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PREFACE

“Introductory pedagogical practice is guided less by
current research in music theory than by the
speculative theory of past centuries. In the twentieth
century, these concepts . . . have run deep grooves in
the pavement, grooves which much current
introductory pedagogy retraces.”

—Richard Cohn
Music Theory’s New Pedagogability, 1998

Although most of the material in this text was developed before the publi-
cation of Richard Cohn'’s article, this book, in part, begins to answer Cohn’s
call for a stronger link between introductory pedagogy and recent scholar-
ship in music theory. By relating concepts in diatonic set theory directly to
the study of music fundamentals through pedagogical exercises and in-
struction, this book exposes the undergraduate student to results of the
most recent scholarship. In this way Foundations of Diatonic Theory at-
tempts to steer clear of the deep grooves of the historical legacy without
leaving the road altogether.

The pedagogical material in this text was originally designed for use as
a supplement in traditional Theory I courses, but in its current form it is
equally appropriate for courses in the fundamentals of music (for music
majors or for non-majors) and for stand-alone courses involving the inte-
gration of mathematics and music. It is also well-suited for self-study be-
cause all of the exercises provided are solved and discussed directly in the
text. This feature allows students to check their work as they make their way
through the text. Solutions to the exercises also can be reviewed quickly by
instructors, leaving plenty of class time for other topics.

The study of diatonicism by means of set theoretical tools has been a rela-
tively new focus in the literature, and interest in the field of diatonic set the-
ory has increased rapidly over the past decade or so. In addition to its primary
audience of undergraduates, this text also provides an accessible point of
entry into the field for scholars, professional musicians, or graduate stu-
dents, who should find both the ideas and the pedagogical implications
attractive.
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PREFACE

Course Planning

Foundations of Diatonic Theory augments a variety of classroom situations:
a course in music fundamentals, either for majors or non-majors; the review
of fundamentals in any course in the core-theory sequence; a course in
music and mathematics; or an advanced course in diatonic set theory. Music
fundamentals courses, covering the building blocks of music throughout a
semester, can introduce the material in this book concurrently with the ap-
plicable concepts. On the other hand, core-theory courses may review the
related fundamentals material faster than the time needed to complete this
text, so that much of this text may be completed individually by students as
the class moves on to other topics. The table that follows shows the mini-
mum music theory concepts necessary to complete each chapter; other con-
cepts are introduced as needed within the text. A more detailed discussion
of the music theory concepts associated with each part of this book is pro-
vided in the Instructor Resources.

Chapter Concepts

1. Spatial Relations and Musical Structures major and minor scales
whole and half steps

2. Interval Patterns and Musical Structures intervals
key signatures
circle of fifths

3. Triads and Seventh Chords and triads and seventh chords
Their Structures

In core-theory or music fundamentals classroom situations, little extra
time (perhaps five to ten minutes per class session) is required to introduce
and specifically discuss this material. The organization fits well with the
usual introductory topics in music theory, and solutions and full explanations
are provided for all of the exercises in the text. The reading and exercises con-
tained in this book can be discussed in short segments at the beginning or end
of class, without disrupting the usual flow of fundamentals material—and in
many cases can take the place of more tedious review exercises.

A course devoted to mathematics and music might use this text for one
or more units of the course. Due to the orientation of this text, relating con-
cepts in diatonic set theory directly to music fundamentals, mathematically
minded students will find a good introduction to basic musical concepts.
The materials at the end of the text (For Further Study, Notes, and Sources
Cited) reference some of the sources that treat this material in a more math-
ematically rigorous way—involving intricate formulas, proofs, and other
advanced mathematical constructs—for students and teachers who wish to
explore these and other related ideas in more depth.



This text also provides a fitting introduction for an advanced course in
diatonic set theory. By studying this textbook first, students can approach
some of the key principles of diatonic set theory in a familiar context—
music fundamentals—before encountering the more formal orientation of
the literature. This textbook might occupy only the first few weeks of class
time in an advanced course in diatonic theory, but it would provide a firm
foundation for the entire course.

Teaching the Course

In teaching these materials in introductory music theory and fundamentals
classes, I have found that beginning students have reacted positively to this
material. Students have found the exercises to be particularly interesting
because they felt that the materials helped explain why they heard diatonic
music the way they did. They enjoyed having an opportunity to figure out
properties for themselves, rather than having everything explained to them.
Some students have felt that the material helped them learn intervals and
chords more solidly, and some of the more visually oriented students have
noted that many of these exercises helped them see the structures more
clearly when working with circle diagrams than when they first encountered
these ideas only on a staff or by ear.

In more advanced work with some of these students, I have observed a
significantly more receptive attitude towards the study of atonal theory. Stu-
dents who were introduced to the material in this book at the beginning
stages of their study of music theory found themselves able to draw upon
their background to make a smooth transition to the introduction of pitch-
class set theory in twentieth-century music classes, while other students
who lacked this earlier training struggled more with the new concepts.
Embarking on a study of diatonic set theory at the beginning stages of
instruction in music theory will both enrich students’ understanding of the
diatonically oriented material at hand and prepare students for more
advanced work.

Background

Although a number of prominent scholars have made substantial contribu-
tions to the study of diatonicism (as discussed in the For Further Study por-
tion toward the end of this textbook), the theoretical basis of this textbook
is focused primarily on two seminal articles by John Clough and his collab-
orators. The material in Chapter 1 stems mainly from John Clough and Jack
Douthett’s “Maximally Even Sets” (for full references of the scholarship dis-
cussed in this section, see the Sources Cited at the end of this textbook).
Chapter 2 is based principally on material drawn from John Clough and
Gerald Myerson’s “Variety and Multiplicity in Diatonic Systems.” Aspects of
both of these articles are combined in Chapter 3. Some of the approaches
taken in this textbook, as well as the definitions of relevant terms, have been
adapted from these essays. Although related contributions of other scholars
are introduced and fully cited in this text, ideas drawn from the two main
sources cited above will appear without further acknowledgment.

My contribution to the field of diatonic set theory in this textbook
is purely pedagogical. This text attempts to introduce to beginning-level
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students some of the innovative concepts contained in recent scholarship
in diatonic theory by means of several series of interactive exercises. The
theoretical concepts chosen for inclusion in this textbook coordinate espe-
cially well with a traditional approach to the study of music fundamentals.
Although this book may serve as a useful but limited introduction to the field
of diatonic set theory, it is intended primarily as a way to approach certain
aspects of diatonic theory that are pertinent to the study of fundamentals.

Instructor Resources

The Instructor Resources, available online only, contains material on course
planning and other information for instructors. It includes chapter ab-
stracts, teaching notes, and suggested extensions to the material presented
in the textbook. In addition, it provides supplemental exercises and solu-
tions that are directly modeled on those in the text, blank exercise sheets
that may be tailored by instructors to individual situations, and additional
problems and solutions. To obtain access to these materials, please call 888-
877-7240 or visit Key College Publishing on the web at www.keycollege.com.

‘ ‘q’CKNOWLEDGMENTS
|
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In the mid-1990s, I began to work collaboratively with Alan Durfee, a for-
mer colleague in mathematics, to develop curricular material that describes
mathematically oriented properties of the diatonic system for use in intro-
ductory music theory courses. This work was supported by a grant spon-
sored jointly by the National Endowment for the Humanities and the
National Science Foundation. Some of the material developed for this book
originated in my early work with Alan. I thank him for his valuable input in
the initial formation of these pedagogical ideas.

A few years later, Dartmouth College received a National Science Foun-
dation grant for the Mathematics Across the Curriculum (MATC) project.
The MATC goal was to introduce students to applications of mathematics in
a variety of disciplinary settings and to provide students with opportunities
to grapple with mathematical ideas and reasoning in contexts drawn from
the humanities. I was invited to include my work among the materials being
developed at Dartmouth College. In addition to several core textbooks,
MATC planned for a “shelf of paperbacks,” a series of mini-textbooks in a
variety of disciplines, all of which focus on mathematically oriented issues
in non-mathematics courses. This text is one of those paperbacks. I particu-
larly would like to acknowledge the assistance of Claude J. Poux, adminis-
trative director of the project, for coordinating the details of my contribution
to MATC.

My present institution, Ithaca College, has supported the writing of this
book in several ways. First and foremost, I would like to thank my Theory I
students who offered many suggestions and much encouragement when en-
countering these materials for the first time. I am also pleased to acknowl-
edge the support of the Center for Faculty Research and Development at
Ithaca College, which provided released time for preparation of and revi-
sions to the manuscript. Finally, I thank my colleagues for their enthusias-
tic receptiveness to my work, and particularly Rebecca Jemian who read



and commented on earlier versions of the manuscript and the Instructor
Resources.

I would like to express my appreciation to the staff of Key College
Publishing, and in particular I thank my development editors. Cortney
Bruggink, who served in this capacity during the early pre-production
stages, kept the project on track, rewarded hard work with patience and
flexibility, and maintained a professional yet amicable attitude throughout
the process. Allyndreth Cassidy, who became the development editor as this
book was heading toward production, has been enormously helpful. She
has provided timely and insightful advice about both content and form, and
I appreciate her earnest attention and devotion to this project. I also would
like to thank the staff of Interactive Composition Corporation—especially,
Brittney Corrigan-McElroy, who served as Senior Project Manager, and
Erika Kauppi, who edited the manuscript.

I am indebted to Norman Carey, Eastman School of Music; David
Clampitt, Yale University; and John Clough, State University of New York at
Buffalo, who reviewed preliminary versions of the manuscript and provided
invaluable suggestions and advice. Their perceptive observations especially
helped me to expand and deepen the theoretical concepts underlying the
pedagogical approaches in the text. Their enthusiasm for the project helped
keep me motivated and focused when substantial portions of the text
needed revision.

I give special thanks to John Clough, my mentor in graduate school at
the State University of New York at Buffalo, and to whom this book is dedi-
cated, for patiently introducing some of the profound ideas of diatonic set
theory to me in the first place.

Timothy A. Johnson
Ithaca College
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THE VISION OF
MATHEMATICS ACROSS
THE CURRICULUM

Dear Reader,

In 1994, Dartmouth College received a generous grant from the National
Science Foundation to integrate mathematics throughout the undergradu-
ate college curriculum in a five-year project, Mathematics Across the
Curriculum (MATC). The project has involved over 40 faculty members
from Dartmouth and various other colleges and universities representing
departments of biology, chemistry, music, drama, English, art history, com-
puter science, physics, earth science, economics, engineering, medicine,
mathematics, and Spanish, producing lesson plans, short books, videotapes,
and a Web site with images and text. The series of volumes published by Key
College Publishing represents some of the best of the MATC collection.

These materials will make it easier for students to become more quanti-
tatively literate as they tackle complex, real-world problems that must be
approached through the door of mathematics. We hope that you, the reader,
will appreciate our efforts to place the mathematics in this book completely
in the context of your field of interest. Our goal is to help you see that ap-
plied mathematics is a powerful form of inquiry, and ever so much richer
than mere “word problems.” We trust that you will like this approach and
want to explore some of the other volumes in the series.

Sincerely,

Dorothy Wallace

Professor of Mathematics

Principal Investigator: Mathematics Across the Curriculum project
Dartmouth College
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INTRODUCTION

‘ @O YOU HAVE ANY QUESTIONS?
|

“Do you have any questions?” a famous composer and conductor asked an
audience of music students and professors at a public lecture not so many
years ago.

“Yes,” replied a well-known and gifted pianist. “Why are the black and
white keys of the piano arranged in that way?”

The audience sat in thought for a couple of seconds before a quiet, ner-
vous laughter began to break the ponderous silence. Both the composer and
the pianist seemed unable to arrive at a satisfying answer, but their faces
showed that they were intrigued and engaged by the question.

Recent scholarship that has taken a mathematically oriented approach
to diatonic musical structures has produced some of the most potentially
important material on diatonicism to date. The significance of this research
lies largely in its attempts to answer many of the intriguing questions that
have captivated students of diatonic music for centuries. Why does the
major scale seem to work so well? Why has diatonicism formed the back-
bone of Western music for so long—permeating both classical music of the
past (and now the present) and much popular music? And, perhaps most
naive and yet apt, why are the black and white keys of the piano arranged as
they are? Such questions continue to surface among students in introduc-
tory music theory classes, and conclusions reached in recent research in
diatonic set theory may help you answer some of your own questions.

Approach

This book presents a pedagogical strategy for introducing aspects of dia-
tonic set theory into the music theory curriculum at the beginning stages of
instruction. As you begin to learn musical aspects and applications of music
theory in an introductory course (or on your own), by using this book you
can work simultaneously with corresponding mathematically based proper-
ties that describe aspects of and relationships within the diatonic collection.
By exploring the theoretical principles behind some special aspects of the
diatonic collection at an early stage, you can better understand tonal rela-
tionships between the notes of the scale and the structural significance of
these relationships when encountering these ideas in your later studies.

DO YOU HAVE ANY QUESTIONS? I
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INTRODUCTION

The mathematics in this book is simple and direct; no previous mathemati-
cal experience is necessary. Most of the mathematical aspects of the book are
conceptual rather than computational, though a few simple but useful for-
mulas are introduced. The main orientation of the book is musical, rather
than mathematical. However, approaching music fundamentals through the
concepts introduced in this text will help provide you with a solid abstract
foundation for musical thought based on mathematical ideas and reasoning.

Pursuing the close link between mathematics and music (as in this text-
book) can transform our understanding of both, as suggested by Edward
Rothstein’s Emblems of Mind: The Inner Life of Music and Mathematics."
Rothstein likens the creative act of musical composition to the inspired act
of constructing mathematical proofs. He finds beauty in both the musical
score and the mathematical formula—in each he senses “a genius in the
very notation that has developed for giving representation to ideas that
seem to lie beyond ordinary language” (p. 17). Rothstein exalts mathemati-
cal ideas and musical compositions as “emblems of mind”—in which “the
mind’s creations can possess such mastery . . . that they can catch even the
creators by surprise” (p. 4). Although the mathematics in this textbook will
remain largely in the background, principles of mathematics rest at the core
of every experience encountered. And examining some mathematical foun-
dations of musical structures, in the words of Rothstein, “may lead us into
profound regions we would never have stumbled on if our path were guided
solely by one or the other; and our understanding of mathematics and
music is bound to change based upon those connections” (p. 9).

Historical Overview

Although direct connections between number theory or group theory and
music only relatively recently have begun to be explored explicitly, mathe-
matics has been closely associated with music for centuries, primarily in the
areas of tuning, temperament, and acoustics.? Noted musicologist Richard
Crocker claimed that “whenever we undertake to explain music with inte-
gers, we necessarily begin with the simple truths the Pythagoreans set
forth.”® Although this textbook uses integers in an entirely different way
than the Pythagoreans did, the simplicity of the mathematics in this book is
in keeping with the flavor of the Pythagorean approach to music, which was
based on simple arithmetic ratios and operations.

In the sixth century B.C.E. Pythagoras discovered that musical inter-
vals may be obtained by means of numerical ratios between the lengths of
vibrating strings. For example, strings in the ratio 2:1 produce a pure
octave, 3:2 a pure fifth, and 4:3 a pure fourth. The whole tone, formed by the
difference between the fifth and the fourth, is produced by the ratio 9:8 (cal-
culated by dividing the ratios for the fifth and fourth). Linking six of these
whole tones in succession, which ordinarily might be expected to be equiv-
alent to an octave, exceeds the pure octave slightly (by a ratio called the
Pythagorean comma).*

Over time, intervals have been adjusted following various mathematical
schemes to compensate for the slight intervallic impurities produced by



strict adherence to Pythagorean ratios.’ For example, equal temperament
(the system commonly in use in Western music today, with twelve half steps
in each octave) seeks to adjust all intervals as needed to produce equal dis-
tances between all similarly placed pairs of notes. This book assumes the
octave to be divided into twelve increments or half steps, but the actual tun-
ing method adopted for these twelve increments is not a necessary part of
the theories to be introduced in this text.® Although it is expected that you
likely will be working with equal temperament, the ideas in this book would
be just as effective under any other temperament involving twelve (unequal)
divisions per octave. Furthermore, the theories presented in this text are
also applicable to microtonal divisions of the octave (more than twelve), but
such extensions to the theories will not be explored here.” The basic mathe-
matical principles of Pythagoras were considerably refined and expanded by
later writers, as outlined in the following brief historical survey of the asso-
ciation of mathematics and music.?

In the fourth century B.C.E. Aristoxenus conceived of and described
music in terms of spatially oriented principles of geometry, rather than
using an arithmetic approach based on string lengths, and he derived inter-
vals based on spatial distances between notes rather than numerical pro-
portions.” Ptolemy, in the second century (C.E.), sought to counteract the
imperfection of the human perception of sounds by using precise measure-
ment and mathematical reasoning, again based on string lengths. In the
sixth century, Boethius attempted to produce a comprehensive account of
ancient sources of music theory, and he transmitted arithmetic, geometric,
and physical concepts of sound.

Later writers—such as Walter Odington (fourteenth century), Franchi-
nus Gaffurius (fifteenth and early sixteenth century), and Gioseffo Zarlino
(sixteenth century), among others—tried to balance mathematical ap-
proaches to musical sounds with their own perceptions of music practice.
The primary issue was how take certain intervals that the ancients held as
dissonant, based on mathematical reasoning, and reinterpret them as con-
sonances based on their use in contemporaneous musical compositions—
without entirely giving up the mathematical models. By the early
seventeenth century, prominent scholars began to question the Pythagorean
ratios.!® Galileo Galilei, among others, determined that the ratios between
the number of vibrations different sound sources produced, rather than the
string lengths themselves, were directly responsible for the formation of
musical intervals, setting the stage for further advancements in the scien-
tific quantification of sound.

In the eighteenth century, the influential theorist Jean-Jacques Rameau
derived the major triad, the primary sonority of the music of his time (and in
many circles, the primary sonority to this day), from ratios of string vibra-
tions. Although others of his day followed similar paths, “Rameau was per-
haps the best known Enlightenment figure who strove to account for music
in terms of mathematics and the observation of natural phenomena.”!! In
the nineteenth century, working from a similar beginning point but taking
mathematical and scientific aspects of music to an entirely new level of rigor,
Hermann Helmholtz pioneered the study of physical and physiological
acoustics.!? Helmholtz provided a detailed study of the human ear and its
role in the perception and interpretation of musical sounds and their com-
binations, and thereby connected physical and physiological acoustics with
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musical science and aesthetics. Acoustics continues to be an important part
of the study of the relationship between mathematics and music, and stu-
dents can benefit greatly from a course, or at least self study, in acoustics.'?

The interrelationship between mathematics and music since the middle
of the twentieth century has focused largely on twelve-tone and atonal music.
Milton Babbitt, a highly influential composer and theorist, was one of the
first to systemize aspects of this musical repertory by means of mathematical
constructs. Many other scholars have continued in this vein, principally
Allen Forte, David Lewin, and Robert Morris, to name just a few. Working
from this tradition, but applying similar methods to more traditional musi-
cal resources and structures, John Clough and other scholars recently began
to explore diatonic music through mathematically oriented concepts and
procedures, as outlined in the For Further Study section at the end of this
book. It is this more recent development in the history of the interrelation-
ship between mathematics and music that this book explores—rather than
the older and perhaps more familiar ideas and methods associated with
tuning, temperament, and acoustics.!*

‘ ‘.HOW TO USE THIS BOOK
|
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INTRODUCTION

Unlike many textbooks, in this book all of the exercises provided are subse-
quently solved for you. You are expected to complete each exercise then
compare your results with the solutions provided; the text includes a full
discussion of these solutions. Alternate solutions are displayed, detailed ex-
planations of how the exercises can be solved are offered, and the signifi-
cance of the solutions are pondered. The exercises developed for this book
are designed to lead you to discover principles of diatonic set theory for
yourself. Rather than introducing the ideas of diatonic theory formally, then
following this exposition of ideas with examples and exercises for further
exploration, the exercises presented here are designed to help you to reach
your own conclusions about the structure of diatonicism based on your own
observations and without prior knowledge of the underlying theoretical
concepts.

As you become familiar with scales, intervals, keys, and chords, the in-
troduction of general principles underlying the structure of diatonicism in
this book may give you a broader context in which to contemplate these mu-
sical building blocks. In all of these exercises, by building various patterns
and structures according to prescribed stipulations, you will be able to
observe many underlying abstract constructions independently. Simultane-
ously, you will obtain practice using the musical materials that are custom-
arily introduced in beginning music theory classes. All of this material
presents “cutting-edge” research in music theory in a non-threatening and
useful way at the introductory level, and also introduces applications of
mathematics that appear naturally in an introductory music theory setting.



SPATIAL RELATIONS AND
MUSICAL STRUCTURES

‘ SPATIAL RELATION PUZZLES
|

Sample: 2 dots

We begin our study of musical structures by considering several puzzles per-
taining to spatial relations. For now, ignore any potential musical applica-
tions; concentrate only on the spatial relation problems presented. We will
consider the correspondences with musical structures later in the chapter.

Placing Two, Three, Four, and Five Dots on Circle Diagrams

Exercise 1.1 contains four circles, each crossed by twelve equally spaced,
short lines. In the sample, two dots have been placed on the crossing lines
such that the dots are spread out as much as possible around the circle. In
the same way, place three dots on the crossing lines around the second cir-
cle so that the dots are spread out as much as possible. Continue this proce-
dure by placing four and five dots, respectively, on the crossing lines around
the other two circles.

Place three, four, and five dots on the crossing lines around the circles so that
the dots are spread out as much as possible. The first one is done for you.

a. 3 dots b. 4 dots c. 5 dots

OO

Placing three or four dots around the circles probably was easier than
placing five dots; hence, we will explore the solutions to these problems first.
Because there are twelve equally spaced lines crossing the circles, three or
four dots can be placed around a circle without compromising the position
of the dots relative to each other. To ensure that the dots are “spread out

SPATIAL RELATION PUZZLES S



as much as possible,” simply count the lines between each placed dot.
However, there are several correct solutions for each of these problems,
though all of these solutions are rotations of a single pattern for each prob-
lem. The number of correct solutions, or distinct rotations of the pattern of
dots, can be calculated by means of a simple formula.

Greatest Common Divisor

For this formula, we will call the number of lines crossing the circle ¢, and
the number of dots placed around the circle d. The number of distinct solu-
tions to each problem is equivalent to the number of lines crossing a circle
(¢) divided by the greatest common divisor (GCD) of ¢ (the number of lines)
and d (the number of dots).

c
GCD of (¢, d)

The greatest common divisor of a pair of numbers is the largest number that
can divide both numbers evenly (with no remainder).

For the problem with three dots, the greatest common divisor of
12 (lines) and 3 (dots) is 3, because 3 is the largest number that will divide
evenly into both 12 and 3. Plugging these numbers into the formula reveals
the number of distinct solutions to the problem—the number of crossing
lines around the circle (12) divided by the greatest common divisor of the
number of lines (12) and dots (3).

c 12 12

GCDof(c.d) _Gcp(12.3) 3 *

Thus, there are four distinct solutions to this problem. You can see these
solutions easily by rotating an evenly spaced, three-dot pattern four times
(that is, rotating the dots one crossing line to the right, or clockwise, each
time), as shown in Solution 1.1a. Rotating the dots a fifth time would pro-
duce the same arrangement of dots with which you started; therefore, there
are only four distinct solutions, as calculated in the formula. Your solution
to placing three dots around the circle in Exercise 1.1a should match one of
these provided solutions. If it does not, make corrections to your three-dot
diagram, and revise your other diagrams as necessary, based on this ap-
proach. It is important that you make corrections to your own circles as you
work through this book, because we shall return to these diagrams later.

