop Layers Panel and
leave only what needs to be cropped.

So, the steps applied to these buttons would be:

Remove the “Learn from it” and “Read more” text to
have the two button states ready (default and hover).

1. Remove
the text

Analyze 22

Move these buttons into a new PSD document or
remove some of the noise around it (e.g. pictures, text
etc.) so you can stay focused on the buttons.

Moving the buttons into a new document is simple
to do: select the buttons and hold click while your
drag them into the new document.

The buttons have a solid border that can be
done with CSS, so you can remove it.

2. Remove
the borders

The shadows can be entirely recreated with CSS3,
so remove them as well.

3. Remove
the shadows

Analyze 23

Almost done. What are you left with now?

Stack the backgrounds one after another to allow a
dynamic change of the text inside each button.

“Learn from it” to easily be “Learn from Monoplate”
without having the background interrupted.

4. Stack the
backgrounds

What you have left now with is from the column of
“what can’t be done with CSS”: the background.

If you had them positioned otherwise the width of
the default state would have been limited up until it
reached the :hover background.

Because the width of the button is unknown and
can change anytime, go with a dynamic width.

Analyze 24

Just as with top.png trim this background image to its
most minimum size you can.

The background can be cropped up to a maximum
width of 2 pixels, the minimum size you need to
have it repeated it properly.

Analyze 25

Save the new cropped image as btn.png. You can find
it in the /includes/images folder.

5. Save the
file

There has been about five steps that you did for the
Monoplate analysis. From making a quick overview of
its structure to deciding which & what to cropping 2
images also.

The steps you did so far:

• you did an overview of Monoplate design to grasp
 the big picture;

• you identified and decided which parts of
 Monoplate can be reproduced with CSS;
• you also identified elements that can be recreated
 with a mix of CSS properties and cropped images;
• you have trimmed the necessary images.

Congratulations!

This chapter showed you what to ask before you
convert a new design, see which parts needs to be
trimmed or which can be easily done with CSS.

You can crop all the necessary images straight from
this step (e.g. social icons, logo etc.), but its purpose is
to give you the start idea and what you should ask
when you’ve just opened a .psd file to grasp the big
picture of it.

Now it’s time to write some code.

Analyze 26

Write
Getting to work

Before writing the HTML and CSS, just recap the
structure of Monoplate and divide it into your future
containers (e.g. IDs and classes). There is no need to
write them in index.html now.

It would (probably) look something like this:

#top
	 links
	 icons
#header
	 logo
	 menu
#page
	 hello
		 article
		 slider
	 albums
	 blog
#footer

Write 28

The naming was done fairly simple: when you did
the analysis of this design, there was a top bar part
of Monoplate, so that takes the #top container; the
header has the #header and so on.

Usually the containers are named after what they
represent or contain (e.g. div.icons for the top bar’s right
icons), but you can choose and develop your own
personal system for naming.

Or you can find existing systems.

Getting used to a naming system improves your
converting skills. You will work faster each time.

It gives you a more accelerated rate of coding any
HTML/CSS and it also improves the maintainance
of your projects.

Write 29

It’s time to write some HTML and CSS.

You’ll be switching regularly between the text editor,
Photoshop and your browser of choice.

So with Monoplate.psd open, load the blank folder
from your package to start writing some HTML
and CSS.

You already have the converted files of Monoplate in
the same package, which you can use whenever you
need to double check that you’re on the right track.

The index.html and style.css files are what you need for
now. The style-ie8.css /style-ie7.css - specific stylesheets
for Internet Explorer - are less important now.

You start converting in one browser and move after
it’s done to the other web browsers for testing and
debugging.

Write 30

Start with your content container to define its width
in your CSS.

You can measure the width with the Marquee Tool.

Write 31

Monoplate content container is 1000 pixels wide, so
limit the container to that size, 1000px.

Define the content container in style.css1

div.container {
	 margin:0 auto; /* makes the content centered */
	 width:1000px;
}

The #top, #header, #page backgrounds are at 100%
width, outside the 1000px limit, meaning that those
backgrounds will stretch from left to right in the
browser’s window, regardless of inner content you
have (see the previous image).

Go for a div with class to call it several times within
the document. An ID div can be called only once in
the HTML page.

Write 32

<div id=”top”>
	 <div class=”container”>

	 </div><!-- end .container -->
</div><!-- end #top -->

You’ve recently cropped top.png as the background
image for #top, so it’s time to show that.

Start with the HTML first:

The div.container is part of #top to center the content,
while its parent, #top, is to display the background.

That’s because the #top is going to be 100% in
width, which is what you need to display the top.png
background for the top bar, from far left to far right.

Write 33

Code the #top selector2

Switching to the index.html file, the converting
process starts with the top bar of Monoplate, #top.

Apply the top.png image to the #top selector.

The “repeat-x” translates in the background being
repeated from left to right, while “bottom left” gives
the starting position as the bottom left.

#top {
	 background:url(../images/top.png) repeat-x bottom left;
}

Check the results to see if top.png is repeated. You
may need to add some dummy content inside the
HTML for #top background to show.

Use either blank <p> or simply
 tags.

Save the index.html and style.css files and refresh your
web browser. How does it look?

Move on the next page and see what are the steps to
complete the #top selector.

Write 34

Switch back to Monoplate design and you’ll see that
the paragraphs inside the top bar are positioned on
the left and respectively, on the right.

So make use of the F2fw reserved classes for floating
elements: fl and fr.

Write 35

.fl {

	 float:left;

}

.fr {

	 float:right;

}

fl (floatleft)

Floats elements on the left,

regardless of type.

fr (floatright)

Floats elements on the right,

regardless of type.

The fl and fr classess can be applied to any element.

<div id=”top”>
	 <div class=”container”>

		 <p class=”fl”>
			 About
			 Advertise
			 Login
		 </p>
		 <p class=”fr”>
			 Facebook
			 Twitter
		 </p>
		 <div class=”cl”></div>

	 </div><!-- end .container -->
</div><!-- end #top -->

For the reserved parts that are from F2fw, this guide
outlines their properties to make it easier for you to
understand it and see how it works.

As said earlier, apply the fl and fr classes to each p
inside the #top container and add the content.

Write 36

The cl class is from F2fw and it is used to clear
floats. It simply has the “clear:both” property.

Here is a quick recap of these classes:

• the fl for left floating;
• the fr for right floating;
• the cl for clearing the floats.

.fl {

	 float:left;

}

.fr {

	 float:right;

}

.cl {

	 clear:both;

}

fl (floatleft)

Floats elements on the left,

regardless of type.

fr (floatright)

Floats elements on the right,

regardless of type.

cl (clearing)

Clears any above elements, both

on the left and on the right.

Write 37

Switch back to style.css and begin the styling of the
paragraphs with fonts, colors and margins.

Selecting the text (e.g. link) inside Photoshop will
show you the font used and the color.

#top p {
	 font:normal 14px/18px “Marvel”, Arial, sans-serif;
	 padding:12px 0; /* top and bottom space */
	 margin:0; /* disables any margin */
}
#top p a {
	 text-decoration:none; /* disables the underline */
	 margin:0 20px 0 0; /* adds the space between links */
	 color:#a0a0a0;
}
#top p a:hover {
	 text-decoration:underline; /* enables the underline */
	 color:#000;
}

Save and refresh. This is how it should look:

Write 38

If yes, you’re on the right track now.

Your next step now is to add the icons, but let’s see
how F2fw can help you with that.

First, update your index.html file with the reserved
class called “ico”.