The four distinct solutions to placing three dots around a circle with
twelve crossing lines

OO
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The number of correct solutions to placing four dots around a circle so
that the dots are spread out as much as possible may be calculated in the
same way. The greatest common divisor of 12 (lines) and 4 (dots) is 4, be-
cause 4 is the largest number that will divide evenly into both 12 and 4. Con-
sequently, the number of crossing lines around the circle (12) divided by the
greatest common divisor of the number of lines (12) and dots (4) yields
the number of distinct solutions (3).

c 12 12

GCDof(c,d) GCD (12,4) 4

Again, you can see these three solutions easily by rotating an evenly spaced,
four-dot pattern three times (that is, rotating the dots one crossing line to
the right, or clockwise, each time), as shown in Solution 1.1b. Rotating the
dots a fourth time would produce the same arrangement of dots with which
you started; therefore, there are only three distinct solutions, as calculated
in the formula. If your solution to placing four dots around the circle in
Exercise 1.1b does not match one of these solutions, make any necessary
adjustments to your answer.

The three distinct solutions to placing four dots around a circle with
twelve crossing lines

Compromises Needed to Place Five Dots

As mentioned previously (and as you, no doubt, are well aware from your
own efforts), placing five dots around a circle so that the dots are spread out
as much as possible is more challenging. Compromises must be made in
terms of the position of the dots relative to each other. You cannot simply
count an equal number of lines between each placed dot, as was possible in
the circles with two, three, and four dots. Figure 1.1 shows three hypotheti-
cal attempts to place five dots around a circle. In Figure 1.1a, the clusters of
dots are spread out from each other, but the dots in each cluster are not
spread out. In Figure 1.1b, each successive dot is placed twelve-fifths (or two
and two-fifths) of the way around the circle. In this way the dots are
evenly dispersed around the circle, but unfortunately without regard to the
crossing lines, as directed. However, moving these dots to the nearest cross-
ing lines (or “rounding off” these dots) produces the diagram shown in
Figure 1.1c, the desired response.! This solution (Figure 1.1c) exhibits the
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Figure 1.1 Some
hypothetical ways to place
five dots around a circle with
twelve crossing lines (a and
b show incorrect attempts;

c is a correct response)

best compromise in terms of placing the dots so that they are spread out as
much as possible. Each of the dots has at least one extra space next to it;
dots with two empty spaces between them are placed as far from each other
as possible.

a. b. c.

Rotations of a Five-Dot Circle

Although Figure 1.1c shows a correct solution to placing five dots around a
circle, there are several other correct solutions for this problem, all of which
are rotations of this single pattern. The number of correct solutions to
placing five dots around a circle so that the dots are spread out as much as
possible can be calculated in the same way as with three and four dots.
The greatest common divisor of 12 (lines) and 5 (dots) is 1, because 1 is the
largest (and only) number that will divide evenly into both 12 and 5. Conse-
quently, the number of crossing lines around the circle (12) divided by the
greatest common divisor of the number of lines (12) and dots (5) yields
the number of distinct solutions (12).

c 12 12

GCDof(c.d) _GCD(12.5) 1 2

Again, you can see these twelve solutions easily by rotating an evenly spaced,
five-dot pattern twelve times (that is, rotating the dots one crossing line to
the right, or clockwise, each time), as shown in Solution 1.1c. Each of these
rotations produces a distinct pattern; none overlaps with any other five-dot
pattern. Therefore, there are twelve distinct solutions, as calculated by the
formula. If your solution to placing five dots around the circle in Exer-
cise 1.1¢ does not match one of the rotations shown in Solution 1.1c¢, try the
exercise again, in light of our discussion of making the best compromise.
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1.1c

The twelve distinct solutions to placing five dots around a circle with
twelve crossing lines

Placing Six, Seven, and Eight Dots on Circle Diagrams

Before we consider the musical importance of the diagrams you have con-
structed, we will continue with three more spatial relation puzzles. By now
you likely will be able to solve these problems more easily, and you can pre-
dict how many possible correct solutions there are for each problem. Exer-
cise 1.2 contains three more circles, each with twelve crossing lines. Place
six, seven, and eight dots around the respective circles so that the dots are
spread out as much as possible. Next, in Exercise 1.3 use the formula as
before to determine how many correct solutions are possible for each circle.

SPATIAL RELATION PUZZLES 9
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1.2

a. 6 dots

b. 7 dots

c. 8 dots

Place six, seven, and eight dots on the lines crossing the circles so that the
dots are spread out as much as possible.

a. 6 dots b. 7 dots c. 8 dots

Solve each formula to determine how many correct solutions are possible
for each circle with the indicated number of dots.

c .
= = = correct solutions
GCD(c,d) GCD( , ) B
c .
= = = correct solutions
GCD(c,d) GCD( , ) .
C o
- = = correct solutions
GCD(c,d) GCD( , ) S
N

As before, placing dots around two of these circles probably was easier
than placing dots around the other one, because only one of these problems
requires compromises in spreading out the dots. Placing six dots around the
circle can be accomplished simply by placing a dot on every other crossing
line, skipping one line each time. Also, as demonstrated in Solution 1.2a and
as calculated in Solution 1.3a, there are only two correct solutions to this
problem; the pattern of dots can be rotated only one place to the right with-
out duplicating the original pattern.

Because placing seven dots around the circle is more challenging, we
will consider the eight-dot spatial relation puzzle next. The solution to plac-
ing eight dots around the circle is relatively unproblematic. However, in-
stead of an even arrangement of dots and spaces—as in the circle diagrams
with two, three, four, and six dots—pairs of adjacent dots alternate with sin-
gle spaces, as shown in Solution 1.2c. Three distinct solutions are possible
with eight dots, as calculated in the formula shown in Solution 1.3c, and as
illustrated in Solution 1.2¢. Your answer to Exercise 1.2¢ should match one
of these three circle diagrams.
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Figure 1.2 Some
hypothetical ways to place
seven dots around a circle
with twelve crossing lines

(a shows the problem; b and
¢ show incorrect attempts; d
is a correct response)

e?

The Complement (Eight and Four Dots)

Note that the crossing lines that are free of dots in each eight-dot circle dia-
gram (Solution 1.2¢) have the same arrangement as the dots in the four-dot
problem explored earlier (Solution 1.1b). Likewise, the dots in each eight-
dot diagram have the same arrangement as the crossing lines that are free
of dots in the four-dot problem. Thus, in each case the dots are spread out
as much as possible, and the lines without dots are spread out as much as
possible as well. This special relationship between the four-dot circles and
the eight-dot circles is called a complement. The complement completes the
circle; in this case, the arrangement of dots in a four-dot diagram would
complete the circle in an eight-dot diagram by filling in the empty lines
around the circle. In other words, if you superimpose a four-dot circle over
an eight-dot circle and rotate the two diagrams properly, the dots and empty
lines will match up. The dots on the four-dot circle will appear directly over
lines without dots on the eight-dot circle, and the dots on the eight-dot cir-
cle will appear directly under the lines without dots on the four-dot circle.

Compromises Needed to Place Seven Dots

Placing seven dots around a circle so that the dots are spread out as much
as possible poses a similar challenge to the problem of placing five dots
around a circle. Because there is no way to disperse the dots around the
crossing lines evenly, some compromises are necessary to complete the
problem. Figure 1.2 illustrates the nature of the problem by giving a few hy-
pothetical solutions. Because placing six dots around the circle was easily
accomplished, as shown in Solution 1.2a, this experience might suggest the
diagram in Figure 1.2a—where the six dots are spread out as much as
possible, and a single dot remains to be placed. On one hand, it may appear
that the best compromise, therefore, is to place the leftover dot on one of
the remaining lines, as in Figure 1.2b. However, this arrangement clumps
three dots together. On the other hand, perhaps the diagram in Figure 1.2¢
would improve the situation because the two pairs of adjacent dots are
close together, somewhat resembling the solution to the five-dot problem
shown in Solution 1.1c. However, the circle still seems unbalanced. Clearly,
defining “spread out as much as possible” is the issue here, but we will delay
any formal definition of this concept until later in the chapter and rely more
on intuition for the moment. An analogy might be helpful in solving this
thorny issue.
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1.2a | The two distinct solutions to placing six dots around a circle with twelve
crossing lines

OO

1.2b  The twelve distinct solutions to placing seven dots around a circle with
twelve crossing lines

OO0
OO0
OO
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1.2¢

1.3

a. 6 dots

b. 7 dots

c. 8 dots

The three distinct solutions to placing eight dots around a circle with
twelve crossing lines

Calculating the number of possible solutions for placing dots
around circles

c 12 % = correct solutions

GCD(c,d) _ GCD(12, 6)

c 12 _ 12 - correct solutions

GCD(c,d) GCD(12,7) 7

c 12 + = correct solutions

GCD(c,d) GCD(12,8) -

The Dinner Table Analogy

Suppose you have a round dinner table surrounded by twelve evenly dis-
persed chairs, none of which can be removed.? You have invited seven
guests to dinner and want guests to be spread out as much as possible
around the table, so that no one is left out of the conversation (by being too
far isolated from other guests) and so that no individual group or groups
monopolize the conversation (by being too close together compared to the
other guests). The circle diagrams in Figure 1.2 can be used to illustrate this
dining dilemma. With the arrangement shown in Figure 1.2a, six of the
guests are happily chatting away, while one unfortunate guest is left to walk
around the table (fine for a waiter, but not a guest!). With the arrangement
depicted in Figure 1.2b, in which the roving guest has sat down, a single
group of three people have formed a clique, while the others seem to have
been excluded from their juicy gossip. Although the arrangement shown in
Figure 1.2c rectifies the clique problem, the bulk of the conversation still
seems to be occurring on a single side of the table. Because arranging seven
guests evenly around a twelve-seat table requires at least two pairs of people
sitting in adjacent chairs, perhaps a more convivial conversation would be
encouraged if the two pairs were placed as far apart as possible, as in Fig-
ure 1.2d. In this way, everyone can share equally in the discussion, and the
adjacent pairs of guests are placed as far from each other as the seating
arrangement allows. This analogous solution achieves the original goal of
placing the dots around the circle so that the dots are spread out as much as
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Figure 1.3 Two possible
ways to place seven dots
around a circle with twelve
crossing lines (a shows an
incorrect attempt; b is a
correct response)

possible. One might suggest seating all seven guests in a row of adjacent
chairs; however, this arrangement gives a distinct disadvantage to the per-
sons on each end of the row, who must come away from the dinner with
severe neck strain from always leaning in a single direction to participate in
the merrymaking.

This analogy works in all of the puzzles, no matter how many dots are
placed around the circles. However, the analogy is most useful, perhaps,
with the more problematic puzzles—how to place five or seven dots. In ad-
dition, the strategy discussed in connection with Figure 1.1b, where five
dots were evenly dispersed around the circle then adjusted (rounded) to the
nearest lines, also works for seven dots, as shown in Figure 1.3. Figure 1.3a
shows the dots evenly dispersed around the circle, but without regard to the
crossing lines. Each dot is placed twelve-sevenths (or, one and five-sevenths)
of the way around the circle, beginning (arbitrarily) at the bottom of the cir-
cle. Moving these dots to the nearest crossing lines (or “rounding off” these
dots) produces the diagram in Figure 1.3b, the desired response. This solu-
tion exhibits the best compromise in terms of placing the dots so that they
are spread out as much as possible, and it is the same as the solution given
in Figure 1.2d and discussed in conjunction with the dinner table analogy.

a. b.

As with the five-dot circle, there are also twelve correct solutions to the
problem of placing seven dots around a circle, as calculated in Solu-
tion 1.3b. All of these possible answers, which are each a rotation of a single
pattern of dots, are given in Solution 1.2b—including the solutions shown
in Figures 1.2d and 1.3b.

The Complement (Seven and Five Dots)

In addition to their more obvious problem-solving similarities, there is also
a complementary relationship between the seven-dot and five-dot circles.
The crossing lines that are free of dots in each seven-dot circle diagram
(Solution 1.2b) have the same arrangement as the dots in the five-dot solu-
tion shown earlier (Solution 1.1c). Likewise, the dots in each seven-dot dia-
gram have the same arrangement as the crossing lines that are free of dots in
the five-dot problem. Put another way, the five-dot circle diagram superim-
posed over the seven-dot circle diagram will complete the circle by filling in
all of the lines around the circle with dots.
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Previously, you were asked to arrange dots around crossing lines and
ignore how these diagrams might be used musically. These spatial relation
puzzles were presented in this way to allow you to actively explore these
abstract constructions firsthand and in detail. However, the musical appli-
cation of these exercises is our main concern, and we will turn to the con-
sideration of this aspect now.

MUSICAL STRUCTURES FROM
GEOMETRIC FIGURES

We now will attempt to determine what musical structures are related to the
distinct arrangements of dots that are spread out as much as possible
around the circles. Each pattern of dots corresponds to a familiar musical
structure, and most of these structures may be determined by students who
are willing to experiment independently with various possible orderings and
who are able to recognize these musical patterns by ear. Some of these mu-
sical structures may be more advanced, depending on your current level of
study, but you are encouraged to try to identify all of the patterns as well as
you can, even if you lack the proper terminology. We will discuss all of the
solutions after you have made your best attempts.

Labeling Notes on Circle Diagrams

To complete Exercise 1.4, you will label lines around circles with musical
note names, play various patterns on a piano and listen to the resulting
sounds, and attempt to identify the musical structures produced. Using
your corrected diagrams from Exercises 1.1 and 1.2, assign note names to
the twelve crossing lines, ascending chromatically around each circle in a
clockwise manner. Use either sharps or flats (but not both) for all chromatic
notes. For example, in the two-dot diagram in Exercise 1.1, label any one of
the crossing lines as “C.” Then, name the next line (moving clockwise) as
“Ct” the next line “D,” the next line “D4,” and so forth, ending with the last
crossing line labeled “B” (next to the “C” with which you began). (I am using
sharps arbitrarily here—you could complete the same labeling procedure
using flats instead of sharps.) For this exercise, it does not matter where you
begin to label the lines. Because there are twelve crossing lines around the
circles and twelve chromatic notes in an octave, no matter where you start,
you will label all of the lines with the notes C through B to complete the oc-
tave of note names. In the same way, label all of the lines around each circle
of your corrected diagrams in Exercises 1.1 and 1.2.

Circle Diagrams and the Piano

Next, take your circle diagrams to a piano, and play the notes correspond-
ing to the dots for each circle. Play the notes assigned to the dots consecu-
tively as you move clockwise around the circle. Try starting on different
notes—that is, at different positions on the circle—when you play (still cor-
responding to the same dots and note names on the circle but beginning on
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different dots, or notes on the piano). For some of these patterns, you may
not be able to recognize the musical structures unless you begin playing the
pattern on one particular note—so try them all.

Listen and try to recognize what musical structures you are playing. You
may wish to consider the note names you used to label the dots, but the ac-
tual spelling of these musical structures on the circle diagrams may not
always correspond directly with musical practice, in terms of enharmonic
equivalency, because we are using only sharps in these diagrams. (Different
spellings of a note—such as C# and Db, D# and Eb, and Bt and C—are called
enharmonically equivalent. We are using sharps in the sample, but the
enharmonically equivalent flats may be substituted as needed to facilitate
recognition of the musical structures depicted.) It might help to plot each
pattern on a staff, but rely primarily on your ear as you play the patterns on
the piano. Your goal is to identify the musical structure corresponding to
each pattern of dots that are spread out as much as possible around the cir-
cles. For example, the two-dot pattern corresponds to a musical interval, the
three-dot pattern forms a triad, the seven-dot pattern produces a familiar
scale (starting on the “right” note might help you recognize it), and so forth.
Do as many as you can before reading ahead, then we will discuss the solu-
tions in detail. Also, be diligent in your efforts, because our focus in this
exercise is on your own independent discovery of these musical structures.
You can record your answers in Exercise 1.4.

Using the circle diagrams you constructed in Exercises 1.1 and 1.2, assign
note names to the twelve lines chromatically around the circles in a clock-
wise manner, using either sharps or flats (but not both) for all chromatic
notes. What musical structures are formed for each circle by the notes cor-
responding to the dots? Play the notes on a piano to help you determine
the musical structures; try starting on different notes.

The circle with: produces a(n):
2 dots (interval)
3 dots (triad)
4 dots (seventh chord)
5 dots (scale)
6 dots (scale)
7 dots (scale)
8 dots (scale) A

Checking Note Labels on Circle Diagrams

Figure 1.4 shows one of many possible ways to label the circle diagrams
with note names. Your own diagrams may vary both in terms of where the
dots are placed around the circle—as suggested by the many possible solu-
tions given in Solutions 1.1 (a—c) and 1.2 (a—c)—and which lines correspond
to which notes. However, regardless of how you label the lines around your
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circles, you can compare your own work with Figure 1.4 by rotating the cir-
cles until the note names correspond. In this way, you also can verify your
own labeling schemes. The identities of the musical structures formed will
be constant, provided that your note names ascend chromatically through a
single octave moving clockwise around the circle, even if the dots in your
solutions correspond to different notes than those shown in the figure.

Figure 1.4 Note names
corresponding to circles
with two through eight
dots

e. 6 dots f. 7 dots g. 8 dofs

Solution 1.4 summarizes the correct answers to this exercise. Your
answers may vary slightly from the given solutions, depending on how you
labeled the notes and how specific you were in your identifications. Also,
recall that some of these solutions may be more advanced than your present
level of study. The following discussion will help you appreciate each of
these musical structures, even if you are not yet aware of some of their
names.

The Tritone

The pattern of dots on the circle with two dots corresponds to the interval of
a tritone. You may have identified this interval instead as either an aug-
mented fourth or a diminished fifth, but both of these specific intervals can
be identified simply as tritones—meaning three whole steps, or the equiva-
lent. The circle diagram (Exercise 1.1, Sample) clearly depicts why these
two intervals, augmented fourth and diminished fifth, sound exactly the
same due to the even placement of notes (or dots) around the circle. If you
consider the interval beginning with one of the dots, then the interval pro-
duced is an augmented fourth; on the other hand, beginning with the other
dot will yield a diminished fifth. Yet both intervals project the equivalent of
six half steps or three whole steps, as is clearly depicted by the crossing lines
on the circle diagram but is not evident in musical notation on a staff.
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1.4  The musical structures formed for each circle by the notes corresponding

to the dots
The circle with: produces a(n):

2 dots tritone (interval)

3 dots augmented triad (triad)

4 dots diminished seventh chord (seventh chord)

5 dots pentatonic scale (scale)

6 dots whole-tone scale (scale)

7 dots diatonic scale (major, minor, etc.) (scale)

8 dots octatonic scale (scale) Y
The Augmented Triad

The circle with three dots produces an augmented triad. You may have
labeled a particular note as the root for this triad, but any root is possible,
depending on your configuration of notes. Your answer may or may not be
inverted, depending on how you labeled the crossing lines on the circle with
notes, and depending on the note with which you began. However, no mat-
ter how an augmented triad is inverted, it still can be interpreted as a root
position augmented triad by sound alone (disregarding enharmonic
spellings). The evenly spaced distances between each note, as depicted in
the circle diagram in Exercise 1.1a, suggest that any of the three dots can
serve as the root (or starting dot) of this chord. It is only the spelling (or spe-
cific note names) that designates a root. When you play the notes on the
piano, you can identify the structure as an augmented triad by sound, re-
gardless of which note you use as the starting note. In this way, you can
identify the chord by ear, even if the actual spelling of the notes diverges
from the pattern you would have expected.

The Diminished Seventh Chord

The circle with four dots yields a diminished seventh chord. Again, any root
is possible for this chord, and your chord may or may not be inverted—due
to differences in labeling dots and notes. As with the augmented triad, the
diminished seventh chord also sounds essentially the same in all inversions,
enharmonic spellings notwithstanding. Your circle diagram in Exercise 1.1b,
with its evenly spaced dots and notes, beautifully illustrates this advanced
musical principle as well. Because all of the notes are equidistant from one
another, it makes no difference which note is considered the root. The four
notes will always sound like a diminished seventh chord, regardless of how
these notes are distributed relative to each other.
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The Pentatonic Scale

The circle with five dots has a less obvious solution, because the dots are not
evenly dispersed around the circle, as discussed earlier in this chapter. The
dots are spread out as much as possible around the circle diagram in Exer-
cise 1.1¢, but compromises were made to accommodate all five dots. This
spatial pattern corresponds to a pentatonic scale. (Literally, a pentatonic
scale suggests any scale of five notes, but in traditional musical discourse
only this specific interval pattern is associated with the term pentatonic in
most cases.) This scale is most familiarly formed by using the black keys on
the piano. However, any notes corresponding to the dots in this circle dia-
gram will yield a pentatonic scale. At the piano, compare the sound of the
notes as you labeled them in your circle diagram with the scale pattern
using only black keys. Try starting on different notes in playing these scales
until the two scales sound similar.

The Whole-Tone Scale

The circle with six dots produces a whole-tone scale. As suggested by its
name, the whole-tone scale consists of only whole steps. These whole steps
can be seen easily in the circle diagram in Exercise 1.2a by the single-spaced
gaps between each of the dots. Because you have labeled each line consecu-
tively through the chromatic scale, the distance between each adjacent line
is equivalent to a half step. Therefore, each pair of adjacent dots in the dia-
gram is separated by the interval of a whole step (or two half steps). As with
the other scales associated with evenly dispersed patterns of dots, the
whole-tone scale sounds the same no matter which note is played first in
the scale. Hence, it is difficult to hear where this scale begins and ends.
Play the whole-tone scale associated with your labeled circle diagram slowly
over several octaves, both ascending and descending. Slow down occasion-
ally or even stop momentarily, and notice how any note could serve as an
effective conclusion to the scale, regardless of which note you designated as
the beginning or tonic note. Later we will observe how this scale sounds
compared to the scale formed by the seven-dot circle.

The Diatonic Collection (Major Scale)

The pattern formed by the circle with seven dots in Exercise 1.2b yields a
diatonic collection—or more familiarly, a major scale—if you begin with the
right note. Beginning with another particular note produces a natural
minor scale. Furthermore, depending on which note you play first in your
scale, the pattern corresponds to each of the seven modes—ionian, dorian,
phrygian, lydian, mixolydian, aeolian, and locrian. The tonic notes of these
scales and modes will vary depending on how you label the lines around the
circle with note names; however, all of these structures are formed from this
arrangement of notes/dots, regardless of the labels—only the tonics change.
Figure 1.5 illustrates how each of these scales and modes can be formed
using a seven-dot circle.
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Figure 1.5 The scales and
modes that can be formed
using a seven-dot circle
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CHAPTER 1

Play each of these scales on a piano, and listen for the subtle changes
in the order of whole and half steps associated with each one. Observe that
the notes used are the same in each scale/mode; only the tonic notes for the
scales/modes are different. Thus, the collection of notes used and the rela-
tionships between adjacent notes are fixed. The diatonic collection is a term
that generally identifies this particular arrangement of notes, regardless of
tonic, or starting note.

In this book I use the term diatonic in its restrictive sense, to refer to the
pattern of whole and half steps that corresponds to the white keys of a
piano, or transpositions of this pattern. Other sources and contexts some-
times use the term more loosely to include other seven-note collections as
well, such as the harmonic minor and the ascending melodic minor. Eytan
Agmon and other music theorists have defined diaronicism, or a “diatonic
tone-system,” precisely based on some of the same principles discussed in
this text and other similar constructs.? In this book, I use the term collection
instead of scale when no tonic note or scalar ordering is implied. Using this
term is similar to the approach we took with the augmented triad and
diminished seventh chord, discussed earlier, where we ignored root and
inversion, and instead named these structures more generally. Thus, the
diatonic collection is an unordered group of notes with a fixed arrangement
of whole and half steps (but including rotations of that arrangement); each
of the scales shown in Figure 1.5 are diatonic in this strict sense. The other
musical structures discussed, such as pentatonic and whole tone, also can
be referred to as collections rather than scales. These constructs will be re-
ferred to as collections when generality is implied, but in other cases the
more familiar term scale will be retained when order is implied or when no
ambiguous meaning will result. The term collection is particularly desirable
for the diatonic because all of the scales and modes connected with this col-
lection are prevalent in musical discourse.
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Play the diatonic collection associated with your labeled circle diagram
slowly over several octaves, both ascending and descending, as you did with
the whole-tone scale. Listen carefully for the pattern of whole and half steps
associated with this collection. Note that, although slowing down and stop-
ping on any particular note might help you to perceive that note as the tonic
of a particular scale or mode, the uneven intervallic distances between ad-
jacent notes have quite a different effect on how you perceive this collection,
as opposed to the whole-tone scale where all intervallic distances between
adjacent notes are equal. The fixed location of the half steps in the diatonic
collection helps the listener to remain oriented within a scale from octave
to octave, which is not possible with the intervallically consistent whole-
tone scale.

The Octatonic Scale

Finally, the circle with eight dots in Exercise 1.2¢ yields a scale with an un-
changing pattern that is in some ways similar to the whole-tone scale de-
scribed earlier. This eight-note scale is called the octatonic scale. As with the
five-note pentatonic scale, it is named for the number of notes it contains—
eight. The traditional interval pattern associated with this scale corresponds
to the structure formed by this particular eight-dot pattern, with alternating
whole and half steps. The octatonic scale can begin with any note, and it can
open intervallically with either a whole step or a half step.

Another name for this scale is the diminished scale, the preferred label
in jazz circles, because if we take every other note of the scale, a diminished
seventh chord is the result. For example, beginning with the C at the top of
the diagram, if we take every other dot in Figure 1.4g (C, D4, F¥, A), a dimin-
ished seventh chord results (in this case, a Di diminished seventh chord).
From another perspective, this property of the octatonic scale also can be
observed by superimposing the four-dot circle diagram over the eight-dot
circle diagram. Because the four-dot circle corresponds to the diminished
seventh chord, as discussed earlier, any rotation of this circle where the dots
overlap the dots of the eight-dot circle will show where a diminished sev-
enth chord can be formed from the notes of the octatonic scale.

Quantifying Musical Structures

Now that we have examined the musical structures that correspond to the
various ways to place dots around circles so that the dots are spread out as
much as possible, we return to the idea presented earlier concerning the
number of ways that each of these patterns of dots can be formed. Recall the
formula for determining the number of distinct solutions to the spatial rela-
tions puzzles posed earlier in this chapter. Exercise 1.5 offers an opportu-
nity to verify musically the results that we obtained using that formula and
that we observed in the various rotations of the circle diagrams. You can use
either sharps or flats for chromatic notes in this exercise, depending on
which marking best seems to represent the musical structure you are form-
ing. Therefore, be careful with enharmonically equivalent notes, which are
considered identical in this exercise because they will correspond to the
same dot on a circle. Also, notice the effect of octaves in this exercise: The
dots around the circles indicate note names only and suggest nothing about
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what octave to use. Thus, two notes an octave apart are considered equiva-
lent in this case. Two of the examples (c and d) have been completed for you
as samples; some parts of others also have been solved.

Enharmonic and Octave Equivalence

Exercise 1.5¢, which is solved for you, provides an excellent example of the
issues of enharmonic and octave equivalence. The first diminished seventh
chord shown (C-E,—Gb—BW) has the same notes as the last diminished sev-
enth chord shown (Dé-Fi—~A-C). Here the Cs are an octave apart (therefore
octave equivalent), and the other three pairs of notes are enharmonically
equivalent to each other (B = D, G> = Ff, B» = A). Keep this sample in mind
as you complete the exercise, and rely on the formula to determine how
many distinct forms of the musical structure you should be able to form.

First, determine the number of distinct transpositions of each structure by
completing the given formula. Then, for each musical structure, transpose
the structure repeatedly up by half step until the transposed structure has
the same notes as the initial musical structure (regardless of octave or en-
harmonic spellings).

¢ number of distinct ways to form the musical structur
————— = number o w r e musical structure
GCD(c, d) Y
a. 2 dots, triton 12 12 6 distinct triton
. ots, tritone = = istinct tritones
GCD(12,2) 2
A 1 2 3 4 5 6 same as |
) I I I I T T |
P .1 | | | | I I 1
f fan Y | | | | T T 1
A\3 Y | | 1 1 I I 1
D]
b. 3 dots, augmented = =
\ & GCD( , )
triad
A
o .
f £anY ey
ANV Pl
3] &
e 12 12 .. e
c. 4 dots, diminished = = 3 distinct diminished seventh chords
GCD(12, 4) 4
seventh chord
A 1 2 3 same as |
)7 il [ [ I i | T
& T ey I Iy | JIel$] I [$] 11
| £any VYV 34 | Ve | D€} | 1% 4] 1
ARV Vi I -S4 I €) I 1LY 1T
3] 4 & & [¢) ?r'l'l()
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12 distinct pentatonic scales
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Checking Quantities of Musical Structures

After you complete your work, play all of the musical structures in parts a
through g on a piano. Then check your answers against Solution 1.5. Your
answers may vary in terms of starting points and enharmonically equivalent
notes, but otherwise should match the solutions provided. As verified by
completing this exercise, the result of each formula matches the number of
chromatically transposed musical structures formed by the corresponding
circle diagram: six tritones, four augmented triads, three diminished sev-
enth chords, twelve pentatonic scales, only two whole-tone scales, twelve
diatonic (in this case, major) scales, and three octatonic scales.

1.5 The number of distinct transpositions of various structures solved by
formula and shown on staves

S number of distinct ways to form the musical structure
GCD (c, d) y
a. 2 dots, tritone 12 = 12 = 6 distinct tritones
' ’ GCD(12, 2) 2
] 2 3 4 5 6 same as |
9 I I I I T T |
. | | | | | 1 Py 1 [4] |
[ £ L | O | My | [4] | Ty 1 e 1 1L |
\;)U o %() I #& e I o JI‘F" I ﬁ(’ I o 1 1 [4] 1 T'LI.() 1
12 12 .. .
b. 3 dots, augmented = = 4 distinct augmented triads
. GCD(12, 3) 3
triad
1 2 3 4 same as |
9 I I I I 1 IT
p .1 | | | 1L | o | | M~ 11
[ £anY oy | () | L) | | o8 | Pil 24 1T
ANV P24 I 1 €)Y I LT E) I %24 I P24 1T
o) o b8 g hS S

(c and d are solved in Exercise 1.5)

12 12 _
e. 6 dots, whole-tone GCD(12, 6) = 5 = 2 distinct whole-tone scales
scale ’
1 2 same as |

A

i | | H
y .1 | 1L | o | | (4] 1]
[ £an¥ 1L oy bt ) | O [4] hid | My O H
WY O TRy P hd bt 1 | 1L [4) hid 1 Py TRy P i ]
S NETR B fo 4o g —© .
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In working with the original spatial relation puzzles and attempting to
place dots around circles, I have purposely avoided defining formally this
notion of “spread out as much as possible.” Now that we have explored
these spatial patterns and their musical significance in an informal way, we
will turn to a more formal approach to this concept using a familiar musi-
cal measuring device, the interval. Our purpose here is to obtain a more pre-
cise way of determining if a musical structure is spread out as much as
possible, and we will also have an opportunity to work with musical inter-
vals in an abstract environment.
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Maximally Even

Until now, our best way to determine if the dots around a circle are spread
out as much as possible has been to use the dinner table analogy or to rely
on intuition. However, a more precise definition of this idea would solid-
ify our understanding of the concept and might prove useful in our study of
other musical structures. With a formal definition of the concept, we could
examine any musical structure to determine if it corresponds to the pattern
of relationships exhibited by the musical structures we have been forming
in this chapter. Accordingly, we will label the idea “spread out as much as
possible” as maximally even, and we will define maximally even in terms of
the distances between dots around a circle—or in a musical sense, in terms
of the intervals between notes. The distances between dots around a circle
will be measured in two ways, called ¢ distances and d distances.* A formal
definition of the term maximally even will require some new terms but will
lead to a deeper understanding of the concept.

¢ Distances and d Distances

A ¢ distance indicates the clockwise distance between dots measured in
crossing lines. To determine the ¢ distance between two dots, count the
number of crossing lines from one dot to the other (but excluding the cross-
ing line upon which the initial dot is placed). Musically speaking, a c dis-
tance corresponds directly to the number of half steps between two notes,
because the distances between crossing lines around a circle represent half
steps. A d distance indicates the clockwise distance between dots measured
in dots. To determine the d distance between two dots, count the number of
dots from one dot to the other (but again excluding the initial dot).

The largest possible clockwise ¢ distance between two dots will always
be ¢ — 1, or the number of lines around the circle minus one. Thus, in our
circles with 12 crossing lines, the largest ¢ distance is 11, or 12 — 1. A hypo-
thetical ¢ distance equal to ¢ (12 in this case) would only return us to the
starting point—essentially a ¢ distance of zero, but distances of zero will not
be counted in these exercises. And hypothetical ¢ distances larger than ¢ (in
this case, larger than 12) would not have taken the shortest possible clock-
wise route between the two dots. The largest possible clockwise d distance
will always be d — 1, or the number of dots around the circle minus one.
Thus, the largest d distance for a circle with four dots is 3, or 4 — 1.}

The circle diagram in Figure 1.6 illustrates these two methods of count-
ing. Adjacent dots, bracketed at the top of the diagram, have a d distance
of 1, regardless of the number of crossing lines between the dots, whereas
the bottom left bracket shows a d distance of 2, because the A is two dots
away from the Ft In musical terms, a d distance of 1 refers to adjacent
notes, whereas a d distance of 2 skips a note. On the other hand, each c dis-
tance shown on the circle diagram indicates how many crossing lines, or
half steps, separate the dots connected by the brackets. Thus, the upper
right and lower left brackets in the diagram both show ¢ distances of 3, or
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Figure 1.6 Sample
procedure for counting
¢ distances and d distances

three half steps, though their d distances vary. Also, the two bracketed pairs
of dots at the top of the diagram have respective c¢ distances of 1 (between B
and C) and 3 (between C and D#), based on the number of half steps between
these notes.

Definition of Maximally Even

Now that we have defined ¢ distances and d distances, we can use these
terms to define the term maximally even. To determine if a circle diagram is
maximally even, we will measure the clockwise distances between every
pair of dots (or notes). Formally, a circle diagram is defined as maximally
even if for each d distance (or distance between dots, measured in dots)
there are only one or two possible ¢ distances (or distances between dots,
measured in crossing lines, or half steps). And if there are two ¢ distances
for a particular d distance, then the ¢ distances are consecutive numbers
(such as 2 and 3, 3 and 4, and so forth). In other words, to determine if a mu-
sical structure is maximally even, count the number of half steps between
all pairs of notes (not just adjacent ones). For each comparably placed pair
of notes (or d distance), there must be either one quantity of half steps (a
single number, such as 3) or two consecutive quantities of half steps (two
adjacent numbers, such as 2 and 3).

The Dinner Table Analogy is Maximally Even

In comparing the definition of maximally even with the dinner table analogy
discussed earlier, we observe that the stipulations placed on the number of
¢ distances associated with each d distance ensure that the guests (or dots)
are spread out as much as possible throughout the seating arrangement (or
circle). If there is only one c distance for each d distance, the distances be-
tween each similarly situated pair of guests is exactly equivalent (in terms of
the number of chairs separating them). This equivalence extends not only to
adjacently seated guests but also to those who are seated at some distance
across the table. Thus, if only one c distance is associated with each d dis-
tance, the guests indeed are arranged in a maximally even way, because no
guest is closer in proximity to any of the other guests. Furthermore, if two
¢ distances correspond to a particular d distance, these c¢ distances must be
consecutive numbers to ensure that the separation between any two guests
is as even as possible. If, on the other hand, some pairs of adjacent guests

AN INTERVALLIC DEFINITION 27



28

CHAPTER 1

(d distance of 1) are in adjacent chairs (c distance of 1) and others are sepa-
rated by two empty chairs (c distance of 3), then the spacing between simi-
larly situated guests would be uneven—some guests would be whispering,
others shouting! Likewise, if more than two c distances correspond to a par-
ticular d distance, then there must be a way to even out the arrangement.
For example, if a row of three guests are situated one, two, and three chairs
apart, why not rearrange the trio so that they are seated in every other
chair? Accordingly, there must be either one or two ¢ distances (number of
chairs apart) corresponding to each d distance (number of guests apart),
and if there are two c distances for a particular d distance, then the ¢ dis-
tances must be consecutive numbers. In short, the definition of maximal
evenness merely formalizes our understanding of “spread out as much as
possible,” as depicted in the dinner table analogy and as observed in the cir-
cle diagrams completed earlier. Moreover, through this formal definition
and process, we easily can check all pairs of dots in a diagram to be certain
that they are evenly placed with respect to each other, rather than form con-
clusions based solely on a visual inspection of adjacent dots.

Interval Tables

The application of the formal definition to a circle diagram can be displayed
most clearly through the use of a table showing the distances between dots
in terms of both the number of dots and the number of crossing lines as
shown in the following examples. We begin with the four-dot circle you
solved in Exercise 1.1c. Figure 1.7 contains a four-dot circle diagram (rep-
resenting a diminished seventh chord) that we earlier determined is maxi-
mally even by generally observing the pattern of dots. The table beside the
diagram shows that the pattern of dots is indeed maximally even according
to the formal definition. As shown in the first row of the table and as illus-
trated in the first diagram at the bottom of the figure, each d distance of 1
(between adjacent dots) corresponds to a ¢ distance of 3 (or three half
steps). In other words, each pair of adjacent dots on the circle (d distance of
1 dot) is separated by a distance of three crossing lines (c distance of 3), as
indicated by the arrows. The second row of the table shows that each d dis-
tance of 2 corresponds to a ¢ distance of 6. The second diagram at the bot-
tom of the figure illustrates this tabulation by showing how each pair of dots
that spans a distance of two dots around the circle (d distance of 2) corre-
sponds to a distance of six crossing lines (c distance of 6), or six half steps,
as shown by the arrows. Finally, each d distance of 3 (moving three dots
clockwise around the circle) corresponds to a ¢ distance of 9 (or nine half
steps), as shown on the bottom row of the table and as illustrated by the last
diagram at the bottom of the figure, with ¢ distances shown by the arrows.
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Figure 1.7 Checking a

four-dot circle diagram to
see if it is maximally even
according to the definition

d distance ¢ distance
1 3
2 6
3 9

In summary, as demonstrated in the table, there is only one ¢ distance
for each d distance in the circle of four dots. Therefore, the diminished sev-
enth chord is indeed maximally even. The last row in this table is actually
redundant, because a distance of three dots moving clockwise around the
circle is exactly the same as a distance of one dot moving counterclockwise.
Therefore, the number of crossing lines between these dots will exactly cor-
respond and will sum to 12, because there are a total of twelve crossing lines
around the entire circle (and twelve half steps in an octave). Nevertheless, to
exactly match the original definition of maximally even, we will continue to
calculate these larger intervals as we check circle diagrams (and musical
structures) for maximal evenness. (In musical terms, this relationship be-
tween distances is called interval inversion. Inversional relationships within
the diatonic collection will be discussed in more detail at the end of this
chapter.)

A Negative Example

Figure 1.8 contains a four-dot diagram that does not appear to be maximally
even by visual inspection, and the table of distances confirms this assertion.
Three different distances between dots measured in crossing lines (c dis-
tances) correspond to each distance measured in dots (d distances). For ex-
ample, counting clockwise from the dot at the top of the circle, the adjacent
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Figure 1.8 Checking
another four-dot circle

diagram to see if it is

maximally even according

to the definition

Figure 1.9 Checking a
five-dot circle diagram to
see if it is maximally even
according to the definition
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dots in the diagram are separated by distances of 3, 3, 4, and 2 crossing
lines, as illustrated in the second part of the figure. According to the defini-
tion, a circle diagram is maximally even if there are only one or two possible
distances between dots measured in crossing lines. Therefore, the fact that
three c distances correspond to a d distance of 1, even without looking at the
other relationships between dots, verifies that this structure is not maxi-
mally even, as we anticipated from our initial observation of the diagram.

2 3
d distance ¢ distance

1 2,3,4
2 56,7
3 8,9,10

Testing a Five-Dot Diagram for Maximal Evenness

Figure 1.9 contains a five-dot diagram and its corresponding table. Here, for
each d distance there are two ¢ distances, and these ¢ distances are consec-
utive numbers in each case. Therefore, the circle diagram shown (and the
pentatonic scale, which this diagram represents) is maximally even, as we
would have expected from our discussion earlier in this chapter. For
example, the d distances of two dots—beginning with the dot at the top of
the circle and skipping one dot each time—have corresponding ¢ distances
of 5, 5, 5, 5, and 4 crossing lines respectively. These distances are depicted
in the second part of the figure as an illustration. Similarly, all of the other
d distances correspond to ¢ distances of two consecutive numbers, as
recorded in the table.

4
d distance c distance
1 2,3
2 4,5
3 7,8
5 4 9,10
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Testing Other Diagrams for Maximal Evenness

Exercise 1.6 provides an opportunity to check each of the musical structures
we previously identified as spread out as much as possible to determine if
they are indeed maximally even according to our definition. Each of these
musical structures (except the diminished seventh chord and pentatonic
scale that were solved for you in Figures 1.7 and 1.9, respectively) is given in
staff notation. For each structure, first plot the notes on the circle diagrams,
then complete the table. Finally, based on the table, determine if the musi-
cal structure examined is maximally even according to the definition. Chro-
matic notes are labeled in these circle diagrams with sharps only, for
consistency; to plot a flat note, use the corresponding enharmonically equiv-
alent note (for example, A# for Bb).

Check the musical structures indicated on the staves to determine if they
are maximally even according to the definition. Plot each structure on the
circle diagram, and complete each interval table.

ban
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d distance ¢ distance

Maximally even?

™o

¥
g

\J

d distance ¢ distance

Maximally even?
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d distance ¢ distance

Maximally even?
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Maximally even?

The answers for this exercise are given in Solution 1.6. Of course, each of
the structures is maximally even according to the formal definition, as you
can see from the tables you completed in the exercise. Because this exercise
is a straightforward problem of plotting notes and counting lines around
circles, we shall discuss only one of the musical structures, the familiar dia-
tonic collection (appearing as a C major scale in Exercise 1.6), in further de-
tail. For the other musical structures, you can simply check your answers
against those provided.
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1.6

Intervals and Distances in Seven-Dot Circles

The seven-dot circle diagram, shown in Solution 1.6d, represents a special
case that needs additional explanation because it corresponds to such a
familiar musical construct—the major scale. In the table shown in Solu-
tion 1.6d, each d distance represents the interval types (or sizes) of seconds,
thirds, fourths, fifths, sixths, and sevenths, in the traditional sense. For ex-
ample, each d distance of 1 (between adjacent dots) is equivalent to the in-
terval type of a second, each d distance of 2 (skipping one dot) is equivalent
to the interval type of a third, each d distance of 3 (skipping two dots) is
equivalent to the interval type of a fourth, and so on. This correspondence
between interval types and d distances is applicable to seven-note collec-
tions, because the traditional interval identification system was originally
devised for seven-note collections (as represented by the lines and spaces of
the musical staff). The table shows that for each of these interval types (or
d distances), there are only two interval qualities (or ¢ distances), and the
intervals have consecutive numbers of half steps. Therefore, because the
major scale is maximally even, all seconds in the major scale must be either
major or minor (with 2 half steps or 1 half step, respectively), all thirds must
be either major or minor (with 4 or 3 half steps), all fourths must be either
augmented or perfect (6 or 5 half steps), all fifths must be either perfect or
diminished (7 or 6 half steps), all sixths must be either major or minor (9 or
8 half steps), and all sevenths must be either major or minor (11 or 10 half
steps). This list presents all of the primary intervals taught in introductory
music theory courses. The formal definition of maximal evenness from a
musical perspective, applied to a seven-note scale, rests firmly upon the
knowledge of these familiar intervals.

Circle diagrams and the corresponding interval tables for maximally even
structures of two, three, six, seven, and eight notes

d distance c distance
1 6
Maximally even? yes
d distance c distance
1 4
2 8
Maximally even? yes
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CLOCKWISE DISTANCE BETWEEN DOTS

d distance c distance
1 2
2 4
3 6
4 8
5 10
Maximally even? yes

CLOCKWISE DISTANCE BETWEEN DOTS

d distance c distance
1 1,2
2 3,4
3 5,6
4 6,7
5 8,9
6 10, 11
Maximally even? yes

CLOCKWISE DISTANCE BETWEEN DOTS

d distance c distance

1 1,2

2 3

3 4,5

4 6

5 7,8

6 9

7 10, 11

Maximally even? yes
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Testing Other Scales for Maximal Evenness

We will now examine a few other familiar scales to determine if they are
maximally even. In Exercise 1.7, plot the indicated scales on the circle
diagrams. For each scale, complete the given table to determine whether or
not the scale is maximally even. Play each of these scales on a piano and lis-
ten to the interval patterns formed; try to hear these scales as maximally
even or uneven, based on your findings in the exercise.

Plot the indicated scales on the circle diagrams. For each scale, complete
the given table to determine if the scale is maximally even.

a. E harmonic minor scale

CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance

Maximally even?

b. B melodic minor scale (ascending)

CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance

Maximally even?
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c. Ft melodic minor scale (descending)

d distance ¢ distance

Maximally even?

Descending Melodic Minor

As you probably have discovered, and as shown in Solution 1.7, only one of
the scales in Exercise 1.7 is maximally even. Why do you suppose the F# de-
scending melodic minor scale, depicted in Solution 1.7¢, is maximally even?
Compare this scale with the other seven-note scales we discussed earlier in
the chapter (shown in Figure 1.5 on p. 20). Are there any similarities? The
descending melodic minor scale (that is, any descending melodic minor
scale, not just the one built on F#) has exactly the same series of intervals as
the natural minor scale—which we already identified as maximally even in
Figure 1.5, by visual inspection rather than by using the formal definition.
The other two scales in the exercise and Solution 1.7 have different intervals,
as determined in reference to the tables and in the discussion that follows.