<div id=”top”>
	 <div class=”container”>

		 <p class=”fl”>
			 About
			 Advertise
			 Login
	 	 </p>
		 <p class=”fr”>
		 	 Facebook
		 	 Twitter
		 </p>
		 <div class=”cl”></div>

	 </div><!-- end .container -->
</div><!-- end #top -->

Write 39

Also include a “ico-facebook” and “ico-twitter” class to
differentiate the icons.

The “ico-facebook” and “ico-twitter” classes aren’t part
of F2fw, but you do need them to target the icons
and make use of that.

Follow up on the next page for an example, while
below you can see which properties a “ico” class
brings from F2fw.

a.ico {

	 background:url(../images/ico.png)

 no-repeat 0 0;

	 color:transparent !important;

	 text-indent:-9999px;

	 cursor:pointer;

	 overflow:hidden;

	 display:block;

	 line-height:0;

	 font-size:0;

	 border:0;

}

ico (icon)

Loads a ico.png from the

/includes/images folder.

Disables content within

element with class

applied.

Write 40

The “ico” makes it easier to include icons without
rewriting the above properties each time.

F2fw also has the “btt” and the “arr” classes with the
same properties (calls their own images: btt.png, and arr.
png). These are used usually for custom buttons (btt)
and arrows (arr).

Write 41

Switch back to Monoplate, go and grab the social
icons and export them into the a ico.png file to make
use of the “ico” class.

The icons have a 40% level of opacity for the default
state, while for the :hover state it’s at 100%.

You can duplicate the icons, so the first copy to be at
40% opacity, while the second to be at the 100%.

Back to Photoshop: social icons3

But you can also save them at 100% opacity and
do the 40% level from CSS directly, with the opacity
property, thus excluding the duplicate.

How the social icons looks inside a new document
- to be saved as a ico.png image file.

Before saving the ico.png image, get each icon size
and background position.

These social icons from Monoplate have a 16px
width, with the same 16px for the height.

Switch to style.css and write them down there. The
positions are:

• Facebook icon position is 0 0;
• Twitter icon position is -16px 0.

Write 42

If simply selecting them doesn’t work (e.g. using the
Move Tool) use the Marquee Tool to get the width,
height and their position.

The output information is available in the Info
panel of Photoshop.

Example of using the
Rectangular Marquee Tool
to select a portion of an image:

Write 43

The below is a screenshot of the Info panel in the
Photoshop. This panel gives you the X, Y positions
of a selection, as well as the width and height.

If you haven’t already, switch to style.css and write
the size and position. The HTML already has the
“ico-facebook” and “ico-twitter” classes added.

Write 44

Both icons already share the “ico” class, you don’t
need to load the ico.png twice or add any properties
that disables the content.

It’s already there:

a.ico-facebook,
a.ico-twitter {
	 height:16px; 	 /* height of social icons */
	 width:16px;	 /* width of social icons */
}
a.ico-facebook {
	 background-position:0 0;	 /* position of Facebook in ico.png */
}
a.ico-twitter {
	 background-position:-16px 0;	/* position of Twitter in ico.png */
}

The icons already have the same width and height,
so they’re grouped together: a.ico-facebook, a.ico-twitter
and then called individually to include position of
background.

Write 45

Once style.css is saved, the index.html file will show the
icons stacked one after another because there is no
float property added.

This happens because each “ico” class is going to be
rendered as a block element since that class comes
with a display:block; property included.

So the next step is to add the float property for the
Facebook icon only and the space between icons.

What other options can you have here? Maybe the
“display:inline-block;” property?

Write 46

<div id=”top”>
	 <div class=”container”>

		 <p class=”fl”>
			 About
			 Advertise
			 Login
	 	 </p>

		 <p class=”fr”>
		 	 Facebook

		 	 Twitter
		 </p>
		 <div class=”cl”></div>

	 </div><!-- end .container -->
</div><!-- end #top -->

Your new updated HTML would be:

You already know what fl does, but you could also
apply the float property to the a.ico-facebook directly
from CSS without adding a fl class in the HTML.

The nmr (e.g. no margin right) class is new. It’s there to
disable the margin right of the Twitter icon.

The next page details more about this class.

Write 47

When you styled the paragraphs earlier, you also
spaced the anchors between them by adding a right
margin.

To cancel that space after the Twitter icon (e.g. its
right margin), use the “nmr” class from F2fw.

.nmr {

	 margin-right:0 !important;

}

nmr (nomarginright)

Cancels right margin.

Other similar classes that F2fw gives you are:

• nml (nomarginleft), nmt (nomargintop),
 nmb (nomarginbottom)
• npl (nopaddingleft), npt (nopaddingtop),
 npr (nopaddingright) and npb (nopaddingbottom)
• and so on..

Write 48

Good.

It’s time to save your files, the style.css and index.html
and check the results in your browser.

Here’s how it should look:

Write 49

The same idea applies to #header, just as it was with
#top: the div.container inside your #header centers the
content and the #header creates the background.

Code the #header4

This is the #top converted in HTML/CSS.

The base HTML structure for #header:

<div id=”header”>
	 <div class=”container”>

		 <div id=”logo”>
		
		 </div><!-- end #logo -->
		 <div id=”menu”>
			
		 </div><!-- end #menu -->
		 <div class=”cl”></div>

	 </div><!-- end .container -->
</div><!-- end #header -->

The structure is pretty simple so far, isn’t it? Your
move now is to add the logo and the menu.

The #logo and #menu will be positioned on the left
and, respectively on the right (also automatically by
F2fw; more about this on the next page).

The div.cl comes after the #menu and clears the floats
of those containers with the clear:both; property.

Write 50

Below are the properties that F2fw gives to a #logo
and how it can help you to add a logo easily.

#logo {

	 float:left;

}

#logo h3 {

	 line-height:54px;

	 font-size:25px;

	 margin:0;

}

#logo h3.incl a {

	 background:url(../images/logo.png)

			 no-repeat 0 0;

	 text-indent:-9999px;

	 display:block;

	 line-height:0;

}

#logo

Positions #logo on the left

(float:left;).

Adds a basic styling for an

inner h3, if any.

Includes the logo using a

“incl” class if applied to

the h3 tag.

Write 51

It automatically loads any logo.png from the /images
folder. You just need to set the size of the logo.

In more simple words, with the #logo h3.incl a, F2fw
automatically loads the logo.png and you just set the
sizes. It’s very similiar to the “ico” class.

If your logo isn’t in a PNG format, you can easily
overwrite that rule and replace it with another one.

Something like this:

#logo h3.incl a {
	 background-image:url(../images/logo.jpg);
}

It’s in the PNG format by default since quite a few
web sites require a transparent logo.

Like the example above, F2fw contains more of
these goodies.

It was built as a framework for converting designs to
allow developers to write less, but faster.

Write 52

#menu {

	 float:right;

}

#menu ul {

	 padding:0;

	 margin:0;

}

#menu ul li {

	 list-style-position:outside;

	 list-style-type:none;

	 margin:0 10px 0 0;

	 display:block;

	 float:left;

}

#menu ul li:last-of-type {

	 margin-right:0;

}

#menu

Positions #menu on the

right with float:right;

Makes inner ul display as a

horizontal menu, with the

li being floated on the left.

How about the #menu container? What does F2fw
adds to a #menu?

See below what F2fw adds to it.

Write 53

Before you include the logo and the menu in the
HTML, recreate the gradient background for the
#header.

Monoplate needs speed rather than multi-browser
compatibility, so the #header container background
is going to be added using the CSS3 gradient, not
another cropped image.

It’s fast and easy.

It’s best to use an online tool that will output for you
the entire properties for adding a CSS gradient.