Ascending Melodic Minor

Continuing with our discussion of the scales in Exercise 1.7 in reverse order,
the ascending melodic minor scale (again, any ascending melodic minor
scale, not just the B scale represented in Solution 1.7b) is perhaps closest to
maximally even; only the d distances of 3 and 4 have three different c dis-
tances, rather than the required one or two consecutive ¢ distances. In mu-
sical terms, the scale includes diminished fourths (¢ distance of 4: Ai-D),
perfect fourths (¢ distance of 5: B-E, Cé-Ft, Fi-B, Gé-C#), and augmented
fourths (c distance of 6: D-G#, E-A#)—each with a d distance of 3. From an-
other perspective, with the same pairs of notes in the opposite order and
with the diminished and augmented intervals exchanged (due to inversion),
the scale contains diminished fifths (¢ distance of 6: Gi-D, Ad-E), perfect
fifths (c distance of 7: E-B, Fi—-Ct, B-F#, Ci—G#), and augmented fifths (c dis-
tance of 8: D-A#)—each with a d distance of 4. Unlike these fourths and
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fifths, the other d distances (1, 2, 5, and 6) conform to the definition, having
only two consecutive ¢ distances for each d distance. But because some
d distances have more than two ¢ distances, the ascending melodic minor
scale is not maximally even. Interestingly, an alternative definition that has
been developed for maximal evenness, but which we will not explore further
in this text, uses an approach that calculates precise values for the relative
weights of musical structures in terms of their evenness to determine that
the ascending melodic minor scale is the second-most maximally even
seven-note structure.®

Harmonic Minor

Finally, the harmonic minor scale, represented in Solution 1.7a, regardless
of tonic note, is not maximally even.” In this scale, many d distances have
3 different c distances. A closer inspection of the d distance of 1 dot in the
table—or the interval of a second, in musical terms—reveals an essential
aspect of the harmonic minor scale, one that seems to have plagued com-
posers of tonal music for centuries. The fact that this scale has three differ-
ent seconds—minor (c = 1), major (c = 2), and augmented (c = 3)—can
cause scalar passages to sound disjointed. On the other hand, maximally
even scales, plus the almost-maximally even ascending melodic minor scale,
have only two sizes between adjacent scale steps, providing smoother scalar
passages. Perhaps an analogy will help illustrate the importance of this
observation.

Circle diagrams and the corresponding interval tables for different forms
of the minor scale

a. E harmonic minor scale

d distance c distance

1 1,2,3

2 3,4

3 4,5,6

4 6,7, 8

5 8,9

6 9,10, 11

Maximally even? no
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b. B melodic minor scale (ascending)

d distance c distance
1 1,2
2 3,4
3 4,5,6
4 6,7,8
5 8,9
6 10, 11
Maximally even? no

c. Ft melodic minor scale (descending)

d distance c distance
1 1,2
2 3,4
3 5,6
4 6,7
5 8,9
6 10, 11
Maximally even? yes

The Stepping-Stone Analogy

Imagine crossing a stream by stepping from stone to stone. The task would
be easier if the distance between one stone and the next was the same for
all stones, rather than having different distances to gauge for each of your
steps. With the stones placed in a maximally even way, you would become
accustomed to the distances required to step from stone to stone, even if
there were two different distances. However, crossing the stream would be
more complicated if most of the stones were fairly evenly spaced, except for
one larger distance between two stones, requiring a short leap to avoid get-
ting wet. You might become used to the smaller distances between stones
and increase your speed—only to discover (too late) that one of the stones is
not where you expected it (and get soaked!).

Traversing the harmonic minor scale in a musical setting presents the
same kind of problem, where all of the steps are either half steps or whole
steps, except one augmented second that seems to appear out of nowhere.
Hence, composers usually avoided the spot where the augmented second
occurs, instead moving stepwise below or above it, but not usually crossing
that precarious distance in a stepwise manner. The fact that the harmonic
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minor scale is not maximally even, due to the three different qualities of each
interval type, reflects this important facet of the harmonic minor scale—an
issue that will return again and again throughout your study of tonal music.

‘ SUMMARY AND EXTENSIONS
|

Maximal Evenness and the Black and White Keys

The distinct spatial patterns illustrated in the puzzles with which we began
this chapter all correspond to identifiable musical structures. Placing dots
around a circle of twelve crossing lines (representing the twelve notes in an
octave) so that the dots are spread out as much as possible in every case gen-
erates musically significant counterparts. Moreover, the maximally even
seven-dot circle corresponds to perhaps the most familiar collection of notes
employed by composers of Western music—the diatonic collection, which
encompasses the major, natural minor, and descending melodic minor
scales, as well as the modes. Maximally even structures are fundamental to
our understanding of music, extending even to the distribution of notes and
basic layout of the piano keyboard. Both the white keys, corresponding to
the diatonic collection, and the black keys, forming the pentatonic scale, are
maximally even. This fundamental arrangement of black and white keys, and
therefore the intervals between the notes they represent, continues to repre-
sent our standard approach to the organization of notes, prevailing even in
most computer applications through the MIDI standard.

The complementary relationship between the seven-note and five-note
maximally even structures, so familiar because of their arrangement on the
keyboard, also can be seen in the circle diagrams. Because both the pattern
of dots and the pattern of spaces in these diagrams are maximally even, the
pentatonic collection and the diatonic collection are complements of each
other. Likewise, the diminished seventh chord and the octatonic scale are
complementary. Strangely enough, the complement of the whole-tone scale
is another whole-tone scale, as you can see easily by comparing the arrange-
ment of dots in any of the six-dot circle diagrams with the arrangement of
crossing lines that lack dots.®

Maximally Even Structures in Context

As you progress in your study of music theory, you will encounter musical
contexts for many of the maximally even structures we have worked with in
this book. Some of these structures—such as the augmented triad, the pen-
tatonic scale, the whole-tone scale, and the octatonic scale—began to be
used extensively by early twentieth-century composers such as Claude
Debussy (1862-1918), Aleksandr Scriabin (1872-1915), and many others.
Other maximally even structures—tritones, diminished seventh chords, and
diatonic scales—are fundamental to music of the eighteenth and nineteenth
centuries (and much music of the twentieth century as well) and will be
essential components of your continuing study of tonal music theory. The
tritone is indispensable to tonal structure in terms of the resolution of dis-
sonance; the diminished seventh chord becomes an increasingly common
means of emphasizing certain notes, chords, and keys; and the diatonic
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Figure 1.10 Circle
diagrams showing that the
inversion of a ¢ distance of
3 is a c distance of 9, and
the inversion of a ¢ distance
of 6 is a c distance of 6.
Inversionally related

c distances sum to twelve
(the number of half steps

in an octave).

collection provides the primary scalar material explored by many com-
posers working in a tonal tradition.

Interval Inversion

The uniformity of the diatonic collection, evident in its maximally even
structure, may be viewed from another perspective that involves counting
intervals around a circle. This view relies on an understanding of interval in-
version, mentioned earlier in connection with the tables we constructed to
identify maximal evenness formally. In musical terms, inverting an interval
involves reversing the perspective between two notes in relation to each
other so that the lower of the two notes becomes the higher of the two notes,
and vice versa. For example, the interval from C up to E), inverted, becomes
the interval from Eb up to C. In traditional intervallic terms, inverted interval
types (or sizes) sum to nine, and inverted interval qualities switch between
major and minor, augmented and diminished, or perfect and perfect. Thus, a
minor third, from C up to Eb, becomes a major sixth (summing to nine), from
Eb up to C. Likewise, a diminished third becomes an augmented sixth, and a
perfect fifth becomes a perfect fourth. However, for the remainder of this
chapter, we will refer to these inversionally related pairs using c distances.
In terms of c distances (or half steps), inverted intervals sum to twelve
(the number of half steps in an octave). Thus, a ¢ distance of 3, inverted, be-
comes a ¢ distance of 9 (as illustrated in Figure 1.10a), and a ¢ distance of 6,
inverted, remains a c distance of 6 (as shown in Figure 1.10b)—each pair of
intervals summing to twelve. All inversionally related pairs of intervals be-
have in this way; therefore, inversions essentially involve two ways of deter-
mining the distance between a single pair of dots on a circle (or a single pair
of notes). Consequently, if we wish to count the number of times that each
interval occurs in a circle diagram, we can simply ignore the larger ¢ dis-
tance for each pair of notes (effectively counting only ¢ distances from 1 to
6).” In this way we ensure that inversionally related interval pairs will be
counted only once. For example, in Figure 1.10a, because there is only
one pair of dots, we count only one ¢ distance (3). Special care must be
taken with ¢ distances of 6, because the inversion of 6 is 6. Therefore, in Fig-
ure 1.10b, as there is only one pair of dots, we count only one ¢ distance (6).

DO

a. b.

Interval Content and the Deep Scale Property

If we tabulate the number of times each c¢ distance appears in a circle dia-
gram (taking only the smaller of each inversional pair to avoid double-
counting), we will be able to observe another special property of the
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Figure 1.11 Tabulating ¢
distances (for the smaller of
inversionally related pairs)
in the diatonic collection

c = 1 appears
two times

diatonic collection. As shown in the first circle diagram of Figure 1.11, the
c distance of 1 appears two times in the circle corresponding to the diatonic
collection (in this case, the F# descending melodic minor scale taken from
Exercise 1.7¢). Likewise, in the remaining circle diagrams in the figure, and
indicated by the brackets, the ¢ distance of 2 appears five times, 3 appears
four times, 4 appears three times, 5 appears six times, and 6 appears one
time. The bottom of the figure displays these c¢ distances in a table that
shows the number of times that each c distance appears in the diatonic col-
lection (excluding the larger intervals of inversionally related pairs).'® It is
easy to see in the table that each c¢ distance appears a different number of
times (a different value appears in each of the lower boxes in the table). This
special property of the diatonic collection (where each interval appears a
different number of times) is termed the deep scale property.!!

c = 2 appears c = 3 appears
five times four times

c = 4 appears
three times

5
c = 5 appears c = 6 appears
six times one time
c distance 1 2 3 4 5 6

Number of occurrences 2
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Modulation, Common Tones, and the Deep Scale

One of the most musically significant aspects of the deep scale property is its
relationship to modulation and common tones. Modulation refers to the
process through which keys change in a tonal composition. The table of
¢ distance occurrences for the diatonic collection (bottom of Figure 1.11)
indicates the number of notes that will be held in common (called common
tones) if the diatonic collection is transposed by each particular c¢ distance,
with one exception (to be discussed later). And the deep scale property
(where each interval appears a different number of times) ensures that
(again with one exception) there will be a different number of common
tones associated with each transposition level.!?

This direct relationship between the number of occurrences of each
¢ distance in the diatonic collection and the number of common tones be-
tween two transposed diatonic collections can be seen easily by comparing
the key signatures of various diatonic collections.!* For example, because the
¢ distance of 1 appears two times in the diatonic collection, as shown in
the table at the bottom of Figure 1.11, a diatonic collection that is transposed
by a ¢ distance of 1 will have two common tones. Thus, the key of C major
(with no flats or sharps) transposed up a ¢ distance of 1 yields the key of Db
major (with five flats). Because five of the notes in the C major collection are
now flat (the five flats in the D» major key signature), the two remaining notes
(of the seven total diatonic notes) must be common tones (C and F), as indi-
cated in the table. Likewise, because the ¢ distance of 2 appears five times in
the table, a diatonic collection that is transposed by a ¢ distance of 2 will have
five common tones. Thus, the key of C major transposed up a ¢ distance of
2 yields the key of D major (with two sharps). Because two of the notes in
the original collection are now sharp (Ct and F%, as depicted in the key signa-
ture for D major), five notes are held in common between the two collections
(D, E, G, A, and B).

In the same way, keys that are transpositionally related by c distances of
3 (such as C major and E» major) have four common tones, ¢ distances of 4
(such as C major and E major) have three common tones, and c distances of
5 (such as C major and F major) have six common tones—as revealed by the
table and as suggested by comparing the respective pairs of key signatures.
The one exception involves the ¢ distance of 6, where the enharmonic
spelling of one of the notes yields one more common tone than the table in-
dicates. Thus, C major and F# major (a c distance of 6) have two common
tones, though their key signatures are six sharps apart. Here, the Ef included
in the F# major collection also appears in the C major collection, enharmon-
ically spelled as Fi. Hence, there are two common tones, rather than the one
(B) suggested by the table. But this inconsistency may be accounted for by
remembering that we initially counted ¢ distances of 6 only once in con-
structing the original table, as shown in Figure 1.11 and as discussed earlier,
to avoid duplication of enharmonically equivalent intervals. The “extra” en-
harmonically equivalent common tone is related to this “extra” enharmoni-
cally equivalent c distance of 6.

The significance of these findings for modulation is that the closeness of
the relationship between any two keys, in terms of the number of common
tones, (with one exception) is uniquely associated with the transpositional
proximity of the keys (or c distance apart). Thus, any pair of keys that is re-
lated by a c distance of 5 (with six common tones) will always have a much
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closer relationship than a pair of keys that is related by a ¢ distance of 1
(with only two common tones), despite the adjacent location of the latter
two keys. And in the tonal-music literature, modulations to keys that are
a perfect fifth or fourth apart (a ¢ distance of 5) occur more frequently and
are considered to be closely (or nearly) related, whereas keys that border
each other chromatically (c distance of 1) are viewed as distantly related (or
foreign).

You may wish to examine on your own the other collections from this
chapter—and perhaps some collections of your own design—to see if they
have the deep scale property as well, following the procedures outlined ear-
lier in this section. We have now observed two special properties of the dia-
tonic collection in this chapter: The diatonic collection is maximally even,
and it is also a deep scale.

A Look Forward

Along with this brief overview of the deep scale property (a natural exten-
sion of some of the ideas presented earlier about intervals and circle dia-
grams), this chapter has provided a thorough introduction to maximal
evenness, has led you to identify musical structures that are maximally
even, and has provided an abstract, non-staff-based structure in which to
consider musical concepts. You have worked with intervals by counting half
steps (c distances) and relative distances between notes (d distances), and
you have compared the various forms of the minor scale in some detail. You
have also examined augmented triads; diminished seventh chords; and
whole-tone, pentatonic, and octatonic scales in abstract ways—laying a
foundation for more advanced study in the future. In the next chapter we
will continue to explore all of these collections, but we will begin with the
more familiar diatonic.
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INTERVAL PATTERNS AND
MUSICAL STRUCTURES

‘ @ IATONIC INTERVAL PATTERNS
|

In Chapter 1 we observed that the diatonic collection is the only seven-note
collection that is maximally even in a twelve-note chromatic universe. (I use
the term chromatic universe to indicate all available notes in a given system.
In the usual twelve-note system, chromatic universe refers to the unordered
twelve notes of the chromatic scale.) We will return to the idea of maximal
evenness in Chapter 3. In this chapter we explore other important prop-
erties of the diatonic collection. Again we take a self-discovery approach:
Rather than beginning with an explanation of the property at work, this
chapter presents exercises and discussion designed to help you reach your
own conclusions about the patterns you observe as you solve the exercises.
Through this approach, we postpone defining the properties of the diatonic
collection that we will explore, as in the first chapter, thus giving you an op-
portunity to develop your own definitions.

Interval Identification in Transposed Series

We begin with a series of simple interval identification problems.! Solving
these problems will allow you to observe an important property of the dia-
tonic collection, and these exercises also allow you to practice identifying
intervals. Exercise 2.1 contains several groups of three-note series, all in
diatonic contexts. Transpose each of these three-note series diatonically so
that a series begins on each note of the diatonic collection in each group.
That is, transpose the series within a single diatonic collection, moving the
whole series up by the interval of a second each time, without adjusting the
key signature. Next, identify the intervals between every pair of adjacent
notes for each version of the series; include the interval from the last note in
the series up to the octave above the first note. For each interval identifica-
tion, give both the number of half steps and the interval name by type (or
size) and quality. The total number of half steps in each interval pattern
should sum to twelve. Finally, compare the intervals you have identified,
in order, for every three-note series in each group. For each group of
three-note series, determine how many distinct interval patterns appear in
the group.
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Three-Note Series

Exercise 2.1 presents three-note series in various diatonic contexts. Exer-
cise 2.1a traces a stepwise pattern in C major, Exercise 2.1b involves a dia-
tonic step followed by a skip of a third in C major, Exercise 2.1c delineates
a step and then a leap of a fourth in F major, and Exercise 2.1d uses a skip
and then a step in Eb major. Implicit in each pattern is a return to the initial
note to complete the octave. This return to the starting place is shown in
parentheses for the first two series in Exercise 2.1a but is assumed else-
where. You can include these parenthetical notes in your solutions if you
wish, but you must include the interval required to complete the octave in
each of your interval patterns.

Diatonic Transposition and Circle Diagrams

Comparing these diatonic transposition exercises to the circle diagrams, we
are keeping a constant pattern of d distances as we rotate (or transpose dia-
tonically) around the circle while observing the ¢ distances between the
selected dots in the resulting patterns (shown by half steps as well as by in-
terval quality and type). The intervals that complete the octave in these
series of notes correspond to the ¢ distances necessary to complete the cir-
cle by returning to the initial dot.

Counting Distinct Interval Patterns

The first three-note series in Exercise 2.1a, shown as a sample, has an inter-
val pattern of 2-2-8 or M2-M2-mé6, and the second has an interval pattern
of 2-1-9 or M2-m2-M6. The last interval of each of these patterns is the in-
terval required to complete the octave (shown in parentheses). You may
omit the parenthetical note if you wish, but you must include this interval.
Identify the other five series of notes in the same way. Some of the patterns
will appear more than once. Although you need to label all of the interval
patterns formed (even if they are repetitions of earlier patterns), you need to
count and indicate at the end of each group only the number of distinct (or
different) interval patterns that appear in each group. Also, it is important
that you write out all of the interval patterns, not just the distinct ones, be-
cause you will use these results again later in this chapter.
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2.1 For each group, transpose the series diatonically so that a series begins on
each note of the corresponding major scale. Identify the intervals between
each pair of adjacent notes as indicated. For each group, determine how
many distinct interval patterns appear.

a. C major b. C major
A A
e =) e
@ — e »
- L4 e [3) - L4
half steps: 2 2 8 =12 half steps:
intervals: M2 M2 mé intervals:
0 0
)’ 4 { &\ )’ 4
P .1 \ ¥ ] P .4
LGP o = LGP > .
half steps: 2 1 9 =12 half steps:
intervals: M2 m2 Mé intervals:
ol (etc.) A
iy )” 4
.4 P .4
[ £anY & [ £ 2N
AV Y [ ) - A
[y} d (3]
half steps: 12 half steps:
intervals: intervals:
fo) A
)’ 4 )’ 4
= o » e
A\ & = A\3V
D)} 3]
half steps: half steps:
intervals: intervals:
A A
)’ 4 )’ 4
r . 8 P .4
_@—.—. huad [ £aoY
ANV
3} (3}
half steps: half steps:
intervals: intervals:
2 2
(= » * . (e
Y A\NY
D) D]
half steps: half steps:
intervals: intervals:
9 2
(—* . — 7
A\ VS AN\SV
3} (3}
half steps: half steps:
intervals: intervals:
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? in the group?
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c. F major d. E» major

Fo] A |
A & y -
| 7. -y N~ O & [ ]
A\SV.] & - ANR V. Y b
U !) -
half steps: half steps:
infervals: infervals:
o] o |
)’ A iy 177
V. N N
| 7.~ [ .o ]
ANV ANI V.
) )
half steps: half steps:
infervals: infervals:
fo) o |
A —="
7 /")
ANV ANRV
[} D))
half steps: half steps:
intervals: intervals:
4 0 b
[y}
half steps: half steps:
intervals: infervals:
o] o N
A >
A "]
A\SVJ AN3 Y
D) [y}
half steps: half steps:
intervals: intervals:
o) Nl
A— —
(e =25
ANV Y
] D)
half steps: half steps:
intervals: intervals:
fo) o N
i | Yy |
o5 =P
ARV AN Y
[J) D]
half steps: half steps:
infervals: intervals:
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? in the group?
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Four-Note Series

Before we discuss the solutions to Exercise 2.1, we will examine several
groups of four-note series in Exercise 2.2 in the same way. As in the previous
exercise, diatonically transpose each series, and identify the intervals by
half steps and type and quality. Again, each group should have a total of
seven series, and the number of half steps in each pattern of intervals should
sum to twelve because the patterns assume the completion of the octave.
(The notes needed to complete the octave are not shown in parentheses in
the initial patterns, but they are still an essential implied part of the exer-
cise.) Finally, determine how many distinct interval patterns appear in each
group. (You should complete the exercise on the following two pages before
continuing in the text.) After you complete Exercises 2.1 and 2.2, it would be
beneficial to play all of these series on a piano or some other instrument in
order to experience these intervals aurally. Listen carefully to the sounds
these series make. Compare the series that have identical interval patterns
as well as those that are distinct within each group. Try to /iear what makes
these interval patterns sound similar to or distinct from one another.