There are quite a few properties for targeting a
wide range of web browsers, such as Webkit-based
browsers (Safari, Chrome), Firefox, Opera or
Internet Explorer.

The CSS gradient generator from ColorZilla is an
excellent choice: www.colorzilla.com/gradient-editor/

Write 54

Whenever you implement CSS3, make your web
pages more accessible by including a fallback for
those browsers that don’t support it.

This usually means a solid color for the background
background if the gradient property isn’t supported.

The mighty code would be:

#header {

	 background:rgb(51,51,51);
	 background:-moz-linear-gradient(top, rgb(51,51,51) 0%, rgb(0,0,0) 100%);
	 background:-webkit-gradient(linear, left top, left bottom, color-stop(0%, 	
			 rgb(51,51,51)), color-stop(100%, rgb(0,0,0)));
	 background:-webkit-linear-gradient(top, rgb(51,51,51) 0%, rgb(0,0,0) 100%);
	 background:-o-linear-gradient(top, rgb(51,51,51) 0%, rgb(0,0,0) 100%);
	 background:-ms-linear-gradient(top, rgb(51,51,51) 0%, rgb(0,0,0) 100%);
	 background:linear-gradient(top, rgb(51,51,51) 0%, rgb(0,0,0) 100%);

}

Write 55

ColorZilla outputs a IE8-7 property, filter, but it’s
removed because it’s buggy and not recommended.

Use a solid background for IE7-8 instead.

<div id=”header”>
	 <div class=”container”>

		 <div id=”logo”>
			 <h3 class=”incl”>Monoplate</h3>
		 </div><!-- end #logo -->
		 <div id=”menu”>
			
		 </div><!-- end #menu -->
		 <div class=”cl”></div>

	 </div><!-- end .container -->
</div><!-- end #header -->

Write 56

Get the logo from Monoplate and create a new PSD
document with it. Afterwards save it as a logo.png
image inside the /images folder.

The HTML to include it is easy:

Code the #logo5

Simple, no?

Chapter 3 shows the IE hack to thave the gradient
background, but Monoplate doesn’t use it.

A quick recap on the logo:

Any h3 a element with the “incl” class applied to the
h3 inside #logo is reserved for F2fw to include the
logo.png image file from the /images folder.

Afterwards, in your style.css you only set the size.

The CSS for the logo is simple as the HTML was:

#logo h3.incl a {
	 height:51px;
	 width:182px;
}

Save & refresh your browser to see the results:

Write 57

Keep up and move on to the menu and add the
links as an unordered list. (e.g. ul)

<div id=”header”>
	 <div class=”container”>
		 <div id=”logo”>
			 <h3 class=”incl”>Monoplate</h3>
		 </div><!-- end #logo -->
		 <div id=”menu”>
			 <ul class=”cf”>
				 About
				 <li class=”active”>Blog
				 Contact
			
		 </div><!-- end #menu -->
		 <div class=”cl”></div>
	 </div><!-- end .container -->
</div><!-- end #header -->

Write 58

Inside the #menu add an active state for one of the
links (e.g. Blog) to style it accordingly to Monoplate.

The HTML code would be as this one:

Code the #menu6

Quite simple. The “cf” (clearfix) class is also used for
clearing floats. It’s the well-known “clearfix” hack for
auto clearing.

Read about the clearfix here:
www.positioniseverything.net/easyclearing.html

It’s added to clear the floats of li items in the menu,
without adding a “cl” class at the end of the ul.

Here is how a “cl” alternative would look:

<div id=”header”>
	 <div class=”container”>
		 <div id=”logo”>
			 <h3 class=”incl”>Monoplate</h3>
		 </div><!-- end #logo -->
		 <div id=”menu”>
			
				 About
				 <li class=”active”>Blog
				 Contact
				 <div class=”cl”></div>
			
		 </div><!-- end #menu -->
		 <div class=”cl”></div>
	 </div><!-- end .container -->
</div><!-- end #header -->

Write 59

Either way, they would both work.

Sometimes a “cl” is better, sometimes it’s “cf”. It
depends on what you need to get done for the task.

Move on to the menu styling needed for the #header.

Here’s how the CSS should look like:

#menu {
	 line-height:0; /* remove unwanted space caused by a children with clearfix */
}
#menu ul {
	 padding:13px 0; /* create space between the top and bottom edges of links */
}
#menu ul li {
	 font:normal 20px/25px “Marvel”, Arial, sans-serif; /* set the custom font */
	 text-transform:uppercase; /* uppercase all text from CSS */
	 margin:0 30px 0 0; /* create space between the right and left edges of links */
}
#menu ul li a {
	 text-decoration:none; /* disable the underline style */
	 color:#b9b9b9; /* change the color of each anchor */
}
#menu ul li.active a,
#menu ul li a:hover {
	 text-decoration:underline; /* enable the underline style */
	 color:#FFF; /* change the color differently */
}

Write 60

Save your index.html and style.css files and hit refresh
in your web browser.

The results would be:

Write 61

The #page gradient would be coded in the same
way with CSS gradients, just as #header.

What’s different about the #page gradient is that it’s
created using three transitioning colors, rather than
two, which was the case of the #header.

The #page gradient transitions from blue to light
green and then to white.

Code the #page7

That’s not an issue for you. Like the gradients in
Photoshop Blending Effects panel, you can choose
many colors for your CSS3 gradient.

So, the CSS for this looks like:

#page {
	 background:rgb(92,168,186);
	 background:-moz-linear-gradient(top, rgb(92,168,186) 0%, rgb(223,246,234) 55%,
			 rgb(255,255,255) 100%);
	 background:-webkit-gradient(linear, left top, left bottom, color-stop(0%,
			 rgb(92,168,186)), color-stop(55%, rgb(223,246,234)), color-
			 stop(100%,rgb(255,255,255)));
	 background:-webkit-linear-gradient(top, rgb(92,168,186) 0%, rgb(223,246,234) 55%,
			 rgb(255,255,255) 100%);
	 background:-o-linear-gradient(top, rgb(92,168,186) 0%, rgb(223,246,234) 55%,
			 rgb(255,255,255) 100%);
	 background:-ms-linear-gradient(top, rgb(92,168,186) 0%, rgb(223,246,234) 55%,
			 rgb(255,255,255) 100%);
}

Use the little awesome tool from ColorZilla tool and
paste the output generated inside the style.css file.

It’s easy and fast.

Write 62

Notice from the design of Monoplate that you have a
1px lighter line between the #header and #page ?

You can create that using the border property.

Append it to either #header as a border-bottom or to
#page as a border-top.

Beside that line there is also a space between the
#header and the #page actual content. Make use of
the padding property to create that space.

#page {
	 background:rgb(92,168,186);
	 background:-moz-linear-gradient(top, rgb(92,168,186) 0%, rgb(223,246,234) 55%,
			 rgb(255,255,255) 100%);
	 background:-webkit-gradient(linear, left top, left bottom, color-stop(0%,
			 rgb(92,168,186)), color-stop(55%, rgb(223,246,234)), color-
			 stop(100%,rgb(255,255,255)));
	 background:-webkit-linear-gradient(top, rgb(92,168,186) 0%, rgb(223,246,234) 55%,
			 rgb(255,255,255) 100%);
	 background:-o-linear-gradient(top, rgb(92,168,186) 0%, rgb(223,246,234) 55%,
			 rgb(255,255,255) 100%);
	 background:-ms-linear-gradient(top, rgb(92,168,186) 0%, rgb(223,246,234) 55%,
			 rgb(255,255,255) 100%);
	 border-top:1px solid #74b7c3;
	 padding:49px 0 0 0;
}

Write 63

The above was the code needed for the #page CSS;
now add the HTML for it.

Save your style.css file and add the basic HTML
structure for #page, just as you added it for the
#header container.

<div id=”page”>
	 <div class=”container”>

	 </div><!-- end .container -->
</div><!-- end #page -->

Monoplate shows a 3 pixels border line above the
content of the #page container.

There is a div.container inside the #page, responsible
for centering the content, so you can include the
border line with that selector: #page div.container.

Write 64

#page div.container {
	 border-top:3px solid #367d8d;
}

The CSS - simple and straight forward:

The #page has the gradient set, but the content in
the #page sits on a white background, as it is shown
in Monoplate.psd.

Declare that background. It can be applied to the
content inside #page, so the container that centers it:
the #page div.container selector.

The new updated CSS for this is:

#page div.container {
	 border-top:3px solid #367d8d;
	 background:#FFF;
}

Write 65

It’s good so far.

View the design back in Photoshop and start with
the #page’s content: from the the first block, which
was named as #hello.

The content within #page is positioned a bit far from
the edges of its div.container, so add a new div and a
padding property to move and position the content.

Use the Photoshop’s Marquee Tool

to get the width x height ratio.

Write 66

#page div.content {
	 padding:22px 25px;
}

That’s 22x25px measured, which you can add in
the new container called content.

Save style.css and update the HTML code:

<div id=”page”>
	 <div class=”container”>
		 <div class=”content”>

		 </div><!-- end .content -->
	 </div><!-- end .container -->
</div><!-- end #page -->

Write 67

Switch back to Monoplate and have a look at the
#hello container just a little bit before moving to
writing any code.

Code the #hello8

What’s in for the #hello container:

• there’s a bar that is going to be repeated in the
 #blog container too;
• text and buttons are arranged in two columns.

Because the “hello” bar is going to be included into
another container (e.g. blog), code it outside #hello.

Name it simply p.category:

#page p.category {
	 background:#f1f1f1; /* set the background color */
	 height:18px; /* set the height */
	 width:100%; /* make it a 100% width */
}

Above, you coded the p.category as a simple p tag
with a 100% width and a specific height of 23px
and filled its background.

Write 68

Update the HTML for the #hello container and add
the “Hello” word itself as you can see below.

The specific word, “Hello”, is added with a white
background, but since it is fluid (e.g. Hello vs. Blog),
reproduce it from CSS.

This allows it to change easily.

<div id=”hello”>
	 <p class=”category”>Hello</p>
</div><!-- end #hello -->

You can include it either by using an a tag, but it
would become a link or switch over to a span tag.

Both of these tags are inline elements by default.

Monoplate uses “a”.

Write 69

Analyze the box surrounding the hello word and you
can simply see that everything can be created using
some CSS properties, such as:

• border;
• background with gradient;
• drop shadow effect for the text.

Use the same online tool for the gradient from
ColorZilla: www.colorzilla.com/gradient-editor/

Besides the background color, you also need to:

• add a drop shadow effect with the CSS3’s
 text-shadow feature;
• move the box more to the right;
• add border around the text;
• change the default color;
• set the font size.

Write 70

The CSS for this part is going to look something
like this one below.

It has everything it needs to be rendered correctly.

#page p.category a {
	 background:rgb(255,255,255);
	 background:-moz-linear-gradient(top, rgb(255,255,255) 0%, rgb(244,244,244) 100%);
	 background:-webkit-gradient(linear, left top, left bottom, color-stop(0%,
			 rgb(255,255,255)), color-stop(100%, rgb(244,244,244)));
	 background:-webkit-linear-gradient(top, rgb(255,255,255) 0%, rgb(244,244,244) 100%);
	 background:-o-linear-gradient(top, rgb(255,255,255) 0%, rgb(244,244,244) 100%);
	 background:-ms-linear-gradient(top, rgb(255,255,255) 0%, rgb(244,244,244) 100%);
	 background:linear-gradient(top, rgb(255,255,255) 0%, rgb(244,244,244) 100%);
	 padding:6px 15px 5px 15px; /* create the space around the text */
	 border:1px solid #e7e7e7; /* add the border */
	 font:normal 11px/16px Arial, sans-serif; /* set the font size */
	 text-shadow:0 2px 0 #FFF; /* add the drop shadow effect on the text */
	 text-decoration:none; /* disable the underline */
	 margin:0 0 0 17px; /* move the text to the right */
	 color:#999; /* change the default color */
}

Maybe add a :hover state the a tag, too:

#page p.category a:hover {
	 color:#000;
}

Write 71

Back to your index.html, save it (as often as possible) and
refresh your web page to see the results.

The main part of the #hello container is made out
of an article on the left and a slider on the right.

The index.html converted file of Monoplate wraps
these two components into a div.article, as such:

<div class=”article c2 cf”>
	 <div class=”excerpt c21”>

	 </div><!-- end .c21 -->
	 <div class=”slider c22”>

	 </div><!-- end .slider -->
</div><!-- end .article -->

Using the “article” wrapper, add a div.excerpt on the
left side to include the article content (e.g. title, text
etc.) and a div.slider on the right side.

Write 72

Lets see what the c2, c21 and c22 are and how these
classes from F2fw can help you.

div.c2 {

	 display:block;

}

div.c2 div.c21 {

	 float:left;

	 width:49%;

}

div.c2 div.c22 {

	 float:right;

	 width:49%;

}

c2 (columns: 2)

Any “c21” and “c22” part

of the “c2” selector are

being floated on the left

and, respectively, on the

right with a 49% width

set for both.

It’s similar to having two div, one with float:left; and
the other one with float:right.

Yet again, the “cf” class is there to automatically
clear the floats after the c2 container.

Write 73

Another option you could have used is to float the
div.excerpt on the left with a float:left; and the div.slider
on the right with the float:right; property.

F2fw already gives you the two columns grid with
the float properties included.

Move ahead on the styling of the div.article.

The Monoplate design shows a line with space
around it at the bottom of the #hello container.

The CSS for the border and space:

#hello {
	 border-bottom:1px dotted #d2d2d2; /* set the dotted bottom line */
	 padding:0 0 25px 0; /* add the bottom padding */
	 margin:0 0 25px 0; /* add the bottom margin */
}

Save your style.css and move further.

Write 74

Start with the article.

The title and the paragraphs are simple and straight
to the point to implement in your CSS:

#hello div.article h2 {
	 font:normal 25px/33px “Marvel”, Arial, sans-serif; /* set the custom font */
}
#hello div.article p {
	 font:normal 14px/23px Arial, sans-serif; /* set the font and size */
	 color:#777; /* change the default color */
}

Update your index.html with some dummy content
for the h2 tag and p tags.

The next paragraph after the article is made out of
the three buttons, the custom ones.

You already analyzed the buttons in Chapter 1 and
cropped their background.

It’s time to implement them.

Write 75

As always, be sure to save your index.html and style.css
files regularly, after each block of code you write.

<p class=”buttons”>
	 Learn from it
	 Read more
	 Grab the file
</p>

Everything is added within a new paragraph with
the class of “buttons”, while each button has their
own general class, called “btn”, the same name you
used for the sliced image.

Write 76

The start point on these custom buttons is the
HTML structure inside the div.article container.

Add the anchors and define a special class:

Code the custom buttons9

Before moving on to the buttons conversion, go and
disable the bottom margin of the paragraph and
create the space between buttons.