Comparing Interval Patterns

The answers for these two exercises are provided in Solutions 2.1 and 2.2.
Carefully check your transposed series, and especially your interval identifi-
cations, to be sure that you have correctly completed the exercises. Observe
that the note required to complete the octave in each series is assumed in
each interval pattern, but not shown (except for the first two samples). If you
desired, you may have included these parenthetical notes (an octave above
each initial note) in your solutions as discussed earlier. Exercise 2.1a has
three different interval patterns: 2-2-8 (or M2-M2-m6), 2—-1-9 (M2-m2-M6),
and 1-2-9 (m2-M2-MS6). Exercise 2.1b has three different interval patterns:
2-3-7 (M2-m3-P5), 1-4-7 (m2-M3-P5), and 2-4-6 (M2-M3-d5). Similarly,
Exercises 2.1c and 2.1d each have three different interval patterns: 2-5-5
(M2-P4-P4), 1-6-5 (m2-A4-P4), and 1-5-6 (m2-P4-A4) for Exercise 2.1¢;
and 4-1-7 (M3-m2-P5), 3-2-7 (m3-M2-P5), and 4-2-6 (M3-M2-d5) for
Exercise 2.1d. On the other hand, Exercise 2.2a has four different interval
patterns: 2-2-1-7, 2-1-2-7, 1-2-2-7, and 2-2-2-6, shown here in half steps
for simplicity. Likewise, Exercise 2.2b has four different interval patterns:
2-2-3-5, 2-1-4-5, 1-2-4-5, and 1-2-3-6. Finally, Exercises 2.2¢ and 2.2d
each have four different interval patterns: 2-3-2-5, 1-4-2-5, 2-4-1-5, and
1-4-1-6 for Exercise 2.2¢c; and 4-1-4-3, 3-2—-4-3, 3-2-3-4, and 4-2-3-3 for
Exercise 2.2d.
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2.2 For each group, transpose the series diatonically so that a series begins on
each note of the corresponding major scale. Identify the intervals between
each pair of adjacent notes as indicated. For each group, determine how
many distinct interval patterns appear.

a. C major b. D major
fa) A ¥
Y y #IL
7 s =
A3V - & & U - P &
half steps: half steps:
intervals: intervals:
9 D4
.4 P S
[ 7Y [ £anY k(l
L\ A\
[} [}
half steps: half steps:
intervals: intervals:
) 4
G (=
L\ii ALY}
[} 3]
half steps: half steps:
intervals: intervals:
g ,? #%
'ﬂ\ I~ kil
L\3iJ A\IYJ
)] [}
half steps: half steps:
intervals: intervals:
” J -4
{m f £ kil
A\SY]
D) )
half steps: half steps:
intervals: intervals:
2 AL
A A
{m j £ T
ANRY
¢ 0y
half steps: half steps:
intervals: intervals:
2 95
A A Tk
& o —
ANSYJ
[} (3
half steps: half steps:
intervals: intervals:
How many distinct interval patterns appear How many distinct interval patterns appear

in the group?
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c. F major d. B> major

fo} N |

A o ) S

(R — &> —

o 0y > °* °*
half steps: half steps:
intervals: intervals:

0O N |

y - ——

[ £ _ﬂ\ 4

G5 AV}

D) [}
half steps: half steps:
infervals: intervals:

ol A |

)” A Yy 1D

A" P "N

[ £ N [ £

ANV A\SY ]

D) (3}
half steps: half steps:
infervals: intervals:

0 A |

A -

[ £ N _4\ v

A\iY} A\

D) [}
half steps: half steps:
infervals: intervals:

fa)

A A

(m L ) A 1

* >

A\3Y]
half steps: o
infervals: half steps:
intervals:

0

y - Al

(m L g D

D) 7 a

A\RY
half steps: Y
infervals: half steps:
intervals:

fo]

{m L4 y 1 [F

D) 7

A\NY]
half steps: o
infervals: half steps:
intervals:
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? in the group?
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2.1 Transposed series of notes drawn from major scales and the resulting
interval patterns

a. C major b. C major
A A
iJ \J
G —_— & =
- 4 e ()] - 4
half steps: 2 2 8 =12 half steps: 2 3 7
intervals: M2 M2 mé intervals: M2 m3 PS5
o) o]
4 { &\ )’
P .1 \ ¥ ] P .
L7} o = & - .
) [J bl [3) [ J bl
half steps: 2 1 9 =12 half steps: 2 3 7
intervals: M2 m?2 M6 infervals: M2 m3 PS5
o) (efc.) A
o ra
b e T
half steps: 1 2 9 =12 half steps: 1 4 7
infervals: m?2 M2 Mé intervals: m2 M3 P5
fo) A
J )’ 4
(= > [ (e ° o
\UV [ ] \.JV &
half steps: 2 2 8 half steps: 2 4 6
infervals: M2 M2 mé intervals: M2 M3 d5
2 2
y o P »
A5 —o — @ = 16— @
D) )
half steps: 2 2 8 half steps: 2 3 7
intervals: M2 M2 mé intervals: M2 m3 P5
0 0
i S &
(I S— 6= *
D) [Y)
half steps: 2 1 9 half steps: 2 3 7
infervals: M2 m2 Mé infervals: M2 m3 P5
9 . ) =
~—eo—* — —o—"*
ARV} ANV
[J)
half steps: 1 2 9 half steps: 1 4 7
infervals: m2 M2 M6 infervals: m2 M3 P5
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? 3 in the group? 3
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c. F major d. E> major

A

|
)

N

5 » 7
&"—s—s By, e
5, S .
half steps: 2 5 5 half steps: 4 ] 7
infervals: M2 P4 P4 infervals: M3 m2 P5
O a |
)” A Y g 1D
p .G el A | P
I ) E—— " » ” —
D) )}
half steps: 2 5 5 half steps: 3 2 7
infervals: M2 P4 P4 infervals: m3 M2 P5
Q I P » Io Llnl & [ ]
A\SY, tH—" o —
(3}
half steps: 1 6 5 half steps: 3 2 7
intervals: m2 A4 P4 infervals: m3 M2 P5
0 . — .
s —eo—*= e — = L
ANV A\S V.
e
half steps: 2 5 5 half steps: 4 2 6
intervals: M2 P4 P4 intervals: M3 M2 d5
¥ 1 o o 9 1 Ir‘) Py [ ]
-  — 7 d
A\RYJ ANV
D) 3}
half steps: 2 5 5 half steps: 4 ] 7
infervals: M2 P4 P4 infervals: M3  m2 P5
-
2 9 ] I’) [ ] ®
(o R
D)
half steps: 2 5 5 half steps: 3 2 7
intervals: M2 P4 P4 intervals: m3 M2 P5
ry
9 I [ ] ® 9 1 lr) & ® o
= 7 —
A\S Y ANS Y}
D) [
half steps: 1 5 6 half steps: 3 2 7
intervals: m2 P4 A4 intervals: m3 M2 P5
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? 3 in the group? 3
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2.2  Transposed series of notes drawn from major scales and the resulting
interval patterns

a. C major b. D major
fo] N #
)" 4 Y AL
(’\r'“u ) 5 ) .
- > * o) > .
half steps: 2 2 1 7 half steps: 2 2 3 5
infervals: M2 M2 m2 P5 infervals: M2 M2 m3 P4
o] A #
7 A .
[ £2Y & kil & bl
\;)U - P & \;)V P & =
half steps: 2 1 2 7 half steps: 2 1 4 5
infervals: M2 m2 M2 PS5 intervals: M2 m2 M3 P4
0 N 4
b - VEP R
[ FanY P '\ﬂ\ T P
\.J\/ 7Y [ \!)u [ ]
half steps: 1 2 2 7 half steps: 1 2 4 5
infervals: m2 M2 M2 P5 infervals: m2 M2 M3 P4
ol A 4
oA o A ° ®
45 ——» ® . = B — —— o
D] D]
half steps: 2 2 2 6 half steps: 2 2 3 5
infervals: M2 M2 M2 d5 infervals: M2 M2 m3 P4
)? P S— -y  ——
i o R — D
D)
half steps: 2 2 1 7 half steps: 2 2 3 5
infervals: M2 M2 m2 P5 intervals: M2 M2 m3 P4
o) A 4 .
r o > . gl' ‘.1':H“- > . —
B (i E— NSV,
D) )
half steps: 2 1 2 7 half steps: 2 1 4 5
intervals: M2 m2 M2 P5 intervals: M2 m2 M3 P4
A A ¥ .
"4 & & Py &
Z—="° e —
vy A\RYJ
[3]
half steps: 1 2 2 7 half steps: 1 2 3 6
intervals: m2 M2 M2 P5 intervals: m2 M2 m3 A4
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? 4 in the group? 4
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c. F major d. B> major

0 o
= o o—* 2 .
A\ = &5 . o
half steps: 2 3 2 5 half steps: 4 ] 4 3
intervals: M2 m3 M2 P4 infervals: M3 m2 M3 m3
o , 5 b
25 ) (?“u b - = -
D) o & hd
half steps: 2 3 2 5 half steps: 3 2 4 3
infervals: M2 m3 M2 P4 infervals: m3 M2 M3 m3
Fa) Al
)” 4 & [ ] )” 4 ]
1\i7] I e = (l\r"‘u > ] Ld it
D] D] [
half steps: 1 4 2 5 half steps: 3 2 3 4
intervals: m2 M3 M2 P4 intervals: m3 M2 m3 M3
Fo) & A |
) A [ ] e 'l:\':\ I[;n — - -
A\RYJ ANV > b
S .
half steps: 2 4 1 5 half steps: 4 2 3 3
intervals: M2 M3 m2 P4 intervals: M3 M2 m3 m3
0 P ® o |
" Py . 7 Py
" l—? [ —
157, A\ [ ]
) oJ
half steps: 2 3 2 5 half steps: 4 ] 4 3
intervals: M2 m3 M2 P4 infervals: M3  m2 M3 m3
£ — )? Llr’ Y = .
| £ L [ £l Py b
A Y ARV v
)
half steps: 2 3 2 5 half steps: 3 2 3 4
intervals: M2 m3 M2 P4 intervals: m3 M2 m3 M3
f o - A o
p — A7 [ —
eV [ /. [ ]
L5 150,
D) o
half steps: 1 4 1 6 half steps: 3 2 3 4
intervals: m2 M3 m2 A4 intervals: m3 M2 m3 M3
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? 4 in the group? 4

DIATONIC INTERVAL PATTERNS 55



56

2.3

Forming a Hypothesis

After you have completed and checked these interval identification exer-
cises, return to Exercises 2.1 and 2.2 and examine each of the transposed
groups in terms of the number of distinct interval patterns formed for each
group and the number of notes in each group. In Exercise 2.3, make a gen-
eralized statement, or hypothesis, to explain your observations. In whatever
words seem appropriate to you, explain what you are observing in the series
or what general principle unites the interval patterns in each group. You
may not have enough information to verify your assertion, and you may not
be able to explain why these patterns work as they do. Nevertheless, make
your best effort in proposing a generalized statement before turning to the
discussion of the solution that follows.

Based on your examination of the number of notes in a series and
the number of different interval patterns formed for each group in
Exercises 2.1 and 2.2, make a generalized statement to explain your
observations.

Lo d

Based on your observations, you may have created a statement some-
what similar to the answer provided in Solution 2.3 (on p. 59). The exact
wording of this solution is not important; in fact, eventually we will see that
an elegant three-word phrase captures the answer suggested here. However,
before we discuss this formal designation, we will continue with our self-
discovery approach and explore our own informal ideas about the issue.
Regardless of how you expressed your statement, your response should
acknowledge that the number of notes in a series matches the number of
interval patterns formed.

Five-Note and Six-Note Series

Before we can be satisfied with our hypothesis, however, we must see if this
generalized statement holds true for other sized series of notes—not merely
patterns formed by series of three and four notes alone. Exercise 2.4 con-
tains a couple of five-note and six-note series to be investigated. For each
given series, diatonically transpose the series to produce a group of seven
related series. Determine the interval patterns formed by each series, and
tabulate the number of distinct interval patterns that appear. Again, you can
show the parenthetical notes required to complete octaves if you desire,
though these notes are not shown in these solutions; however, you must in-
clude the intervals corresponding to these octave completions in the inter-
val patterns.
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2.4 For each group, transpose the series diatonically so that a series begins on
each note of the corresponding major scale. Identify the intervals between
each pair of adjacent notes as indicated. For each group, determine how
many distinct interval patterns appear.

a. C major b. Db major
A o NI
4 0D
T o 7w
) Py [ ) L d s 2
- 4 et
half steps: half steps:
intervals: infervals:
0O o T
)74 Y 1 1y
P .1 A V]
| £anY eV 0 K
A3} A\1YJ 124
D) o
half steps: half steps:
intervals: intervals:
§ b
.. A |V
[ £22Y /N7 D b
A\RV ANV 7
D] o
half steps: half steps:
intervals: intervals:
§ o
y .. A | V]
| £anY [ £ LA ) 2
ARV ANV v
[} [}
half steps: half steps:
intervals: infervals:
fa) A |
)74 Y 1D L
. A [V
[ 7.2} s VD 1y
A\S Y] ANV 24
e oJ
half steps: half steps:
intervals: infervals:
P} A |
\J g 17 |y
y .¢ A |V
[ £ e V7V D Wy
L\1YJ Y 124
D) )
half steps: half steps:
intervals: infervals:
P} A |
\J g 17 |y
y .¢ A |V
[ £ e V7V D Wy
A\RYJ A\ |4
D) )
half steps: half steps:
intervals: intervals:
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? in the group?
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C major

A

if

.4
i~ o ]
-

half steps:
intervals:

M

L
K]

i

half steps:
infervals:

N

I
<

@

half steps:
intervals:

M

L
K

el

half steps:
intervals:

Cg’{)

half steps:
infervals:

DN

half steps:
intervals:

M

I
K

D

half steps:
infervals:

How many distinct interval patterns appear

in the group?

CHAPTER 2

d. E major

half steps:
infervals:

half steps:
intervals:

half steps:
infervals:

half steps:
infervals:

half steps:
intervals:

half steps:

intervals:

half steps:
intervals:

How many distinct interval patterns appear

in the group?
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2.3

A generalized statement to describe the relationship between the number
of notes in a series and the number of different interval patterns formed
for each group in Exercises 2.1 and 2.2

The number of notes in a series equals the number of different

interval patterns that can be formed by transposing that series

diatonically.

Solution 2.4 provides the answers for these problems. As before, care-
fully check your transposed series—especially your interval identifications—
to be sure that you have completed the exercises correctly. As you likely have
concluded, assuming your interval identifications are correct, the number
of notes in a series of five or six notes also precisely indicates the number of
different interval patterns formed. Five-note series yield five different inter-
val patterns, and six-note series produce six different interval patterns. Al-
though the series have become longer and the patterns of intervals perhaps
more complicated, our hypothesis holds true for these series as well. If you
are skeptical, you might wish to check all of the other series of notes to be
sure that the general statement applies in all cases. It would be prudent to
do such an exhaustive inquiry, but to save time we will limit ourselves to an
examination of all possible diatonic two-note series.

Two-Note Series

In Exercise 2.5, construct all six possible groups of two-note series in the di-
atonic collection corresponding to the C major scale. Determine the interval
pattern formed by each series (including the interval required to complete
the octave), and for each group determine the number of different interval
patterns formed. We expect to find—as was consistent with three-, four-,
five-, and six-note series—exactly two distinct interval patterns for each

group.
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2.4  Transposed series of notes drawn from major scales and the resulting
interval patterns

a. C major b. Db Major
g b
{’\',“U - o - Ir)"LV. P —
(3] - L4 ¢
half steps: 2 2 1 2 5 half steps: 2 2 3 4 1
infervals: M2 M2 m2 M2 P4 infervals: M2 M2 m3 M3 m2
9 bt .
D) s * ) ¢
half steps: 2 1 2 2 5 half steps: 2 1 4 3 2
intervals: M2 m2 M2 M2 P4 intervals: M2 m2 M3 m3 M2
£ S —rr
V.4 o P4 Ll/‘ 1V
G ————— _@—D_b_!—‘—'v
half steps: ] 2 2 2 5 half steps: 1 2 4 3 2
intervals: m2 M2 M2 M2 P4 intervals: m2 M2 M3 m3 M2
)? » )? Llnl Ll/‘w P i
—a—o—*="° e
3] [J]
half steps: 2 2 2 1 5 half steps: 2 2 3 4 1
intervals: M2 M2 M2 m2 P4 intervals: M2 M2 m3 M3 m2
" — b  —
15— —* = N3V ?
D)
half steps: 2 2 1 2 5 half steps: 2 2 3 3 2
intervals: M2 M2 m2 M2 P4 intervals: M2 M2 m3 m3 M2
A A | Py &
A\ R ?
half steps: 2 1 22 5 half steps: 2 1 4 3 2
intervals: M2 m2 M2 M2 P4 intervals: M2 m2 M3 m3 M2
'y
g o [ ) ® Wh bt
n—o " —
¥y 9 D
half steps: 1 2 2 1 6 half steps: 1 2 3 4 2
intervals: m2 M2 M2 m2 A4 infervals: m2 M2 m3 M3 M2
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? 5 in the group? 5
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c. C major

o]
iy

A’;@‘%—,—l—'—'—
-

half steps: 2 2 1 2 2 3
intervals: M2 M2 m2 M2 M2 m3

BN
.

half steps: 2 1 2 2 2 3
intervals: M2 m2 M2 M2 M2 m3

DN
]

half steps: 1T 2 2 2 1 4
intervals: m2 M2 M2 M2 m2 M3

OIS
.

half steps: 2 2 2 1 2 3
intervals: M2 M2 M2 m2 M2 m3

Fo)
éﬁl—'—'_'_-—
D)

half steps: 2 2 1 2 2 3
intervals: M2 M2 m2 M2 M2 m3

ARV

half steps: 2 1 2 2 1 4
intervals: M2 m2 M2 M2 m2 M3

P

ANS Y

half steps: 1T 2 2 1 2 4
intervals: m2 M2 M2 m2 M2 M3

How many distinct interval patterns appear
in the group? 6

At

y— s Py
ARV L -

Y P —

half steps: 2 3 2 2 2 1

intervals: M2 m3 M2 M2 M2 m2
A4t
£oty S —
L —— — —
D]
half steps: 2 3 2 2 1 2
intervals: M2 m3 M2 M2 m2 M2
Ast, .
D]
half steps: 1T 4 2 1 2 2
intervals: m2 M3 M2 m2 M2 M2
A u”’ &I -_._.—
A AN —o
NIV —
half steps: 2 4 1 2 2 1
intervals: M2 M3 m2 M2 M2 m2

W
)’ 4 I#U.ﬂ”

\\iv)
D]
half steps: 2 3 2 2 1 2
intervals: M2 m3 M2 M2 m2 M2
R o o * *
N3,
half steps: 2 3 2 1 2 2
intervals: M2 m3 M2 m2 M2 M2
A4 4. e o & *
|
H——
half steps: 1T 4 1 2 2 2
intervals: m2 M3 m2 M2 M2 M2

How many distinct interval patterns appear
in the group? 6
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2.5

a. C major, seconds

Write a different two-note series (or melodic interval) for each group, then
transpose each series diatonically so that a series begins on each note of
the corresponding major scale. Identify all intervals, and for each group
determine how many distinct interval patterns appear.

b. C major, thirds

A A
iy i
V.4 p .4
{5 &,
o [ J
half steps: half steps:
intervals: intervals:
fa) A
i i
p .4 P .4
j £anY j £anY
A\RY, A\EY]
o ]
half steps: half steps:
intervals: intervals:
A A
74 if
p .4 p 4
f £.0Y f £
A\S Y] A\S?.]
o [3]
half steps: half steps:
intervals: intervals:
A fol
i i
.4 P .4
j £y j £aaY
WY ANIY4
[3] [3)
half steps: half steps:
infervals: intervals:
A A
)’ 4 i

.4 .4

j 7o) [ £y

ARV A\S?]

o [3]
half steps: half steps:
intervals: intervals:

fa] A

) i

p .4 V.4
j £ e
WY A\SY.]
D) 3]
half steps: half steps:
intervals: intervals:
fa] A
)” 4 )74
p .4 P .4
j 7.2 [ £an
WY A\3?
o 3]
half steps: half steps:
intervals: intervals:

How many interval patterns?
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c. C major, fourths

A

g

V.4
i~

A\S?;

3]

half steps:
intervals:

M

v
!

@

half steps:
infervals:

™

I
!

i

half steps:

intervals:

M

3
K7

@

half steps:

intervals:

O

2
!

@

half steps:
infervals:

M

v
Kq

i

half steps:

intervals:

™

2
!

@

half steps:
infervals:

How many interval patterns?

d. C major, fifths

A

i
y .4
{rs
A\SYj

D]

half steps:
intervals:

M

L
K]

i

half steps:
intervals:

half steps:
intervals:

half steps:
intervals:

M

%
!

i

half steps:
intervals:

™

2
!

@

half steps:
intervals:

How many interval patterns?
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e. C major, sixths

A A
‘V )* 4
& ©
[3] D]
half steps: half steps:
infervals: intervals:
A ol
‘V )’ 4
7 &
A\EY] A\S Y]
] D]
half steps: half steps:
intervals: intervals:
A A
if )” 4
p 4 p .4
f £ [ £22%
A\S?.] A\S Y]
[3] ]
half steps: half steps:
intervals: intervals:
fol A
i 174

P .4 P .4

j £aaY [ £a2Y

ANIY4 A\R Y.

[3) 3]
half steps: half steps:
intervals: intervals:

A A

i )”

.4 .o

[ £y [ £.2%

A\S?] A\S Y]

[3] D]
half steps: half steps:
infervals: intervals:

A fol

i 174

V.4 p .4
e [ £a2Y
A\SY.] A\RY
3] D]
half steps: half steps:
intervals: intervals:
A fol
)74 )* 4
P .4 .4
1 [ £.2
A\3? A\S Y]
3] D]
half steps: half steps:
intervals: intervals:

f. C major, sevenths

How many interval patterns? How many interval patterns?
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Interval Patterns and d Distances

Your results for this exercise could have been anticipated from our earlier
work in Chapter 1. We determined in Exercise 1.6d (on p. 32) that all inter-
val types (d distances, or distances measured in dots) in the diatonic collec-
tion have exactly two qualities (c distances, or distances measured in
crossing lines). Therefore, it follows that our group of transposed two-note
series (which keep the d distances constant within each group) would have
two different interval patterns (two different ¢ distances). By comparing
your work in Exercises 2.5 and 1.6d (p. 32), you can deepen your under-
standing of intervals in the diatonic collection. Solution 2.5 displays the an-
swers to this exercise for your convenience in evaluating your own work.

Inversion and Two-Note Series

After completing Exercise 2.5, you also might have recognized that complet-
ing only the first three of these groups of transposed series was sufficient to
verify our hypothesis for two-note series, because the last three groups are
redundant due to inversion. The interval type of a seventh projected in Exer-
cise 2.5f is the inversion of the interval type of a second in Exercise 2.5a.
Likewise, the interval type of a sixth in Exercise 2.5e is the inversion of the
interval type of a third in Exercise 2.5b, and the interval type of a fifth in
Exercise 2.5d is the inversion of the interval type of a fourth in Exercise 2.5c.
Therefore, the interval patterns formed by these pairs of groups are directly
related. Because major and minor intervals invert into each other and be-
cause inversionally related interval types sum to nine, the interval patterns
shown in Solution 2.5a (M2-m7 and m2-M7) invert in Solution 2.5f to the
opposite interval patterns (m7-M2 and M7-m2). In terms of half steps, the
intervals are also reversed in these pairs so that the numbers of half steps in
each pair sum to twelve. Thus, the order of half steps in the interval patterns
of Solution 2.5a (2-10 and 1-11) is reversed in Solution 2.5f (10-2 and 11-1).
Likewise, the interval patterns in Solution 2.5b and in Solution 2.5¢ are
reversed in their inversional counterparts shown in Solution 2.5e¢ and in
Solution 2.5d, respectively. In addition to these inversional pairs, the inter-
vals in each series are also inversionally related because each pair of inter-
vals completes the octave. For example, in Solution 2.5a all intervals of 2 half
steps require 10 half steps to complete the octave, and all intervals of 1 half
step require 11 half steps to complete the octave. 2-10 and 1-11 are inver-
sionally related, as mentioned previously. The concept of inversional pairs
will become an increasingly important component of your studies in music
theory, and perhaps observing these pairs in these contexts may help illumi-
nate the concept of interval inversion.
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2.5

a. C major, seconds

Transposed series of notes drawn from major scales and the resulting
interval patterns

b. C major, thirds c. C major, fourths

fal A A
i ;& v
© &) - © =
D] - [4 ] - e D) -
half steps: 2 10 half steps: 4 8 half steps : 5 7
intervals: M2 m7 intervals: M3 mé intervals: P4 P5
fal A A
)7 4 i )7
V.4 P .4 P .1
% — % > &) o
D)} [ et 03 & D)) [ J
half steps: 2 10 half steps: 3 9 half steps: 5 7
intervals: M2 m7 intervals: m3 Mé intervals: P4 P5
A A A
v y.a .
5, - - D 5 - {5 - .
D] bl [3] b D] e
half steps: 1 11 half steps: 3 9 half steps: 5 7
intervals: m2 M7 intervals: m3 Mé intervals: P4 P5
fal fol A
)74 i )
= - 17 » (= o
\U\} & \.)U & \UV &
half steps: 2 10 half steps: 4 8 half steps: 6 6
intervals: M2 m7 intervals: M3 méb intervals: A4 d5
A A A
F.d P 5 A =
(@ ) [ ] [ £y P v [ £an¥ Y
A\S?] b WY et
eJ [3] D]
half steps: 2 10 half steps: 4 8 half steps: 5 7
intervals: M2 m/7 intervals: M3 méb intervals: P4 P5
fal A A
. ~ p.a » A o
D . — &, i 6] ’
] 3] ]
half steps: 2 10 half steps: 3 9 half steps: 5 7
intervals: M2 m/ intervals: m3  Mé intervals: P4 P5
e —— p ——
1 e [ £anY el
A\1Y4 A\3? ANV
3] D]
half steps: 1 11 half steps: 3 9 half steps: 5 7
intervals: m2 M7 intervals: m3 Mé intervals: P4 P5

How many interval

patterns? 2
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d. C major, fifths e. C major, sixths f. C major, sevenths

A A A
ya y.a ya -
{es > {es = (e 1
1\87] ® 137 1487
d o [3 s ] -
half steps: 7 5 half steps: 9 3 half steps: 11 1
intervals: P5 P4 intervals: M6 m3 intervals: M7 m2
g g 2
D] [4 D) L4 )] L4
half steps: 7 5 half steps: 9 3 half steps: 10 2
infervals: P5 P4 intervals: Mé m3 infervals: m7 M2
Fal A ol
ya . pa = ya .
LG — Lo — H—7p
(3} e [3) e (3} e
half steps: 7 5 half steps: 8 4 half steps: 10 2
intervals: P5 P4 infervals: mé M3 intervals: m7 M2
Fol Fa) Fol
— — —
Y= 3 X )
half steps: 7 5 half steps: 9 3 half steps: 11 1
intervals: P5 P4 intervals: Mé m3 intervals: M7 m2
£ — 66— e~ 7y
—e tH—e G5 -
[} (3} (3}
half steps: 7 5 half steps: 9 3 half steps: 10 2
infervals: P5 P4 intervals: Mé m3 intervals: m7 M2
tH—* +H—* 5 ’
3} [y} [3}
half steps: 7 5 half steps: 8 4 half steps: 10 2
intervals: P5 P4 infervals: mé M3 intervals: m7 M2
e e —
{es—* {es—* {es L
i 13%) e
(3} (3} (3}
half steps: 6 6 half steps: 8 4 half steps: 10 2
infervals: d5 A4 infervals: mé M3 infervals: m7 M2
How many interval How many interval How many interval
patterns? 2 patterns? 2 patterns? 2
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Cardinality Equals Variety

It seems safe to conclude that the number of notes in a series indicates the
number of distinct interval patterns formed by diatonic transpositions of
that series, as we originally hypothesized. The formal term for this phe-
nomenon is cardinality equals variety. Cardinality generally refers to the
number of items contained within a set; here, the term refers to the number
of notes in a series. Variety, in this case, refers to the number of different in-
terval patterns that can be formed by transpositions of the initial series, or
the variety of interval patterns. The fact that cardinality equals variety for
any series of any number of notes drawn from a diatonic collection is an-
other important property of the diatonic collection—along with the fact that
the diatonic collection is maximally even and that it is a deep scale, as we
determined in Chapter 1.