#hello p.buttons {
	 margin:0; /* disable the default bottom margin */
}
#hello p.buttons a {
	 margin:0 20px 0 0; /* create the space between the buttons */
}

The next paragraphs in these pages are mainly
about these 3 custom buttons.

To keep things simple, the buttons receive the class
as “btn”, while the image cropped from the design is
also called “btn” (btn.png).

Make sure you don’t add “btt” but “btn”, since the
first is used by F2fw and it’s similiar to “ico” (see the
header social icons).

Write 77

Lets recap your early work on the analysis and what
can be created using CSS magic:

• font styling and text shadow with text-shadow;
• the button’s shadow with box-shadow;
• the button’s border with border.

The CSS:

a.btn {
	 background:url(../images/btn.png) repeat-x top left;
	 -webkit-box-shadow:0 0 3px #CCC;
	 -moz-box-shadow:0 0 3px #CCC;
	 box-shadow:0 0 3px #CCC;
	 border:1px solid #90c8d4;
	 padding:4px 10px;
	 font:normal bold 14px/21px Arial, sans-serif;
	 text-shadow:0 1px 0 #FFF;
	 text-decoration:none;
	 color:#5e9ba8;
}

The box-shadow property adds the shadow of the
button; the -webkit- box-shadow and -moz-box-shadow
properties targets early versions of Webkit-based
browsers and Firefox browser.

Write 78

The border of the button is easily created with a
border:1px solid #90c8d4; property and the rest of the
font styling is very simple, as well (font, text-decoration,
color etc.).

Remember that both states of “btn’ are in the same
btn.png file?

First part is the default state and the secondary part
is for the :hover state to show whenever you move the
cursor on it.

While you could have moved them in two separate
files, two issues would have arrised:

• you need to download two separate images, thus
 adding an other resource to download;
• a flash of white background would appear when
 :hover is activated because only when you activate
 the :hover state, you actually download that image.

Write 79

Adding them in the same btn.png file proves to be the
most effective solution considering that the amount
of text won’t change in height, but in width.

It also improves the size of the website by reducing
the images to the minimum size needed (remember
that we’ve trimmed at a max width of 2px) and grouped
into one image, btn.png.

After displaying the button, just add the :hover state
in the style.css by changing the position of btn.png
background: from top left to bottom left.

a.btn:hover {
	 background-position:bottom left;
	 color:#3b636b;
}

This is going to swap the btn.png background and
display the last part of background when the :hover
state is active.

Write 80

That’s about it.

The custom buttons are now succesfully converted
for the #hello container.

<div class=”slider c22”>
	 <p class=”thumbnail”>
		
	 </p>
</div><!-- end .slider -->

The thumbnail is also in the /pictures folder and
named as a “sample_462_225.png” image.

Write 81

The thumbnail of the slider is handy to implement,
so create a quick HTML code for it before moving
on to the slider buttons:

Code the custom buttons for the slider.10

In your style.css, just remove the default margin that
is being applied to the p tag.

The code would be something like this:

#hello div.slider p {
	 margin:0;
}
#hello div.slider p.thumbnail img {
	 display:block;
}

It’s time to focus on the slider navigation now.

Since the buttons are displayed on top of the
thumbnail itself, lets have the container with a
position:relative;

Then create a new paragraph to include buttons,
but with position:absolute; property added so it can
stay on top the thumbnail.

#hello div.slider {
	 position:relative;
}

Write 82

The buttons will go into a new paragraph, with the
class as navigation.

<div class=”slider c22”>
	 <p class=”thumbnail”>
		
	 </p>
	 <p class=”navigation”>
		 Prev
		 Next
	 </p>
</div><!-- end .slider -->

You may have noticed the “btn” class for these
buttons. Here is why you should use it:

Whenever :hover state for these buttons is active, the
background shown is actually the first part of the
btn.png image or the default state of the buttons done
for the #hello container.

To save time on coding, use the same class and just
overwrite the background position for the slider
buttons only.

Write 83

This means that with “btn” applied here the slider
buttons also takes its properties, such as box shadow,
border etc. All of these can be overwritten.

The complete CSS code would be as:

#hello div.slider p.navigation a.btn {
	 border-color:#b9b9b9;
	 background-color:#FFF;
	 background-position:-100px -100px;
	 padding:3px 6px;
	 display:block;
	 float:left;
	 margin:0 5px 0 0;
}

Here’s what you overwritten from the btn class to
apply to the slider buttons:

• the border: since it uses the same width for the
 border, you’ve just replaced the color with the
 border-color property;
• the padding: the space is a bit different;

Write 84

• the background: the default state of the slider
 buttons uses a plain white background.

You added background-color:#FFF to overwrite the
btn default background, but also added the property
background-position:-100px -100px; which isn’t going to
show anything because the btn.png doesn’t extend up
to a 100px width or height.

It’s an intentional action to remove the image and
just leave only the background-color:#FFF; property.

The other properties in the above code (e.g. float and
margin) are added to position the buttons.

Before including the arrows, position the p.navigation
selector with the help of position:absolute and some
right and top values (e.g. right:15px; and top:20px;).

Write 85

The buttons now have the style applied, but they
don’t have the arrows found in the design.

For this you could use the ico class of F2fw, just as
you did with the social icons.

Use the same file, ico.png, to load the entire list of
icons: social icons (Facebook and Twitter) and these
new arrows for the slider.

Open ico.png again and move the arrows there. It
should look like this afterwards:

Write 86

This is the new ico.png with the arrows added.

Make sure that the arrows are on a transparent
background. When the :hover is active, the user
needs to see the stripped lines behind the arrow,
not the arrow surronded by white background.

Including them into HTML is easy.

Do the same as you did for the social icons: define
your classes and insert them with the general “ico”
class along the individual classes.

Wrap your words (prev and next) inside a new span tag
with the classes defined as “ico-arr-left” and as the
“ico-arr-right” and add the “ico” class.

The HTML:

<p class=”navigation”>
	 Prev
	 Next
</p>

Write 87

In style.css define the new classes of “ico-arr-left” and
“ico-arr-right” in the same way as you did you with
the header social icons.

The CSS code for this is going to look very familiar
and easy:

span.ico-arr-left,
span.ico-arr-right {
	 height:19px;
	 width:12px;
}
span.ico-arr-left {
	 background-position:0 -16px;
}
span.ico-arr-right {
	 background-position:-12px -16px;
}

As with the social icons, they both have the same
width and height, so you’ve grouped them together
and then defined them individually for the
background position property.

Write 88

Save your index.html, style.css and refresh the web
browser to check the final results.

Congrats.

This is how your #hello container should look in
your browser. Everything is aligned and looks the
same as was designed in Monoplate.

What is the next container to code?

Write 89

As you move to the next battlefield, below the #hello
container there is #albums, as it’s being called in
Monoplate.

<div id=”albums”>
	 <ul class=”nostyle cf”>
		

		
	
</div><!-- end #albums -->

Before adding the content inside the li, create the
styles for each of these li in your style.css file.

Write 90

The container has 4 thumbnails floated one after
another. An unordered list could work here
(e.g. ul li).

The HTML is simple:

Code the #albums11

The #albums container has a bottom border, just as
#hello did. Style the #albums in the same way.

#albums {
	 border-bottom:1px dotted #d2d2d2;
	 margin:0 0 25px 0;
}

Back to the unordered list from index.html, the CSS
would be fairly easy to do.

Because the ul already gets a “nostyle” class from
F2fw there is no need to add a list-style-type property
to the li. More on this in the next page.

#albums ul {
	 padding:0;
}
#albums ul li {
	 margin:0 24px 0 0;
	 display:block;
	 width:219px;
	 float:left;
}
#albums ul li p {
	 margin:0;
}

Write 91

You can use the Marque Tool to measure the distance
between each thumbnail (24px in this case).

Have a look at the “nostyle” class that is been added
in the converted index.html and what F2fw brings to
this class.

ul.nostyle {

	 padding:0;

	 margin:0;

}

ul.nostyle li {

	 list-style-type:none;

}

nostyle (no style)

Disables padding and

margin of ul, as well any

bullets for inner li.

This class comes in handy whenever you want to
disable the margin or the padding of any given ul
(or ol) and its inner li list-style-type property.

Write 92

What you did so far is to convert the thumbnails
from the #albums section using the li tags, which
are being floated on the left with display:block; and
float:left; properties.

The distance between each li is set at 24 pixels, as
measured from Monoplate.

The margin:0; is added for the p tag to remove the
margin. The content of an item inside #albums is
going to be positioned with paragraphs.

The HTML for adding the thumbnail and its below
text into sits in paragraphs, as such:

	 <p class=”thumbnail”>
		
	 </p>
	 <p class=”content”>
		 see more about this
	 </p>

Write 93

Focus on the white/gray split that each li has. That
portion is easily measured at 24 pixels.

A work around is to create a 1x24px image with a
full white background and insert it for the p.thumbnail
element. That’s an additional resource to download.

Monoplate focus is on speed and another solution for
this is to make use of the :after/:before selectors.

You can easily replicate that portion using the :before
selector, as shown below:

Write 94

#albums li p.thumbnail {
	 padding:0 0 20px 0;
	 position:relative;
	 background:#EEE;
}
#albums li p.thumbnail:before {
	 position:absolute;
	 background:#FFF;
	 height:24px;
	 width:100%;
	 content:’’;
	 left:0;
	 top:0;
}

Write 95

Before you add the :before selector, set the thumbnail
paragraph to be relative positioned.

The p.thumbnail is set with a full height background
(gray) and a bottom padding property of 20 pixels
to pull that gray background more to the bottom, to
replicate it from Monoplate.

Using the :before selector you position a 24px tall of
white background on top of that background, but
because of the :before absolute position, the white
background gets priority and it would sit on top of
any content inside the li (e.g. including the thumbnail).

To disable that, position the thumbnail itself on
top of the white background which is easy with a
position:relative and a z-index value of 1, as such:

#albums li p.thumbnail img {
	 position:relative;
	 z-index:1;
}

Write 96

A few more changes left to do on the thumbnail.

Create the 1px border around the image and show
the image as a block element, to make sure there
aren’t any margins below it. Then center it with a
margin:0 auto; property.

#albums li p.thumbnail img {
	 position:relative;
	 z-index:1;
	 border:1px solid #FFF;
	 display:block;
	 margin:0 auto;
}

The link below the thumbnail of a li is dropped into
a paragraph with a “content” class, so focus to do the
styling of that link and later on move to the icon
that is on it’s left side.

You can use the “ico” class for that icon too. It
would speed things up very quickly.

Create the stylesheet code for that content styling in
your style.css.

It should look like this one:

#albums li p.content {
	 font:normal bold 18px/21px “Marvel”, Arial, sans-serif;
	 text-align:center;
	 padding:20px 0;
	 margin:0;
}
#albums li p.content a {
	 color:#367d8d;
}
#albums li p.content a:hover {
	 color:#999;
}

Aside from the padding:20px 0; property, used to do
the space around the top and bottom parts of the
text, everything seems pretty straight forward:

• font styling;
• color changed for the links;
• disabled the default bottom margin for the
 paragraph.

Write 97

That’s about it for this content.

Moving on to the link left icon. Here’s the HTML
code with the “ico” class added in the same as you
did with the other icons:

<p class=”content”>
	 see more about this
</p>

Use the same ico.png file and drop the “plus” icon in
there, but before saving that image, get each icon
size and background position.

Your new ico.png should look like this one:

Write 98

Switch back to your style.css file and include the data
for this icon, such as width, height and background
position. In the same way as the other icons:

span.ico-more {
	 background-position:0 -35px;
	 height:11px;
	 width:11px;
}

The icon needs to be aligned with the text and,
similar to the header social icons, you can either use
the “display:inline-block;” property or “float:left”.

Here’s the code for the first one:

#albums li p.content a span.ico {
	 display:inline-block;
}

Everything is almost ready. Some small details that
needs to be done and it’s done.

Write 99

You need to style the icon as shown in the Monoplate
design. Meaning to reduce opacity on the default
state, just like the social icons.

#albums li p.content a span.ico {
	 display:inline-block;
	 margin:0 10px 0 0;
	 opacity:0.5;
}
#albums li p.content a:hover span.ico {
	 opacity:1;
}

Write 100

And here’s a sneak preview on its final look:

Done? That’s great!

Save your index.html and style.css and hit refresh on
your web browser. Here’s how it should look:

Write 101

That’s about the end for the #albums container. It
was easy and straight to the point.

Moving on to the next one, #blog.

<div id=”blog”>
	 <p class=”category”>Blog</p>
</div><!-- end #blog -->

Lets go to the blog article now.

It has a space between its left and right edges, so
wrap that up inside a new div named “article”.

Write 102

The #blog container also has the p.category used from
the #hello container.

That’s a good point to start with:

Code the #blog12

The HTML code for this part would be:

<div id=”blog”>
	 <p class=”category”>Blog</p>
	 <div class=”article”>

	 </div><!-- end .article -->
</div><!-- end #blog -->

Before stepping forward to adding the icons, add
the content of this article inside a h2 and a p tag.
Leave the post icons for later.

Add some random dummy content that you have at
hand inside the tags.

The p tags also get some classes, such as:

• post-data;
• post-content;
• buttons.

The HTML code is shown in the next page.

Write 103

Here’s the code for the HTML without the actually
dummy text inside with the CSS classes mentioned
in the previous page:

<div id=”blog”>
	 <p class=”category”>Blog</p>
	 <div class=”article”>
		 <h2>[..]</h2>
		 <p class=”post-data”>[..]</p>
		 <p class=”post-content”>[..]</p>
		 <p class=”buttons”>[..]</p>
	 </div><!-- end .article -->
</div><!-- end #blog -->

Halfway there.

Measure the space that surrounds the article. You
can use the Marquee Tool again and measure the left
space and then the right space.

Doing so would provide about 200px on the right
side and 17px on the left. With these values, include
the new padding in the div.article selector.

Write 104

Here’s the style.css code for the div.article with the
padding property added to have the space:

#blog div.article {
	 padding:0 200px 0 17px;
}

Your next move would be to style the content and
the move on to the icons.

This is going to change:

• colors used for links inside the “post-data”
 paragraphs by overwriting default color;
• font sizes and families;
• then add the icons.

You’re going to slice these post icons by appeding
them to the original ico.png file, in the same way as
you did with the slider arrows and header icons.

Write 105

This is how your new ico.png image should look after
you include the post icons.

Just as before, get their sizes and positions before
saving the file.

span.ico-date {
	 background-position:-11px -35px;
	 height:16px;
	 width:16px;
}
span.ico-tags {
	 background-position:-27px -35px;
	 height:16px;
	 width:16px;
}
span.ico-comments {
	 background-position:-43px -35px;
	 height:16px;
	 width:16px;
}

The CSS for these new icons:

Write 106

After adding the icons into the HTML code, save
and check your results. The HTML code:

<p class=”post-data”>
	 [..]
	 [..]
	 [..]
</p>

Refresh your page and you should have something
like this displayed in your browser:

If that’s what being shown for you, perfect.