So far in this chapter, we have largely taken for granted one important
aspect of our observations: we only have been working with diatonic collec-
tions. To complete our study of the property cardinality equals variety, we
need to examine interval patterns formed by series of notes contained in
other collections, to determine if this property occurs regardless of the col-
lection of notes from which these series are drawn. In the next section we
will test our hypothesis using other scales.

‘ INTERVAL PATTERNS IN OTHER SCALES
|

68

Variety in Harmonic and Ascending Melodic Minor

We begin our study of interval patterns in other scales using two of the most
familiar scales, at least to students of tonal music, which are not associated
with the diatonic collection (major, natural minor, and the modes). We have
already established that the harmonic and ascending melodic minor scales
are not maximally even; however, the lack of this property in these scales
may or may not be relevant to what interval patterns are produced by trans-
positions of various series of notes drawn from these scales. Exercise 2.6 pro-
vides an initial opportunity to test the harmonic and ascending melodic
minor scales, respectively, to see if cardinality equals variety for series of
notes drawn from these scales. We will begin with a simple series of four con-
secutive notes from each scale; if cardinality equals variety for these series,
we will continue with series of other lengths and complexities in another
exercise. In addition to our main purpose in completing this exercise, work-
ing with these important scales also will provide us with an excellent oppor-
tunity to observe their intervallic structures. Therefore, in Exercise 2.6
determine the interval patterns (and complete the octave) for all of the trans-
positions of each series—even if not all patterns are needed to satisfy your
test for the property of cardinality equals variety.
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2.6 For each group, transpose the series diatonically so that a series begins on
each note of the corresponding scale. Identify the intervals between each
pair of adjacent notes as indicated. For each group, determine how many
distinct interval patterns appear.

a. D harmonic minor
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half steps:
intervals:
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half steps:
intervals:
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half steps:
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How many distinct interval patterns appear
in the group?

b. E ascending melodic minor
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half steps:
intervals:
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half steps:
intervals:
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half steps:
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half steps:
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4
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[/
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half steps:
intervals:

A=
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half steps:
intervals:

4

How many distinct interval patterns appear
in the group?
Lo d

INTERVAL PATTERNS IN OTHER SCALES 69



70

Solution 2.6 shows the completed transposed series and interval pat-
terns; as usual, carefully check your transposed series and interval identifi-
cations. As you may have concluded, because more than four interval
patterns are formed by transpositions of a four-note series in each scale, car-
dinality does not equal variety for these scales. There is no need to examine
other series of notes drawn from these scales in this regard, because if the
property cardinality equals variety applies, it must hold true for all series of
any length or configuration drawn from a scale.

Harmonic Minor

In the harmonic minor scale (as shown in Solution 2.6a), no fewer than
seven different interval patterns are formed, one for every transposed series.
Thus, every group of four consecutive notes drawn from this scale will sound
different. In contrast, because cardinality equals variety, the diatonic collec-
tion exhibits only four different interval patterns, and some patterns occur
more than once (as demonstrated in Exercise 2.2a earlier in this chapter).
Perhaps most striking in the interval patterns of the harmonic minor scale is
the presence of the augmented second in no fewer than three of these se-
ries—a thorny interval, as we discussed in Chapter 1.

Ascending Melodic Minor

The ascending melodic minor scale (as shown in Solution 2.6b), on the other
hand, contains five interval patterns among its transposed series of four con-
secutive notes. Perhaps most notable here is the fact that two interval pat-
terns each contain three consecutive major seconds. These series come close
to approximating the whole-tone scale, with its inherent ambiguity, which
we explored at the piano in Chapter 1. Taken together, these two series drawn
from the ascending melodic minor would overlap to form four consecutive
major seconds. Only the presence of minor seconds surrounding this long se-
ries of whole steps prevents this scale from approaching the total ambiguity
offered by the whole-tone scale. Yet, the fact that this scale contains such a
large number of consecutive whole steps suggests that composers must have
had to treat this scale, as well as the harmonic minor scale with its problem-
atic augmented second, with care in executing scalar passages.
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2.6  Transposed series of notes drawn from forms of the minor scale and the

resulting interval patterns

a. D harmonic minor

o]
&=
9 - o [ ] ®
half steps: 2 1 2 7
intervals: M2 m2 M2 P5
A
p -
(\U’D S ———
half steps: 1 2 2 7
intervals: m2 M2 M2 P5
A
AL .
(S‘u e ———
half steps: 2 2 1 7
intervals: M2 M2 m2 P5
A
” A 1L
D]
half steps: 2 1 3 6
intervals: M2 m2 A2 d5
A
7 ” 2
. —— —
NIV
half steps: 1 3 1 7
intervals: m2 A2 m2 P5
Q T A Py &
" —
D
half steps: 3 1 2 6
intervals: A2 m2 M2 d5
A —a
D
)]
half steps: 1 2 1 8
intervals: m2 M2 m2 A5

How many distinct interval patterns appear
in the group? 7

b. E ascending melodic minor

A W

7

L) S ——
half steps: 2 1 2 7
intervals: M2 m2 M2 P5

A ¥

y, -

(S‘u s— o " —
half steps: 1 2 2 7
intervals: m2 M2 M2 P5

A ¥

i I

D]
half steps: 2 2 2 6
intervals: M2 M2 M2 d5

A ¥ ,

)” A 1L Pl

P - fa—%e

1\EYj

D]
half steps: 2 2 2 6
infervals: M2 M2 M2 d5

A ¥ ,

\'\Ev :

D]
half steps: 2 2 1 7
intervals: M2 M2 m2 P5

o4 ,

A\R Y

|

half steps: 2 1 2 7
infervals: M2 m2 M2 P5
I o .

e
D :
half steps: 1 2 1 8
infervals: m2 M2 m2 A5

How many distinct interval patterns appear
in the group? 5
Lo d

INTERVAL PATTERNS IN OTHER SCALES 71



72

Minor Contexts

Because the harmonic minor and ascending melodic minor scales are not
maximally even, and because cardinality does not equal variety for series of
notes drawn from these scales, you may be forming the opinion, by now,
that these scales are somewhat inferior to those scales that correspond to
the diatonic collection where these properties are in force. In some sense
your conclusion would be right. These scales are indeed subordinate to the
diatonic collection because they draw their tonal center from, and are usu-
ally defined in reference to, the natural minor scale. “Raise the seventh note,
and raise the sixth and seventh notes” are the traditional directions for con-
structing these two scales from the natural minor scale. Nevertheless, com-
posers seem to have been extremely attracted to these scales; the harmonic
and melodic minor scale forms became the norms for tonal music, not the
natural minor scale from which they derive.

In light of this apparent disparity between theory and practice, how are
we to view our conclusions regarding maximal evenness and cardinality
equals variety? Does the frequency with which these forms of the minor
scale are employed by tonal composers negate the importance of our theo-
retical excursions? Quite the contrary. We have already shown the impor-
tance of maximally even structures to our perception of the conspicuous
gap between steps in the harmonic minor scale. Moreover, what our find-
ings about these minor scale forms have shown, and what we must keep in
mind regarding these scales, is that these scales represent a compositional
compromise. Tonal composers seem to have viewed the internal structure of
collections, or scales, as subordinate to matters of voice leading (the behav-
ior of individual voices or lines within a musical passage). Therefore, they
chose to raise the seventh note of the scale, in harmonic minor, so that this
seventh note of the scale could lead by a half step up to the tonic goal of the
scale. Raising the sixth note of the scale, in melodic minor, simply smoothes
out the perceived gap in the harmonic minor scale, the augmented second
mentioned earlier. Composers seem to have compromised the maximal
evenness of the natural minor scale, in addition to cardinality equals variety,
to create a stronger voice-leading approach to the tonic. As you continue
your study of tonal music, problems of voice leading, especially in minor
keys, will become an increasingly important concern. The theoretical foun-
dations laid here are intended to enhance your appreciation for this facet of
tonal music.

Of course, composers of tonal music in the common-practice period lit-
erally knew nothing about maximal evenness or cardinality equals variety,
though they may have had intuitive notions along these lines that they did
not express; therefore, my assertions regarding compromises made by these
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composers must be viewed in this limited context. We cannot know the
reasons for choices made by these composers, but our theoretical inquiries
can shape or reshape our perception of the results of their compositional
choices. Therefore, developing an understanding of the structure of the dia-
tonic collection by means of these theoretical undertakings provides us with
a deeper appreciation of the subtle differences among the variants of the
minor scale (natural, harmonic, and melodic).

Maximal Evenness and Cardinality Equals Variety

So far we have ascertained that cardinality equals variety for series of notes
drawn from the diatonic collection, which is maximally even, and that cardi-
nality does not equal variety for series of notes drawn from the harmonic and
ascending melodic minor scales, which are not maximally even. We continue
our study of the property cardinality equals variety by examining interval
patterns formed by series of notes drawn from other maximally even scales.
In this way we can determine if the two properties are intertwined.

Pentatonic, Whole Tone, and Octatonic

Exercise 2.7 contains groups of simple series of three consecutive notes
drawn from the pentatonic, whole tone, and octatonic scales—the other
three maximally even scales that we studied in Chapter 1. All of the series
are provided for you, because transposing series within these scales is not as
straightforward on the staff as within seven-note scales. Also, only half steps
are calculated, because these scales do not conform to the configuration of
the familiar staff—therefore, naming intervals by quality and type may pro-
duce misleading results. In terms of circle diagrams, we still keep the d dis-
tances constant as we rotate (or transpose) the patterns around the circle,
while we observe the ¢ distances between the selected dots in the resulting
patterns. However, we record only the ¢ distances (half steps), rather than
include the interval types and qualities, because the d distances do not cor-
respond directly to traditional interval types (seconds, thirds, and so forth)
as in seven-note collections. Again, complete the octave for each transposed
series either by showing or assuming a parenthetical note an octave above
each initial note. By examining the interval patterns formed by these three-
note series drawn from each of these scales, we will obtain a preliminary
impression of whether or not cardinality equals variety for these scales. If
any of these scales do exhibit the property cardinality equals variety, we will
test other series of notes to examine the property fully.
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2.7  For each group, identify the intervals between each pair of adjacent notes

as indicated, and determine how many distinct interval patterns appear.

b. Whole tone

a. Pentatonic

A Fa)
)7 b7 A
P .4 p .0
) ° L) »
J L4 e Jv e L4 e
half steps: half steps:
o] Fa)
i i
(l\""u * &) it
== o 4=
half steps: half steps:
A A
ya A .
L — — %#1 i
o et ;
half steps: half steps:
0 9
‘ll [ ] P .4 m I
AH—e—* %1—#’—:9‘!
D) i
half steps: half steps:
2 2
7 o [ ) o -
H—= ly—de—i=
v v T
half steps: half steps:

A
7} - o
[3}

half steps:

How many distinct interval patterns appear How many distinct interval patterns appear
in the group? in the group?
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c. Octatonic

o) o]
)’ )’ 4
& . -
vy ha |
D) - Ld i )

half steps: half steps:
o] A
)’ 4 )’ 4
.. | Py
(e T #bj_arl =
—o o ——"% D}

half steps: half steps:
2 2

©

half steps: half steps:
o] A
)’ 4 )’ &
2~ T I Y [ ) bl
B G — —
D) 3}

half steps: half steps:

How many distinct interval patterns appear
in the group?

As shown in Solution 2.7, only the pentatonic scale exhibits cardinality
equals variety for the series of notes we examined. The other two scales each
have fewer than three interval patterns for their groups of three-note series,
unlike the harmonic and ascending melodic minor scales which have
greater than three distinct patterns.

The Whole-Tone Scale

The whole-tone scale (as shown in Solution 2.7b) remarkably has only a sin-
gle interval pattern for its group of three-note series. If you wish, you can
easily check series of any other lengths or configurations and ascertain that
any group of series drawn from the whole-tone scale will have only a single
interval pattern, due to the special configuration of this scale. Therefore,
any series of notes drawn from the whole-tone scale will sound almost ex-
actly the same as any other similarly configured series of notes. This am-
biguous aspect of the whole-tone scale is perhaps one of the principal
charms that attracted composers such as Claude Debussy, who apparently
sought a less goal-directed musical palette.

The Octatonic Scale

The octatonic scale (as shown in Solution 2.7¢)—also a remarkably consis-
tent scale in terms of spacing, as we observed in Chapter 1—produces only
two interval patterns for the group of series consisting of three consecutive

INTERVAL PATTERNS IN OTHER SCALES 75



notes. This scale, similarly, has exactly two interval patterns, regardless of
the structure or length of the series. As in the whole-tone scale, the consis-
tent configuration of the octatonic scale makes it difficult to determine
where these patterns appear in relation to the tonic note of the scale.
Although there is less ambiguity than in the whole-tone scale, such features
seem to have begun to become attractive to composers in the early twenti-
eth century.

2.7  Transposed series of notes drawn from various scales and the resulting
interval patterns
a. Pentatonic b. Whole tone
A A
& %
[ FanY
NE== T
half steps: 2 2 8 half steps: 2 2 8
A A
)7, )7
P .4 V.4
L)  — L) n
g e —° ¢ e 1"
half steps: 2 3 7 half steps: 2 2 8

o] fa)
e ra .
G — . . M 7o
(Y} et ;
half steps: 3 2 7 half steps: 2 2 8
A A
ya » i . ph
165—e—* Wﬂ‘l
U T
half steps: 2 3 7 half steps: 2 2 8
o] Fa)
pa [ — L. »
& e 1o —te—1=
) DR
half steps: 3 2 7 half steps: 2 2 8
A
D)
half steps: 2 2 8
How many distinct interval patterns appear How many distinct interval patterns appear

in the group? 3

in the group? 1
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c. Octatonic

fo] A
i i

(s | (5— ! e

()] e I 7L ———

D) - [4 vE D)

half steps: 2 1 9 half steps: 2 1 9

o] A
i i

P

{
eﬁ
Ji_
[

half steps: 1 2 9 half steps: 1 2 9
o] A
¥ i
& R — be "
D)
half steps: 2 1 9 half steps: 2 1 9
o] o]
i i/ Py
Y .o T I ﬁ S =
G —1 —— Y
D) D)
half steps: 1 2 9 half steps: 1 2 9

How many distinct interval patterns appear
in the group? 2

The Pentatonic Scale

On the other hand, the pentatonic scale (as shown in Solution 2.7a), like the
diatonic collection examined earlier in the chapter, has three different
interval patterns corresponding to the group of three-note series—an exact
correspondence between the number of notes and the number of patterns.
However, to determine if cardinality equals variety for this scale, we must ex-
amine some additional groups of series to be sure that the property contin-
ues to hold. Exercise 2.8 provides a structure for this investigation. Because
no potentially misleading results will be obtained by using the more tradi-
tional interval identification system with this scale, we will return to the use
of both half steps and interval types and qualities for this exercise. In this
way you can obtain some additional interval identification practice using
the traditional system of interval types and qualities. Although these exam-
ples will not be sufficient to prove cardinality equals variety for the penta-
tonic scale, perhaps these examples will be sufficient to be convincing.?
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2.8

a. Pentatonic

For each group drawn from the pentatonic scale, identify the intervals be-

tween each pair of adjacent notes as indicated, and determine how many
distinct interval patterns appear.

b. Pentatonic

A A
i )i
V.4 p .4
[ fanY Py [ £a% Py
A\SY b ANSY -
& & [ J
half steps: half steps:
intervals: intervals:
A A
. A
()] - (& — =
D) [ D) L4 et
half steps: half steps:
intervals: intervals:
9 9
= i —= — &
ALY & A\S P = hd
3] hd Y] L 4
half steps: half steps:
intervals: infervals:
A A
i Py i Py
P .4 bl P .4 v
[ £anY - _%—.—.
A2V} -
D] D]
half steps: half steps:
intervals: infervals:
A A
— = e ="
A\ A\2Y]
D]
half steps: half steps:
intervals: intervals:

How many distinct interval patterns appear

in the group?

CHAPTER 2

How many distinct interval patterns appear
in the group?
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c. Pentatonic

d. Pentatonic

A A
. A
L&) ® 5D ® -
> v ° o ®
half steps: half steps:
intervals: intervals:
A A
2 f .
= - = = =
A\ Py v 'Y -
D) [ hd D) [ 4 o
half steps: half steps:
intervals: intervals:
2 9
= > = i (= - bt —
A\LVJ ° o A\iVJ -y o
o —* ) .
half steps: half steps:
intervals: intervals:
A A
e [ — f o—*
% . - % . -
D] D]
half steps: half steps:
intervals: intervals:
A A ®
i P [ ] ) 4 [ ]
D] D]
half steps: half steps:
intervals: intervals:
How many distinct interval patterns appear How many distinct interval patterns appear

in the group?

in the group?

For every group of series in the exercise, the number of interval patterns
formed exactly matches the number of notes in the series, as shown in
Solution 2.8. Cardinality equals variety for the pentatonic scale—though
this outcome is hardly surprising. We have already demonstrated in Chap-
ter 1 that the pentatonic scale is the complement of the diatonic scale.
Because the pentatonic scale fits into the spaces around the circle between
the dots of the diatonic collection, it is reasonable to expect that the two col-
lections would be closely related in other ways as well.
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2.8  Transposed series of notes drawn from the pentatonic scale and the result-
ing interval patterns.

a. Pentatonic b. Pentatonic
o] o]
)4 g
(\rmu ® A\iY; *
-& & &
half steps: 7 5 half steps: 2 5 5
infervals: P5 P4 intervals: M2 P4 P4
0 o)
y A
(S [ ) [ £ [ ]
\UU > \!)U > &
half steps: 7 5 half steps: 2 5 5
intervals: P5 P4 intervals: M2 P4 P4
p 2
G * 1% —
vy & A\RDJ bl
o —* 3y ~
half steps: 8 4 half steps: 3 5 4
infervals: mé M3 intervals: m3 P4 M3
0O o)
)74 o ) A &
p . bl P .4 bl
L) . H—®e —*
D) D]
half steps: 7 5 half steps: 2 5 5
intervals: P5 P4 intervals: M2 P4 P4
G e G e
D) D]
half steps: 7 5 half steps: 3 4 5
intervals: P5 P4 intervals: m3 M3 P4
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? 2 in the group? 3
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c. Pentatonic d. Pentatonic

A A
G %
[ 720 P P [ ]
Dl - L4 ¢ )] - L4
half steps: 2 2 3 5 half steps: 2 5 2 3
intervals: M2 M2 m3 P4 intervals: M2 P4 M2 m3
0 fa)
7, 7
) p — &  —
D) [ 1 ) > ®
half steps: 2 3 2 5 half steps: 2 5 3 2
intervals: M2 m3 M2 P4 intervals: M2 P4 m3 M2
0 2 -
(=~ e — {es e ——
1\, Py Ld 1457, P L
N ) o
half steps: 3 2 3 4 half steps: 3 5 2 2
intervals: m3 M2 m3 M3 intervals: m3 P4 M2 M2
)? C Ld )? . .
e —— S ——
°J e
half steps: 2 3 2 5 half steps: 2 5 2 3
intervals: M2 m3 M2 P4 intervals: M2 P4 M2 m3
0O ] ]
& [ ] o . A [ ] .
G—= (o E—
3} (3
half steps: 3 2 2 5 half steps: 3 4 3 2
intervals: m3 M2 M2 P4 intervals: m3 M3 m3 M2
How many distinct interval patterns appear How many distinct interval patterns appear
in the group? 4 in the group? 4

INTERVAL PATTERNS AND THE CIRCLE
OF FIFTHS

[
After completing the exercises so far in this chapter and comparing the var-
ious interval patterns formed in series drawn from the diatonic collection,
you have seen that not all interval patterns occur the same number of times
in a group. Some interval patterns occur multiple times, whereas others ap-
pear only once. We shall now focus on this observation, and examine these
frequencies of occurrence in more detail to attempt to determine if there is
any recognizable design in the number of occurrences of each interval pat-
tern within a group.
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Figure 2.1 Demonstration
of a generated collection.
The first three circles (a—c)
show the gradual formation
of the diatonic collection
by means of a constant
generating c distance (7).
The last circle (d) shows the
generating c distance (7)
between adjacent lines,
rather than a circle of half
steps as in previous
diagrams.

Seven-Line Circle Diagrams

In order to carry out this examination, we will use circle diagrams that are
significantly different from the ones we worked with in Chapter 1. These cir-
cle diagrams have only seven lines crossing the circle, representing the
seven notes of the diatonic collection. Furthermore, the lines are labeled
according to the circle-of-fifths model, rather than ascending stepwise
through the scale. Thus, the note names assigned to the crossing lines in-
crease by the interval of a fifth as we move clockwise around the circle, as
shown in Figure 2.1d.3

c. d.
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The Generator

The two different kinds of circle diagrams may be reconciled through an
elementary understanding of a generated collection.* A generated collection
is formed by repeatedly adding a constant ¢ distance (a single number)
around a chromatic (twelve-line) circle until an entire collection is formed.
All deep scales (such as the diatonic collection, as mentioned in Chapter 1)
can be generated by any interval (g) that is coprime with ¢ (the number of
lines around the circle).> Integers are termed coprime if they have a greatest
common divisor of one—or in formulaic terms, the GCD of (g, ¢) = 1; in this
case GCD (7, 12) = 1 and GCD (5, 12) = 1. Thus, as shown in Figure 2.1, the
diatonic collection can be generated by a ¢ distance of 7 (or also by 5). The
first circle diagram (Figure 2.1a), beginning with the note F and employing
the original chromatically oriented twelve-line circle, shows two moves via
the generator, depicted by the arrows. The second and third circle diagrams
(Figures 2.1b and 2.1¢) each show two more steps through the process. The
final circle diagram (Figure 2.1d) shows the new seven-line circle that re-
sults from this generative process. This circle begins with F, and the lines
around the circle are labeled successively by intervals of 7 (g = 7). Thus, the
lines are labeled F-C-G-D-A-E-B, with each new note 7 semitones away
from the previous one, as shown in Figure 2.1d and as generated in Fig-
ures 2.1a, b, and c.