The icons are being shown correctly, but you need
to align them and add the space between the icon
and anchor text.

Write 107

Use the same approach with the display:inline-block;
property to align the icons along the text. Maybe
add a position:relative; to make a more perfect
alignment (when that’s needed).

Have a look below:

#blog div.article p.post-data a span.ico {
	 display:inline-block;
	 margin:0 5px 0 0;
	 position:relative;
	 top:2px;
}

The space between the icon and the text inside the
link is done and working, but you also need to apply
a space between the links (e.g. date - tags - responses).

A margin:0 20px 0 0; would do:

#blog div.article p.post-data a {
	 margin:0 20px 0 0;
	 text-decoration:none;
	 color:#aaa;
}

Write 108

Save your index.html and style.css.

Here’s how the final result should look:

Write 109

Almost done.

What is left to do now is to convert the #footer and
then moving on to the third chapter of this guide
where you check the results.

Write 110

The main container here, called #footer, can fill the
gray background of Monoplate, while a new div.content
adds the necessary space around the content inside
the footer.

Also, use #footer to add the darkened border line
that sits on the top, while you can apply a padding
property to the div.content container to create the
space you need.

Next page shows you the basic HTML for this.

Code the #footer13

Here’s the basic HTML code for the #footer
container. Start from here:

<div id=”footer”>
	 <div class=”content”>

	 </div><!-- end .content -->
</div><!-- end #footer -->

The CSS code:

#footer {
	 border-top:3px solid #cdcdcd;
	 background:#efefef;
}
#footer div.content {
	 padding:25px;
}

Done.

Now just add some dummy content inside this new
container, style it as shown in Monoplate and check
the results afterwards.

Write 111

Use an unordered list for the dummy content.

Here’s a sample of a ul found in the converted file
index.html of Monoplate; you can replicate it further
more for the rest of the content.

<ul class=”nostyle”>
	 <h6>About us</h6>
	 <p>Where are we located?</p>
	 <p>Want to join us?</p>
	 <p>How we work</p>

The “nostyle” class should already be familiar for you
since it was used earlier for the #albums container.

Float these ul on the left and, as Monoplate shows
you, add some space in between them.

#footer ul {
	 margin:0 50px 0 0;
	 float:left;
}
#footer ul li {
	 margin:0;
}

Write 112

Here’s what tags needs to be styled for the content:

• the h6 tags: the title of a column;
• the p tags: the paragraph with links;
• the a tags: the links;
• the :hover states of the links.

#footer ul li h6 {
	 font:normal 24px/29px “Marvel”, Arial, sans-serif;
	 text-shadow:0 1px 0 #FFF;
	 text-transform:uppercase;
	 margin:0 0 5px 0;
	 color:#666;
}
#footer ul li p {
	 font:normal 18px/24px “Marvel”, Arial, sans-serif;
	 color:#656565;
	 margin:0;
}
#footer ul li p a {
	 text-decoration:none;
	 color:#656565;
}
#footer ul li p a:hover {
	 text-decoration:underline;
	 color:#898989;
}

Write 113

Save your index.html and style.css.

Write 114

Write 115

Congratulations!

You officialy converted a Photoshop design into
functional HTML/CSS files.

Lets recap what you’ve done so far:

• you have analyzed Monoplate before writing any
 HTML or CSS code to grasp the big picture of
 what it is about;

• you did an overview of Monoplate design and
 decided which parts can be reproduced using CSS
 properties and which can not;

• you have cropped a few images along with the
 analysis done, just enough to get the process
 starting on the right track;

• you wrote many HTML and CSS lines of code
 that fully reproduced Monoplate;

• you used the F2fw framework to speed things up
 quickly and write less code;

• you switched back-and-forth between Photoshop,
 your text editor and your web browser to often
 check the results and make neccessary changes,
 when needed.

It’s time to check your converted files and to move
on to the last step of this guide: check.

Write 116

Check
Verify your results for maximum compatibility

Check 118

In this last step, called “check”, you will verify your
converted index.html that it matches the .psd design
and check for bugs in other browsers.

And, if you find any, you start to fix them.

Here’s the list of the web browsers you’re going to
check the converted design and see if it’s okay:

• Chrome 19 (19.0 - used when coding);
• Internet Explorer 7 and 8;
• Opera 11 (11.64);
• Firefox 12 (12.0);
• Safari 5 (5.1.7).

In Internet Explorer 7 and 8, it’s important to have
an accessible design rather than a pixel-perfect one.

Having a pixel-perfect design in all browsers would
be nice, but the cost of supporting Internet Explorer 7
or 8 is simply higher and requires more time.

Check 119

If it doesn’t, list below which parts don’t match:

If you haven’t done the coding in
Google Chrome, open it and see if it
matches with Monoplate.

List below which parts don’t match:

Firefox 12 (12.0)

the header social icons aren’t aligned.

Check 120

So in Firefox 12 the converted Monoplate has a bug:
the social icons, from the #header, aren’t aligned.

The fastest way to debug this bug is to get Firebug for
Firefox and inspect that element to see why it’s not
being aligned properly.

Firebug for Firefox can be found here:
http://getfirebug.com/

Once installed, go and inspect the paragraph.
(e.g. right click on an icon > inspect element with Firebug)

Check 121

Now notice that the Facebook icon isn’t being
pushed to the left although it has the fl class.

Assuming that if both icons would have the float
property included then they’re are going to be
aligned properly.

Testing this theory is simple.

Go to the Twitter icon and add a float:right; property
right from Firebug to test it easily.

The above shows that Twitter is being selected in
Firebug and here below is the the float:right; being
added live in the right side of the Firebug panel:

Check 122

The theory is correct. You can find and test more
solutions for this bug, if you want to.

Whatever you do to fix a bug in Firefox 12, you need
to check again that it displays correctly in the other
browsers you support (e.g. Chrome vs. Firefox), unless
you use conditional comments.

Other options:

• declare a width for the right paragraph to limit it
 at a specified size, so the Facebook icon doesn’t
 go on the right side, but on the left;
• what other solutions do you think can work here?

Switch to your index.html file and include a “fr” class
for the Twitter icon.

<p class=”floatright”>
	 Facebook

	 Twitter
</p>

Check 123

Save it and go back to Google Chrome and see if it
looks aligned. If Chrome and Firefox display the icons
properly, move on.

List below which parts don’t match in Opera:

Opera 11 (11.64)

List below which parts don’t match in Safari:

Safari 5 (5.1.7)

Check 124

List below which parts don’t match in IE8:

Internet Explorer 8
(bugs also applies to IE7)

The “contact” link is positioned far from the right edge;
The #header, #page and p.category background gradients aren’t showing;
the icons opacity isn’t working.

Bug 1:
The contact link is positioned far from the right edge.

F2fw automatically disables the last item of the
#menu ul container with a :last-of-type declaration.

IE8 (and 7) doesn’t support that selector and so the
“contact” link has the right margin of the other links.

Check 125

You can either search for a JavaScript solution that
would make IE8 use that declaration or simply edit
index.html and include a “nmr” class to the last item
from the menu, the “Contact” link.

It’s similiar to the Twitter icon, where you added
that same class: nmr.

Selectivzr is a jQuery library that can be added to
have Internet Explorer 8 suport the :last-of-type:
http://selectivizr.com/

If you choose the HTML option, switch back to
your text editor and open index.html to include the
nmr class - apply it the last item.

Your updated HTML should look like this:

<div id=”menu”>
	 <ul class=”cf”>
		 About
		 <li class=”active”>Blog
		 <li class=”nmr”>Contact
	
</div><!-- end #menu -->

Check 126

Bug 2:
The #header, #page and p.category background
gradients aren’t showing.