Furthermore, any generated collection can be generated by gorbyc — g
(the total number of lines around the circle minus the constant generator).
Consequently, and as the GCD formula likewise reveals, the diatonic collec-
tion also can be generated by a ¢ distance of 5, the inversion of a ¢ distance
of7(12 -7=5,0r12 - 5=717).

Well Formed

Moreover, a generated collection where a single d distance corresponds to
the c distance of the generator is called well formed.® In Figure 2.1c the con-
stant ¢ distance used as a generator (7) corresponds to a single d distance of
4, or in musical terms, a fifth. Thus, the diatonic collection is well formed
and is generated by a circle of perfect fifths—for example, F to C, C to G, G
toD,Dto A, AtoE, and E to B are all perfect fifths (c distance of 7, d dis-
tance of 4).7

The converse, on the other hand, is not always true: In the diatonic col-
lection all fifths (d distances of 4) are not perfect (c distances of 7). However,
for collections that are maximally even and well formed, there never will be
more than one ¢ distance corresponding to the d distance of the generator
that does not match the generator (g). And this single ¢ distance will be the
distance required to complete the circle and will always be g = 1 (the gen-
erating c distance plus or minus one), if ¢ and d are coprime. In the maxi-
mally even and well-formed diatonic collection, ¢ and d are coprime, GCD
of (12, 7) = 1. Thus, only one d distance of 4, the one that occurs between B
and F, has a c distance of 6 (g = 1, or 7 — 1). This single interval, the fifth re-
quired to complete the circle, corresponds to the diminished fifth (or tri-
tone), as shown between adjacent lines in Figure 2.1d. All of the other fifths
are perfect (c distance of 7).%
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The Generated and Well-Formed Diatonic Collection

To summarize, the diatonic collection may be generated by a ¢ distance of 7,
these ¢ distances are all fifths (making the diatonic collection well formed),
and the single interval needed to complete the circle is a diminished fifth (a
cdistance of 6, g = 1, or 7 — 1). The following exercises display the diatonic
collection as generated in this way by the circle of fifths on a seven-line cir-
cle diagram. In these exercises the tonic note of the scale under investiga-
tion, rather than the initial note of the generation procedure, is located at
the top of the circle.

A Table of Observations

Exercise 2.9 provides a framework for the comparison of interval patterns
formed by the various groups of series that were drawn from the diatonic
collection in exercises presented earlier in this chapter. To complete this
new exercise, return to Exercises 2.1, 2.2, and 2.4, and for each of the groups
in these earlier exercises, list the initial series used, the diatonic collection
from which the series is drawn (labeled according to the major scale that
corresponds with the key signature), the distinct interval patterns formed
(shown as patterns of half steps), and the number of times that each of these
interval patterns occurs in the group. Record these observations in Exer-
cise 2.9, as demonstrated in the sample provided. For example, the group of
transposed series in Exercise 2.1a has an initial series of C-D-E, drawn
from the diatonic collection corresponding to the C major scale, and has
three interval patterns (2-2-8, which occurs three times; 2-1-9, which
occurs two times; and 1-2-9, which also occurs twice).

Plotting Series and Observing Distances

Finally, plot the initial series of each group on the seven-line circle diagram
provided and determine the distances between adjacent dots in terms of the
number of crossing lines around the circle of fifths. Place these distances
into the appropriate box in the table in any order; this box is located directly
above the circle diagram. For example, using the group of series from Exer-
cise 2.1a, the first circle diagram in Exercise 2.9 is labeled beginning at the
top of the circle with C and continues clockwise around the circle with G, D,
A, E, B, and F, ascending through the diatonic circle of fifths. The distances
between adjacent dots around the circle described by this pattern are 2, 2,
and 3, as tabulated in the box directly above the circle. The alterations to the
circle diagrams described earlier and the representation of the correspond-
ing series of notes in reference to the circle of fifths will allow us to observe
additional aspects of the series that we were unable to observe in the circles
with twelve crossing lines in reference to the chromatic scale. Complete Ex-
ercise 2.9 based on these instructions and on the sample solution provided.
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Group of series

Using Exercises 2.1, 2.2, and 2.4 from earlier in the chapter, plot the initial
series on the circle diagrams and complete the tables as indicated.

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.1a (p. 47) C-D-E C major 2,2,3
Interval Number of
pattern occurrences
2-2-8 3
2-1-9 2 3
1-2-9 2

Group of series

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.1b
Interval Number of
pattern occurrences

Group of series

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.1c
Interval Number of
pattern occurrences
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Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.1d
Interval Number of
pattern occurrences
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.2a (p. 50)
Interval Number of
pattern occurrences
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.2b
Interval Number of
pattern occurrences
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Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.2¢
Interval Number of
pattern occurrences
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.2d
Interval Number of
pattern occurrences
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.4a (p. 57)
Interval Number of
pattern occurrences
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Group of series

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.4b
Interval Number of
pattern occurrences

Group of series

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.4c
Interval Number of
pattern occurrences

Group of series

Initial series

Drawn from Distances between dots

88

from exercise of notes which collection around circle of fifths
2.4d
Interval Number of
pattern occurrences
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Forming a Hypothesis

Solution 2.9 shows the completed tables and circle diagrams. Carefully
check your answers against those provided and make any needed correc-
tions. Then, continue to examine Exercise 2.9, comparing the number of
occurrences of each interval pattern with the distances between notes
around the circle of fifths. Based on your observations in making this com-
parison, create a generalized statement that relates the distances with the
number of occurrences of each pattern. Record your hypothesis in whatever
words seem appropriate, but as accurately and specifically as you can, in
Exercise 2.10.

2.9 The initial series plotted on the circle diagrams and the completed tables
for each indicated exercise from earlier in the chapter

Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.1a C-D-E C major 2,2,3
Interval Number of
pattern occurrences
2-2-8 3
2-1-9 2 3
1-2-9 2
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.1b C-D-F C major 2,4, 1
Interval Number of
pattern occurrences
2-3-7 4
1-4-7 2
2-4-6 1
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Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.1c F-G-C F major 1,1,5
Interval Number of
pattern occurrences
2-5-5 5
1-6-5 1
1-5-6 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.1d Eb—G-Ab E) major 4,2, 1
Interval Number of
pattern occurrences
4-1-7 2
3-2-7 4
4-2-6 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.2a C-D-E-F C major 2,2,2,1
Interval Number of
pattern occurrences
2-2-1-7 2
2-1-2-7 2
1-2-2-7 2
2-2-2-6 1
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Group of series

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.2b D-E-Fi-A D major 1,1,2,3
Interval Number of
pattern occurrences
2-2-3-5 3
2-1-4-5 2
1-2-4-5 1
1-2-3-6 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.2¢c F-G-B\-C F major 1,1,4,1
Interval Number of
pattern occurrences
2-3-2-5 4
1-4-2-5 1
2-4-1-5 1
1-4-1-6 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.2d By-D-E)-G B major 3,1,2,1
Interval Number of
pattern occurrences
4-1-4-3 2
32-4.3 1
3-2-3-4 3
4-2-3-3 1
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Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.4a C-D-E-F-G C major 1,1,2,2,1

Interval Number of
pattern occurrences
2-2-1-2-5 2
2-1-2-2-5 2
1-2-2-2-5 1
2-2-2-1-5 1
1-2-2-1-6 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.4b Dv—E,—-F-Ab—-C Db major 1,1,2,1,2
Interval Number of
pattern occurrences
2-2-3-4-1 2
2-1-4-3-2 2
1-2-4-3-2 1
2-2-3-3-2 1
1-2-3-4-2 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.4c C-D-E-F-G-A C major 1,1,1,1,2,1
Interval Number of
pattern occurrences
2-2-1-2-2-3 2
2-1-2-2-2-3 1
1-2-2-2-1-4 1
2-2-2-1-2-3 1
2-1-2-2-1-4 1
1-2-2-1-2-4 1
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Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.4d E-Fi—A-B-Ci-D# E major 1,1,1,2,1,1

Interval Number of
pattern occurrences

2-3-2-2-2-1 1
2-3-2-2-1-2 2
1-4-2-1-2-2 1
2-4-1-2-2-1 1
2-3-2-1-2-2 1
1-4-1-2-2-2 1

2.10

Based on your examination of the distances between notes around the
circle of fifths and the number of occurrences of the interval patterns
formed for each group in Exercise 2.9, make a generalized statement to
explain your observation.

Clearly, the distances between adjacent dots around the circle of fifths and
the number of occurrences of the interval patterns are intimately related. The
group of series from Exercise 2.1b, shown in Solution 2.9, has the same num-
ber of occurrences of interval patterns as the distances between the adjacent
dots as plotted around the circle of fifths. Likewise, the group of series from
Exercise 2.1d has exactly the same number of occurrences and distances be-
tween adjacent dots as the group from Exercise 2.1b. Because both of these
initial series of notes consist of intervals of a second and a third between
adjacent notes, it is easy to see why these different series would be so closely
related. The group of series from Exercise 2.1c has different numbers of
occurrences of its interval patterns than the previously mentioned pair; nev-
ertheless, these interval patterns again match the distances between adjacent
dots around the circle of fifths described by the initial series of notes. These
three notes occur as adjacencies in the circle of fifths, therefore two interval
patterns occur only once, as suggested by the distances between these adja-
cent notes on the circle of fifths, and one interval pattern occurs five times.

The larger series of notes tabulated in Solution 2.9 exhibit similar rela-
tionships. The series with four notes, originally explored in Exercise 2.2,
each have the same numbers of occurrences of interval patterns as distances
between adjacent dots around the circle of fifths. Furthermore, the groups of
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2.10

series from Exercises 2.2b and 2.2d have exactly the same numbers of oc-
currences, again due to their related interval structures, as each contains two
seconds and a third between adjacent notes in their initial series. Also, the
initial series from Exercise 2.2c again outlines adjacent notes on the circle of
fifths, resulting in similar numbers of occurrences of its interval patterns to
those we saw in the series from Exercise 2.1c. The other series tabulated in
Solution 2.9, with five or six notes, exhibit similar characteristics.

In light of these observations, the generalized statement you have pro-
posed may be somewhat similar to the one provided in Solution 2.10. How-
ever, regardless of the words you have chosen to express your observations,
your statement should somehow acknowledge that the distances between
notes around the circle of fifths indicates the number of times each interval
pattern is formed. This assertion is an extremely powerful statement about
the diatonic collection. The fact that these correspondences exist for all of
these series, as you can easily verify in Solution 2.9, is remarkable.

A generalized statement that relates the distances between notes around
the circle of fifths with the number of occurrences of the interval patterns
formed for each group in Exercise 2.9

The distances between notes around the circle of fifths indicate

the number of times that each interval pattern is formed by all

of the series in a group.

Structure Implies Multiplicity

The formal term for this concept is structure implies multiplicity. Structure,
in this particular case, refers to the intervals between notes measured in
fifths. Multiplicity refers to the number of times that interval patterns ap-
pear in the group of transposed series. Similar to the fact that cardinality
equals variety, structure implies multiplicity for any series of any number of
notes drawn from a diatonic collection.

Next, we will attempt to determine if the other musical structures we
studied in connection with cardinality equals variety behave similarly with
regard to structure implies multiplicity. If they do, we would expect to find
that structure implies multiplicity in the pentatonic scale, whereas in the
harmonic minor, ascending melodic minor, octatonic, and whole-tone
scales, structure does not imply multiplicity.

The Generated Pentatonic Collection

As shown in Figure 2.2, the pentatonic collection may be formed by the same
generators as the diatonic collection—7 and 5, g and ¢ — g, or in musical
terms the perfect fifth and its inversion, the perfect fourth. The first two cir-
cles (Figures 2.2a and 2.2b) demonstrate the generation of the pentatonic
collection, beginning with F and moving around the twelve-line circle in per-
fect fifths (¢ = 7) until the five-note collection is complete. The generating
¢ distance again corresponds to a single d distance; thus, the pentatonic
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Figure 2.2 Demonstration
of a generated collection.
The first two circles (a and b)
show the gradual formation
of the pentatonic collection
by means of a constant
generating ¢ distance (7).
The last circle (c) represents
the pentatonic collection as a
circle of fifths and shows the
generating c distance (7)
between adjacent lines.

2.11

Group of series

collection, like the diatonic collection, is well formed. However, because
there are fewer dots than in the diatonic case, the generating c distance of 7
corresponds to a d distance of 3. As shown in Figure 2.2¢ between adjacent
lines, and because ¢ and d are coprime for the maximally even and well-
formed pentatonic collection, here again one d distance of 3 does not match
the ¢ distance of the generator: the distance between A and F required to
complete the circleis 8 (g + 1 or 7 + 1).°

(8)

b. c.

Interval Structures and Interval Patterns

In Exercise 2.11 we will explore the interval structures of and the numbers of
interval patterns formed by series of notes drawn from the pentatonic scale
that were given initially in Exercises 2.7a and 2.8. As before, the notes are
arranged around the circle of perfect fifths, the generating interval. However,
the last “fifth” (d distance of 3) from E to C, in traditional terms, is a minor
sixth. Nevertheless, all of these notes are placed the same distance from one
another in the pentatonic sense, because the d distances between each pair
of notes are the same. Thus, the circle is closed and complete, despite its
appearance in traditional intervallic terms.

Using Exercises 2.7a and 2.8 from earlier in the chapter, plot the initial
series on the circle diagrams and complete the tables as indicated.
Distances between dots

Initial series Drawn from

from exercise of notes which collection around circle of fifths
2.7a (p. 74)
Interval Number of
pattern occurrences
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Group of series

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.8a (p. 78)
Interval Number of
pattern occurrences

Group of series

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.8b
Interval Number of
pattern occurrences

Group of series

Initial series

Drawn from Distances between dots

from exercise of notes which collection around circle of fifths
2.8¢c
Interval Number of
pattern occurrences

Group of series

Initial series

Drawn from Distances between dots

96

from exercise of notes which collection around circle of fifths
2.8d
Interval Number of
pattern occurrences
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Based on your findings after completing Exercise 2.11, determine if
structure implies multiplicity for the pentatonic scale. Then, check your
answers to the exercise carefully against those provided in Solution 2.11.

Does structure imply multiplicity for the pentatonic scale?

We have already determined that cardinality equals variety for the pen-
tatonic collection and that it is maximally even. Based on our answers in
Exercise 2.11, we now can also conclude that structure implies multiplicity
for this collection as well.

‘STRUCTURE IN OTHER COLLECTIONS
|

We have now seen that the diatonic and pentatonic collections, which ex-
hibit the property cardinality equals variety, also exhibit the property struc-
ture implies multiplicity. Next we will examine structures and multiplicities
in collections that do not display cardinality equals variety. If the two prop-
erties are related, we also would expect to find that structure does not imply
multiplicity for these collections.

The Bisector

Unlike the diatonic and pentatonic collections, neither the harmonic minor
nor the ascending melodic minor scales can be produced by a generator, or
a single c distance applied consecutively around the circle. Therefore, we
cannot plot the harmonic minor and ascending melodic minor collections
on circles in the same way that we plotted the diatonic and pentatonic col-
lections. However, the same diagrams constructed for the diatonic and
pentatonic collections using their generators also could have been plotted
using their bisectors.'° The generator is a much more powerful construct
(and is intimately related to structure implies multiplicity), thus we will con-
tinue to use generators rather than bisectors to build collections whenever
possible. However, an understanding of bisectors will help us plot collections
that are not generated, such as the ascending melodic minor, harmonic
minor, and octatonic.

The Bisector Defined

A bisector divides the octave approximately in half. Therefore, in seven-dot
circles such as those used for the diatonic collection, the octave is bisected
by d distances of 3 or 4 (the two intervals that are approximately half of d,
or 7).!"! The diatonic collection generated by constant ¢ distances of 7, as
shown in Figure 2.1, also could have been produced by a consistent appli-
cation of the bisector 4 (successive d distances of 4 dots applied consistently
around the circle).!? This correspondence between generator and bisector
occurs because the diatonic collection is well formed, as discussed earlier
(the generating ¢ distance corresponds to a single d distance, in this case the
bisector). Similarly, the pentatonic collection generated by constant ¢ dis-
tances of 7, as shown in Figure 2.2, also could have been produced by the
bisector of 3 or 2 (each of which is approximately half of d, or 5). The pen-
tatonic collection also is well formed, for the same reason (a single d dis-
tance corresponds to the generator, in this case the bisector as well).
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The initial series plotted on the circle diagram and the completed table for

2.11
each indicated exercise from earlier in the chapter

Distances between dots

Drawn from
around circle of fifths

Initial series
which collection

Group of series

from exercise of notes
2.7a C-D-E Pentatonic 2,2,1
Interval Number of
pattern occurrences
2-2-8 1
2-3-7 2
3-2-7 2

Distances between dots

Drawn from
around circle of fifths

Initial series
which collection

Group of series

from exercise of notes
2.8a C-G Pentatonic 1,4
Interval Number of
pattern occurrences
7-5 4
8-4 1

Distances between dots

Drawn from
around circle of fifths

Initial series
which collection

Group of series

from exercise of notes
2.8b C-D-G Pentatonic 1,1,3
Interval Number of
pattern occurrences
2-5-5 3
3-5-4 1
3-4-5 1
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Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.8¢c C-D-E-G Pentatonic 1,1,2,1
Interval Number of
pattern occurrences
2-2-3-5 1
2-3-2-5 2
3-2-3-4 1
3-2-2-5 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.8d C-D-G-A Pentatonic 1,1,1,2
Interval Number of
pattern occurrences
2-5-2-3 2
2-5-3-2 1
3-5-2-2 1
3-4-3-2 1
Y

Bisectors and Harmonic and Ascending Melodic Minor

Although the harmonic and ascending melodic minor collections are cer-
tainly not well formed, because they are not even generated, these collec-
tions can be produced by means of their bisectors (d distances of 3 or 4, or
approximately half of 7). The resulting diagrams will somewhat resemble
those that we used to examine the diatonic and pentatonic collections, be-
cause the d distances in each case correspond to fifths in the traditional
sense. Although both the harmonic and ascending melodic minor collec-
tions can be produced by a complete, closed circle of fifths, many of the
fifths in these scales are not perfect fifths: they do not correspond to a single
¢ distance of 7. As shown in Figure 2.3, using a bisector (d distance of 4, as
in the diatonic collection) to produce the harmonic and ascending melodic
minor collections results in corresponding ¢ distances of 6, 7, and 8 (rather
than the constant ¢ distances used to generate the diatonic collection). Nev-
ertheless, we will use circle diagrams constructed by means of bisectors for
the harmonic and ascending melodic minor collections in Exercise 2.12,
where we will check these diagrams to see if structure implies multiplicity.
However, it is important to keep in mind that though the d distances are
constant in these resulting circle diagrams, the ¢ distances vary; thus, these
collections are not generated and consequently are not well formed.
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Figure 2.3 The harmonic
and ascending melodic
minor collections constructed
by their bisectors (4). These
collections are not
generated, because no
constant ¢ distance may

be repeatedly added to
produce the entire collection;
however, the d distances are
constant (and correspond to

the circle of fifths).

a. harmonic minor

b. ascending melodic minor

The Bisector and the Octatonic Scale

Similarly to the harmonic and ascending melodic minor collections, the oc-
tatonic scale, though it is maximally even, cannot be generated by any c dis-
tance: It is not a generated collection and, consequently, is not well formed.
Furthermore, any collection with a greatest common divisor of crossing
lines and dots that is greater than 1 and less than the number of dots—or
1 < GCD (¢, d) < d—has no generator. The octatonic scale has no generator,
because GCD (12, 8) = 4, and 1 < 4 < 8 (thus, no generator). However, an
approximate bisector of this collection, 5 (or 3), can be used to produce this
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Figure 2.4 The octatonic
collection constructed by its
bisector (5). The c distances
alternate between 8 and 7,
approximating “fifths.”
Although this collection is
not generated, because the
c distances are not fixed, the
d distances are constant.

scale, as shown in Figure 2.4. Again, we obtain this result because these ap-
proximate bisectors are coprime with the number of notes in the collection:
GCD (5, 8) = 1 and GCD (3, 8) = 1. Of course, the exact bisector is 4, but
this bisector will not produce the collection: GCD (4, 8) = 4 (not 1, thus not
coprime). However, Jay Rahn accepts any division of the octave between
one-third and two-thirds of the total as an approximate half; therefore,
the bisector 5 (or 3) may be used to produce the collection in lieu of a
generator. '3

Because the ¢ distances that correspond to the constant d distance of
5 alternate between 8 and 7, it is clear that this collection is not generated.
Nevertheless, in order to carry out a similar procedure for the octatonic col-
lection as for the other collections explored, Exercise 2.12 employs a circle
that is labeled based on this bisector of the octatonic collection. This strat-
egy approximates the circle-of-fifth configurations used for the diatonic,
pentatonic, harmonic minor, and ascending melodic minor collections.
However, in the octatonic collection these “fifths” are alternately perfect
fifths (with ¢ distances of 7) and minor sixths or augmented fifths (with
¢ distances of 8) in terms of traditional interval identification.

Testing Collections with Bisectors

Complete Exercise 2.12, using the provided circle diagrams and following
the procedures used in Exercises 2.9 and 2.11. After you have completed
your work, determine if structure implies multiplicity for each collection.
Then, compare your answers with those provided in Solution 2.12.
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2.12

Group of series

Using Exercises 2.6 and 2.7 from earlier in the chapter, plot the initial
series on the circle diagrams and complete the tables as indicated.

Initial series

Drawn from

Distances between dots

from exercise of notes which collection around circle of fifths
2.6a (p. 69)
Interval Number of
pattern occurrences

Group of series

Initial series

Drawn from

Distances between dots

from exercise of notes which collection around circle of fifths
2.6b
Interval Number of
pattern occurrences

Group of series

Initial series

Drawn from

Distances between dots

I02

from exercise of notes which collection around circle of “fifths”
2.7¢ (p. 75)
Interval Number of
pattern occurrences

Does structure imply multiplicity for: the harmonic minor scale?
the ascending melodic minor scale?
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In each case, as you likely were able to see immediately, structure can-
not imply multiplicity because cardinality does not equal variety. The two
properties go hand in hand; the intervals between notes around the circles
cannot match the number of times that different interval patterns can be
formed by transpositions of series unless cardinality equals variety. For ex-
ample, the series drawn from the harmonic minor scale, first explored in
Exercise 2.6a, projects seven different interval patterns, each occurring
once. On the other hand, the number of notes in the series suggests that only
four should be formed, and the distances between adjacent dots suggest
how many of each of these four patterns should occur. This discrepancy
cannot be rectified; therefore, structure does not imply multiplicity for
series of notes drawn from the harmonic minor scale. The ascending
melodic minor scale, first explored in Exercise 2.6b, presents the same prob-
lem because there are five different interval patterns (2, 1, 2, 1, 1) rather
than the expected four (2, 2, 2, 1), based on the corresponding circle shown
in Solution 2.12. Similarly, structure does not imply multiplicity for the oc-
tatonic scale, taken originally from Exercise 2.7c and depicted in the last
table of Solution 2.12.

Although we used bisectors instead of generators for the diagrams of
the harmonic minor, ascending melodic minor, and octatonic collections
(because these collections, again, are not generated), the real problem is the
number of notes compared with the number of interval patterns formed—
cardinality does not equal variety. We could try some other substitutes for
the generator, other than the bisector, but the results would be the same be-
cause the number of notes and the number of interval patterns formed are
different.