Like with the :last-of-type selector, Internet Explorer
8 (and 7) doesn’t support gradients properly.

The ColorZilla code included a filter property for the
#header gradient background (same as for the #page
and p.category), but it’s removed because it’s buggy
and highly unrecommended.

Check 127

Because of this, opt for a solid color background
fallback whenever dealing with gradients for IE7-8.

The IE hack to make the gradient work would be:

#header {
	 filter:progid:DXImageTransform.Microsoft.gradient(startColorstr=’#333333’,
	 endColorstr=’#000000’, GradientType=0);
}
#page {
	 filter:progid:DXImageTransform.Microsoft.gradient(startColorstr=’#5ca8ba’,
	 endColorstr=’#ffffff’, GradientType=0);
}
#page p.category a {
	 filter:progid:DXImageTransform.Microsoft.gradient(startColorstr=’#ffffff’,
	 endColorstr=’#f4f4f4’, GradientType=0);
}

Bug 3:
The icons opacity isn’t working.

IE doesn’t have full alpha channel transparency; if
you include the IE hack to have the opacity, a side
effect would be the black corners:

Check 128

The filter property to make the opacity work in IE
is below, but remember that it’s going to show the
black corners.

#top p a.ico {
	 filter:alpha(opacity=40);
}
#top p a.ico:hover {
	 filter:alpha(opacity=100);
}

So, don’t apply any IE specific hacks.

Go with a 100% opacity for IE8-7, regardless of
the icon states, either default or :hover.

Whenever you are coding for IE8 or 7, go for the
fallbacks, such as: solid colors whenever you have
a gradient background, no box shadow effect (e.g.
maybe replace with a border property) and so on.

The work-arounds to make it pixel-perfect requires
a lot of time and can be performance drainers.

List below which parts don’t match:

the social icons are misplaced;
the header bar adds a bottom space;
the p.category is being cut;
the custom buttons are being cut also;
the gray/white split isn’t displayed;
the footer doesn’t have the bottom space;
the #blog icons aren’t being displayed.

Check 129

Internet Explorer 7
(besides IE8 bugs)

Bug 1:
The social icons are misplaced.

IE7 has a lot of bugs, doesn’t it? Here is how the
icons are being misplaced in Internet Explorer 7:

Check 130

The right paragraph doesn’t have any width set, so
IE7 extends it from the right edge of the paragraph
on the left to the right edge of the #top div.container.

The Facebook icon is floated on the left, so it goes
on the left edge of the paragraph.

Open up style-ie7.css and include a width limit:

#top p.fr {
	 width:52px;
}

This limits the right p to a 52px width - the size of
both icons plus the marging.

It can added in style.css as an alternative solution to
Firefox’s bug discovered early on.

Bug 2:
The header bar adds a bottom space.

First, make sure you have the Developer Tools for IE8

Check 131

Hit F12 to open it. It’s similar to Firebug for Firefox or
Developer Tools in Chrome, but it’s not that powerful.

Inspect the header bar and go through the entire list
of elements that it contains and see from where is
the gap being added. The path would be:

#header - div.container - #logo - h3.incl - a

When you’ve reached the #logo h3.incl a, you may
have noticed that the gap isn’t visible anymore.

Somewhere between the h3.incl and a element the
gap is added.

The easiest fix would be to set a height for h3.incl, as
you did with the a tag.

Check 132

The style-ie7.css code for this is easy:

#logo h3.incl {
	 height:51px;
}

Bug 3:
The p.category is being cut.

Here’s how the p.category container looks in the
Internet Explorer 7 browser:

A fix is to set a relative position for the a of p.category:

Many IE7 bugs can be fixed by giving an element a
“layout”. More about that - the concept of hasLayout:
http://www.satzansatz.de/cssd/onhavinglayout.html

#page p.category a {
	 position:relative;
}

Check 133

Bug 4:
The custom buttons are also cut.

This bug is also fixed by adding a position:relative; to
the custom buttons, as you did with the p.category a:

a.btn {
	 position:relative;
}

Actually, you can group them together:

a.btn,
#page p.category a {
	 position:relative;
}

Bug 5:
The gray/white split isn’t being displayed.

Remember that you’ve used the :before selector to

Check 134

make the gray/white work without attaching a
cropped image or an additional div?

IE7 doesn’t recognize the :before selector. You can
recreate it using a mix of negative positioning on
the thumbnail or extend the gray background to
have the top part to look as the bottom part.

The code is simply a padding-top property:

#albums li p.thumbnail {
	 padding-top:20px;
}

The other option you can do is to move the image
with a negative top value, disable the paragraph
padding-bottom property and add a padding-top

Check 135

property to the main container to make up on the
negative position of the thumbnail.

The CSS code:

#albums {
	 padding-top:20px
}
#albums li p.thumbnail {
	 padding-bottom:0;
}
#albums li p.thumbnail img {
	 top:-20px;
}

Bug 6:
The footer doesn’t have the bottom space.

This is mostly due to the hasLayout issue mentioned
earlier. This is how it looks in IE7:

Check 136

Give the #footer a layout for IE7 by adding the zoom
property in your style-ie7.css:

#footer {
	 zoom:1;
}

Save and refresh.

Bug 7:
The #blog icons aren’t being displayed.

IE7 doesn’t support the inline-block properly, so it’s
best to just disable the icons and leave the text only.

#blog div.article p.post-data a span.ico {
	 display:none;
}

It’s an acceptable compromise for IE7 - the most
important content, the text, is still shown and there
is no need for work arounds to display the icons.

Check 137

Congratulations!

You’ve completed the last remaining step of this
guide and tested your newly converted design in the
following browsers: Firefox, Opera, Safari and
Internet Explorer.

A quick recap:

• convert your project in one single browser until
 it’s finished and then move it to other browsers
 for testing;
• a bug fix in one browser isn’t always isolated from
 the other browsers, so always check your files in
 all browsers that you indent to support;
• implement a fallback method for IE7-8 browsers
 and don’t go for specific hacks if they aren’t that
 important (e.g. a solid background color works better than
 a buggy and unrecommended hack to have gradients shown)

Ending
Putting it all together.

Ending 139

Done.

You successfully converted Monoplate into functional
HTML/CSS file.

What are the steps for a new project?

1. Analyze the design to have the big picture on
 structure, how it works etc.;

2. Crop what can not be reproduced with CSS,
 but always try to find if there is a mix between
 CSS properties and cropped portions;

3. Always crop the images to the most minimum
 functional size;

4. It helps a lot if you develop a naming system or
 do a list on how you’re going to name your
 containers;

5. Always save your files - regularly;

6. Do your coding in one browser until it’s fully
 converted and then switch over to the other
 browsers you’re going to support and test if you
 have the same results;

7. Start with the width limit of the design (if any)
 and move towards each portion from top to
 bottom;

8. Adopt fallback methods for Internet Explorer
 browsers (usually 7 and 8) rather than pursuing
 a pixel-perfect design;

9. Save your files - seriously;

Ending 140

Thank you.

Adobe and Photoshop are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States and/or other countries.

Firefox is a registered trademark of the Mozilla Foundation.

Safari is a trademark of Apple Inc., registered in the U.S. and other
countries.

Opera is a trademark of Opera Software ASA.

Internet Explorer is a trademark of Microsoft group of companies.

THIS PRODUCT IS NOT ENDORSED OR SPONSORED

BY ADOBE SYSTEMS INCORPORATED, PUBLISHER OF

PHOTOSHOP.

Artmov © 2012							 www.artmov.com