The Generated Whole-Tone Collection

One important feature that the diatonic and pentatonic collections share is
that both are generated, as established earlier. However, whereas all collec-
tions with cardinality equals variety and structure implies multiplicity are
in fact generated, not all generated collections have these properties. For ex-
ample, the whole-tone collection is generated (as well as maximally even
and well formed). In this case, the generator equals the whole steps between
consecutive notes that form the scale.'* For any generated collection whose
greatest common divisor of crossing lines and dots is equivalent to the num-
ber of dots, the generator (g) is always ¢ divided by d (and ¢ — g). Or, in for-
mulaic terms, if GCD of (¢, d) = d, then § = g. Thus, for the whole tone
collection, GCD (12, 6) = 6, and % = 2. Consequently, the whole-tone col-
lection can be generated by a ¢ distance of 2, as shown in Figure 2.5, or a ¢ dis-
tance of 10: g and ¢ — g, or 2 and 12 — 2. These generators correspond to
ascending and descending whole steps (d distances of 1 and 5). Thus, the
resulting circle, shown on the right in Figure 2.5, looks essentially the same as
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2.12  The initial series plotted on the circle diagram and the completed table for
each indicated exercise from earlier in the chapter

104

Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
2.6a D-E-F-G D harmonic minor 2,2,2,1
Interval Number of
paitern occurrences
2-1-2-7 1
1-2-2-7 1
2-2-1-7 1
2-1-3-6 1
1-3-1-7 1
3-1-2-6 1
1-2-1-8 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of fifths
E ascending
2.6b E-Fi-G-A melodic minor 2,2,2,1
Interval Number of
paitern occurrences
2-1-2-7 2
1-2-2-7 1
2-2-2-6 2
2-2-1-7 1
1-2-1-8 1
Group of series Initial series Drawn from Distances between dots
from exercise of notes which collection around circle of “fifths”
2.7¢c C-D-E» Octatonic 2,3, 3
Interval Number of
pattern occurrences
2-1-9 4
1-2-9 4
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Figure 2.5 The generated
whole-tone collection

the version with twelve crossing lines, except that every other line is removed.
Despite the presence of a generator in this maximally even and well-formed
collection, because there is only one interval pattern in each group of trans-
posed series (as shown in Exercise 2.7b), this single interval pattern will
appear six times. Therefore, structure does not imply multiplicity.

2 2
) \

‘ SUMMARY AND EXTENSIONS
|

At this point we can safely conclude that cardinality equals variety and
structure implies multiplicity are not properties of all maximally even col-
lections. Although the diatonic and pentatonic collections are maximally
even and exhibit both cardinality equals variety and structure implies mul-
tiplicity, the other maximally even collections that we tested (the whole tone
and octatonic scales) do not exhibit these properties. Furthermore, cardi-
nality equals variety and structure implies multiplicity are not properties of
all generated collections. The whole-tone collection is generated, but the
single distinct pattern that will be formed when any series is transposed
within this collection will not even remotely resemble the numbers of pat-
terns suggested by dots placed around the circle.

Clearly, something else is at work in producing cardinality equals vari-
ety and structure implies multiplicity. Given all that we have learned about
various collections so far in this book, what aspects of the pentatonic and di-
atonic collections set them apart from these other collections? Why are
these the only collections we studied that display both of these properties?

Myhill’s Property

One important similarity between the pentatonic and diatonic collections
that we have not mentioned is their comparable intervallic configurations.
Return to the tables of intervals in Figure 1.9 (p. 30), Exercise 1.6d (p. 32),
and Exercise 1.7¢ (p. 36). According to these tables, the pentatonic and dia-
tonic collection each have exactly two interval qualities (¢ distances) for
every interval type (d distance). None of the other scales that we have stud-
ied have exactly two c distances for every d distance; some have an incon-
sistent number of distances, others have more or less than the two exhibited
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by the pentatonic and diatonic collections. Any collection that has exactly
two ¢ distances for every d distance will exhibit cardinality equals variety
and structure implies multiplicity. This special attribute is called Myhill’s
property."> Any collection that has Myhill's property (exactly two ¢ distances
for every d distance) will exhibit both of these special properties, regardless
of the number of notes in the series or even the number of notes in the chro-
matic universe (such as microtonal divisions of the octave). Furthermore,
any collection with Myhill’s property will be well formed and generated.'®

Therefore, the comparable intervallic configurations of the pentatonic
and diatonic collections that we explored in Chapter 1 are directly related to
cardinality equals variety and structure implies multiplicity. Chapter 2 has
provided you with an opportunity to observe these two important aspects of
these collections independently in the interval patterns formed by various
series of notes drawn from diatonic and pentatonic scales.

The Source of Cardinality Equals Variety
and Structure Implies Multiplicity

Why does cardinality equal variety and structure imply multiplicity for col-
lections with Myhill’s property, but not for other collections? The answer to
this intriguing question is suggested by the last circle diagram of Figure 2.1,
repeated here as Figure 2.6a. The key to the solution is the single interval
that completes the circle. As stated earlier in this chapter, for collections
that are maximally even and well formed, there never will be more than one
¢ distance corresponding to the d distance of the generator that does not
match the generator (g). Furthermore, this single c¢ distance will always be
g * 1 (the generating c distance plus or minus one) if ¢ and d are coprime,
or GCD of (¢, d ) = 1. Thus, in the diatonic collection this single interval—
with a c distance of 6, one less than the generator—is partially the result of
the fact that the diatonic collection is coprime. Because the diatonic collec-
tion is generated, all of the other ¢ distances between adjacent lines around
the circle are equivalent (7). This basic configuration is essential to cardi-
nality equals variety and structure implies multiplicity.

If, for example, we plot a series of three notes around the circle—such
as F, G, and D, as shown in the first circle diagram of Figure 2.6b (top left)—
there are only three distinct locations, with respect to the dots, where the
unique interval in the circle (6) could possibly be located as the series is ro-
tated (or transposed) around the circle. The interval 6 could appear between
the dots that are four lines apart, as shown in the four circles of Figure 2.6b;
the interval 6 could appear between the dots that are one line apart, as
shown in Figure 2.6¢; or it could appear between the dots that are two lines
apart, as shown in the two circles of Figure 2.6d. Because the location of
this unique interval will directly affect the total number of half steps be-
tween the different pairs of dots, the three-note series can form only three
distinct interval patterns (Figure 2.6b, Figure 2.6¢, and Figure 2.6d), or car-
dinality equals variety.!” Furthermore, the unique interval (6) eventually will
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appear once in each of the seven possible locations, as the dots are rotated
around the circle. As Figure 2.6b illustrates, there are four possible loca-
tions where the interval 6 may appear between the dots that are four lines
apart, because, in effect, there are four “spaces” between these two dots
available for the placement of this unique interval. Similarly, as Figure 2.6¢
shows, there is only one possible location for the interval 6 to appear be-
tween the dots that are only one line apart. In addition, as seen in Figure
2.6d, there are exactly two possible locations where the interval 6 may ap-
pear between the dots that are two lines apart. Thus, the distances between
dots initially placed on F-G-D (4, 1, and 2) indicate exactly how many of
each interval pattern that can be formed, or structure implies multiplicity.

Figure 2.6 The intervallic (6) -
structure of the generated L7
diatonic collection (a) and its

relationship to cardinality

equals variety and structure

implies multiplicity. All seven 7
rotations of the series F-G-D

appear in b through d.

b. four patterns with the interval 6 appearing between dots

a. the generated diatonic collection !
that are four lines apart

(6)..->>

(6),.-—>
,/
7
c. one pattern with the interval 6 appearing d. two patterns with the interval 6 appearing between
between dots that are one line apart dots that are two lines apart
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You may wish to verify for yourself that choosing any other initial pat-
tern of dots within the diatonic collection produces the same results. Also,
you can apply the same set of procedures to the pentatonic collection,
(using the generator to build the collection and rotating a pattern of dots
around the circle, as in Figure 2.6); however, the interval remaining to com-
plete the circle is 8 (still g = 1). Interestingly enough, although cardinality
does not equal variety and structure does not imply multiplicity for the gen-
erated whole-tone collection, if you take any one note away from this col-
lection, the results change dramatically. The collection of five remaining
notes is a generated collection in which cardinality equals variety and struc-
ture implies multiplicity. Can you explain why? (Hint: Follow the procedure
demonstrated in Figure 2.6, but use a five-dot circle diagram generated by
whole tones. Also, you may want to write out a group of transposed series,
such as those shown in Exercise 2.7b [on p. 74], to observe this phenome-
non firsthand.) This intriguing question is left for you to explore on your
own as you wish.

A Look Forward

In the final chapter of this book, we will concentrate solely on the diatonic
collection in an attempt to determine more of its attributes. Although many
of the characteristics that we will observe in the diatonic collection may also
occur in the pentatonic collection due to the similarities between the two
collections that we have already established, we will confine our discussion
to the more common and familiar diatonic collection. By limiting our focus
in this way, we hope to provide more information on important structural
aspects of this remarkable collection of notes, the collection that is likely to
be the primary foundation of your studies in tonal music theory.

CHAPTER 2 INTERVAL PATTERNS AND MUSICAL STRUCTURES
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CHORDS AND THEIR
STRUCTURES

‘TROM COLLECTION TO CHORD
|

In the first two chapters of this book, we have studied some important prop-
erties associated with the diatonic collection. We have observed that the
diatonic collection is the only seven-note collection that is maximally even,
and we have learned that cardinality equals variety and structure implies
multiplicity for any series of notes drawn from the diatonic collection. Fur-
thermore, we have observed that the diatonic collection is a generated, well-
formed, and deep scale with Myhill’s property. Based on our observations of
all of these properties, we have seen that the diatonic collection is a very
special group of notes, which in part may suggest why composers have been
drawn to this particular collection for such a long time. The diatonic collec-
tion serves as the primary basis of much tonal music; therefore, it seems
prudent to determine as much as we can about its structure, as well as the
structures of its constituent parts.

In this chapter we will explore diatonic triads and seventh chords, the
most common sonorities that are drawn from the diatonic collection in
tonal music. We will attempt to determine which of the primary properties
discussed in this text apply to these musical constructs, and we will try to
relate our earlier observations about the diatonic collection as a whole to
these essential chords. First, we will examine diatonic triads and seventh
chords to determine if these structures are maximally even. As we have pre-
viously concluded, the fact that the diatonic collection itself is maximally
even is a fundamental property of this important collection; however, we
have yet to examine the most important musical components drawn from
this collection, diatonic triads and seventh chords, to see if they also exhibit
this property. Finally, we will explore the ideas of cardinality equals variety
and structure implies multiplicity in connection with diatonic triads and
seventh chords. Exploring these two properties, which are also fundamen-
tal characteristics of the diatonic collection, in association with diatonic tri-
ads and seventh chords will reveal important attributes of the configuration
and structure of these chords.
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Diatonic Chords and New Circle Diagrams

In this exploration of diatonic triads and seventh chords, we shall combine
some of the techniques employed in both of the previous chapters. In Chap-
ter 1 we used a circle with twelve crossing lines to represent the chromatic
scale, and we labeled the crossing lines using this ascending scale in a clock-
wise manner around the circle. We also learned how to ascertain whether
a circle diagram is maximally even by determining the distances between
every pair of dots around the circle, both in terms of the number of dots
(d distances) and the number of crossing lines (c distances) spanning each
pair of dots. In Chapter 2 we used a circle with seven lines to represent the
diatonic collection, and in connection with our study of structure implies
multiplicity, we used the generator to label the crossing lines around the cir-
cle (corresponding to the circle of fifths). In the present chapter, by combin-
ing aspects of the techniques used in both of these earlier chapters, we can
explore maximal evenness of triads and seventh chords with respect to the
diatonic collection.

Exercise 3.1a presents two circle diagrams each with seven crossing lines
to represent the diatonic collection. First, arrange three and four dots
around the circles so that the dots are maximally even, or spread out as
much as possible. Let your experience from Chapter 1 guide you in placing
the dots around the circles; you need not use the interval definition as an aid
at this point, though we will return to this definition in subsequent exer-
cises. Next, instead of labeling the crossing lines using the generator, as in
Chapter 2, assign note names to the seven lines using the stepwise notes of
the D ascending major scale moving clockwise around the circle. In this
way, your placement of dots around the circle will imply that the associated
musical structure formed by the dots will be maximally even, because the
concept of maximal evenness depends on the intervallic relationships be-
tween notes measured in consecutive steps, not by means of the circle of
fifths. Finally, identify the precise musical structures formed by the dots you
placed around the circles. Before checking your solution to this exercise, re-
peat the process in Exercises 3.1b, 3.1¢, and 3.1d. However, in each exercise,
keep the same placements of dots as in Exercise 3.1a, but alter your assign-
ment of notes so that the notes of the D major scale correspond to different
lines around the circle—still moving in a clockwise manner and in a scalar
fashion but starting the scale on a different crossing line each time.
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3.1a

3.1b

3.1c

Arrange three and four dots around the circles (of seven lines) below so
that the dots are maximally even. Assign note names to the seven lines
using the stepwise notes of the D ascending major scale moving clockwise
around the circles. Then, answer the question that follows.

OO

What precise musical structure is formed?

3 dots 4 dots

Repeat the arrangement of three and four dots that you used in Exer-
cise 3.1a on the following circles. Assign different note names to each of
the seven lines (beginning at a different place in the circle, but still using
the stepwise notes of the same scale in a clockwise manner).

O

What precise musical structure is formed?

3 dots 4 dots

Again, repeat the arrangement of three and four dots that you used previ-
ously on the following circles. Assign different note names to each of the

seven lines (beginning at a different place in the circle, but still using the

stepwise notes of the same scale in a clockwise manner).

OO

What precise musical structure is formed?

3 dots 4 dots
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3.1d

3.2

Once more, repeat the arrangement of three and four dots that you used
in the other parts of the exercise on the following circles. Assign different
note names to each of the seven lines (beginning at a different place in the
circle, but still using the stepwise notes of the same scale in a clockwise
manner).

What precise musical structure is formed?

3 dots 4 dots

A Maximally Even Hypothesis

Delay checking your solutions and look over your work in this exercise. Ob-
serve any similarities or differences among the various chords you have
constructed. Then in Exercise 3.2, make a generalized statement about what
you have observed in the circles and what you have learned about maximal
evenness, beyond what you already knew from your work in Chapter 1. Be
sure to mention the kind of collection from which the musical structures
are drawn. Try to be as general as possible; consider whether your answer
would be different if you had used an E» or A major scale instead of, or in
addition to, the D major scale that you used.

Make a generalized statement about what you have observed in the circles
in Exercise 3.1 and what you have learned about maximally even struc-
tures by completing that exercise.

Calculating Dot Placements and Diatonic Circles

There are numerous possible solutions to Exercise 3.1, depending on how
you labeled the lines around the circles in the four parts of the exercise and
on where you placed the dots around the circles. The number of distinct
ways to assign lines around a circle may be determined by the method
introduced in Chapter 1. Figure 3.1 calculates the number of possible ways
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Figure 3.1 The number of

possible ways to arrange
various numbers of dots
around a circle with seven

lines

a. 3 dots

b. 4 dots

c. 7 dots

to arrange various numbers of dots around a circle with seven lines accord-
ing to the formula. Figures 3.1a and 3.1b indicate the number of possible
ways to place three and four dots around a circle with seven lines, as di-
rected in Exercise 3.1. The values used in this formula are substantially dif-
ferent than the values we explored in connection with twelve-line circles.
Because of the fact that ¢ is now 7 rather than 12, almost any number of
dots placed around a circle may be arranged in seven different ways. The
greatest common divisor of seven (¢) and any number of dots less than
seven (d) will always be one, because seven is a prime number. The only ex-
ception, shown in Figure 3.1c, is that there is, of course, only one way to
place all seven dots around a circle with seven lines—one dot on each line.

C 7 7 .
GCD(c,d) ~ GCD(7,3) 1 = correct solutions
C 7 7 '
GCD(c, d) - GCD(7, 4) = 1 = correct solutions
C 7 7 '
GCD(c,d) GCD(7,7) 7 = correct solutions

Labeling Lines and Placing Dots

Solution 3.1 breaks down the different components of the assigned tasks to
aid you in evaluating your own work. First, Solution 3.1a shows all possible
ways to assign lines around a circle using the ascending D major scale in
a clockwise arrangement, as directed. Each of the circles in Exercise 3.1
(a through d) should correspond exactly with one of the provided circles in
Solution 3.1a. Next, Solution 3.1b shows all seven possible maximally even
placements of three dots and four dots—with D labeled on the crossing line
at the top of the circle, as an example. Regardless of how you labeled your
crossing lines, the placement of dots for each of the three-dot and four-dot
circles in your solutions to the exercise should exactly match one of these
patterns of dots, even if your labels are different. If you labeled any of the
circles in Exercise 3.1 starting with D on the line at the top of the circle, the
circles will exactly match the provided solutions. Otherwise, you can deter-
mine if your solutions are correct by comparing your work with these pro-
vided diagrams and rotating the line labels as necessary to orient these
solutions with your own work. Finally, Solution 3.1c¢ shows all possible pre-
cise musical structures that may be formed by the notes corresponding to
the dots in each circle. All of your answers to this part of Exercise 3.1a-d
should appear directly and precisely (but in any order) on these lists,
depending on your placement of dots and how you labeled the lines. How-
ever, you will not have arrived at all of these formations, because you were
instructed only to complete four circles.
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3.1a | All possible ways to assign lines using the D major scale, as directed. (This
solution applies to all parts of Exercise 3.1, not just to 3.1a.)

3.1b  All possible maximally even placements of three and four dots, with
D labeled at the top of the circle. (This solution applies to all parts of
Exercise 3.1, not just to 3.1b.)

3 dots
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4 dots

3.1¢

The precise musical structures that may be formed for each circle by the
notes corresponding to the indicated number of dots. (This solution
applies to all parts of Exercise 3.1, not just to 3.1c.)

3 dots D major, E minor, F¥ minor, G major, A major, B minor, and

Ct diminished triads

4 dots D major seventh, E minor seventh, F§ minor seventh,

G major seventh, A dominant seventh, B minor seventh,

and Ct half-diminished seventh chords

Second-Order Maximal Evenness

As shown in Solution 3.2, your generalized statement about what you ob-
served in these circles should acknowledge that diatonic triads and seventh
chords are maximally even with respect to the diatonic collection. We had
already determined that the diatonic collection is itself maximally even,
based on our work in Chapter 1, and now we have established that diatonic
triads and seventh chords are maximally even with respect to it. Thus, there
is a nested maximal evenness extending from the diatonic triad or diatonic
seventh chord up to the chromatic universe by means of the intervening di-
atonic collection. A structure that is maximally even in this way (by means
of another maximally even collection that contains it) is termed second-
order maximally even.
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3.2

A generalized statement about the circles in Exercise 3.1 and maximally
even structures.

Triads and seventh chords formed from a diatonic collection are

maximally even with respect to the diatonic collection.

Testing Triads for Maximal Evenness

In Exercises 3.3 and 3.4 we will attempt to confirm our generalized state-
ment about triads and seventh chords by using the more formal definition
of maximal evenness, based on intervals, and in so doing we will summarize
what we have learned about triads and seventh chords so far in this book.
Exercise 3.3 shows several circle diagrams to complete. These diagrams are
arranged in pairs; in each pair there is one seven-line circle representing the
diatonic collection corresponding to the E major scale and one twelve-line
circle representing the chromatic universe. On each pair of circles, plot an
example of the indicated triad quality, using the same triad for each circle in
the pair. Test each triad to see if it is maximally even according to the inter-
vallically based definition, in reference to both the diatonic collection (¢ = 7)
and the chromatic universe (c = 12). In each case, a triad is maximally even
if for each d distance (in dots) there are only one or two possible ¢ distances
(in crossing lines), and if there are two ¢ distances for a particular d dis-
tance, then the c distances are consecutive numbers. From a musical per-
spective, the ¢ distances on the circles with twelve lines, representing the
chromatic universe, correspond to half steps (as we observed in Chapter 1),
whereas the ¢ distances on the circles with seven lines, representing the
diatonic collection, correspond to diatonic scale steps. Thus, in counting ¢
distances on the diatonic circles, you are counting generic scale steps,
regardless of whether the steps are half steps or whole steps; in counting
¢ distances on the chromatic circles, you are counting specific half steps. In
both types of circle diagrams, d distances are counted in the same way; to
determine the d distance between two dots, count the number of dots from
one dot to the other (but excluding the initial dot). Complete the provided
tables by indicating the distances between each pair of dots. If any of the
triad qualities cannot be plotted using the given notes around a circle, place
a question mark in the center of its circle diagram, leave the table blank,
then answer the question.
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m Plot an example of each of the following triads on the provided circles, if

possible. Test each plotted triad to see if it is maximally even according to
the interval definition, based on the diatonic collection (the circles on the
left) and the chromatic universe (the circles on the right).

a. Major triad

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?

b. Minor triad

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?
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c¢. Diminished triad

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?

d. Augmented triad

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?
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3.3

a. Major triad

Maximally Even Triads

There are several possibilities for the placement of dots around the circles in
this exercise—except for the diminished triad, which has only one possible
configuration, and the augmented triad, which cannot be plotted on the dia-
tonic circle. Solution 3.3 shows only one possible arrangement of dots for
each circle as an example. However, regardless of which particular triads you
chose to plot, your tables and answers to the questions should match those
provided in Solution 3.3. Major, minor, and diminished triads are all maxi-
mally even with respect to the diatonic collection and not maximally even
with respect to the chromatic universe (as shown in Solutions 3.3a, b, and c).
They are second-order maximally even. On the other hand, the augmented
triad is not maximally even with respect to the diatonic collection—it cannot
even be formed from the notes of the diatonic collection—but it is maximally
even with respect to the chromatic universe (as shown in Solution 3.3d).

One possible way to plot an example of each of the following triads; other
solutions are also possible. Also, a test to determine if each triad is
maximally even, based on the diatonic collection (the circles on the left)
and the chromatic universe (the circles on the right)

Dk Fé
CH Gk
B A
d distance ¢ distance d distance ¢ distance
1 2,3 1 3,4,5
2 4,5 2 7,8,9
Maximally even? Yes Maximally even? No
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b. Minor triad

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance
1 2,3 1 3,4,5
2 4,5 2 7,8,9
Maximally even? Yes Maximally even? No

c¢. Diminished triad

D# F4

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance
1 2,3 1 3,6
2 4,5 2 6,9
Maximally even? Yes Maximally even? No
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d. Augmented triad

d distance ¢ distance d distance ¢ distance
1 4
2 8
Maximally even? No Maximally even? Yes
o 4

Interval Content of Triads

Let us take a moment to examine these tables more closely to see if we can
draw any other conclusions about relationships among diatonic triads.
First, notice that the tables you completed for the major and minor triads
(Exercises 3.3a and 3.3b) are identical to each other in both the diatonic and
the chromatic cases. Also, the diminished triad (Exercise 3.3c) has the same
values in the table for the diatonic circle as the major and minor triads do,
but it has different values in the table for the chromatic circle than those of
the major and minor triads. Clearly, these three triads sound different; play
various examples of these triads on the piano to verify this difference for
yourself. Yet, despite these differences in sound, these three triads have ex-
actly the same interval content in reference to the diatonic collection, as we
have shown in the tables. Why does this correspondence among these dif-
ferent triads appear in the diatonic tables? The diatonic tables match be-
cause all of these triads are drawn from the diatonic collection. Thus, in all
cases the distances between adjacent notes are either thirds or fourths, and
the distances between the other pairs of notes—represented by dots that are
separated from each other by another dot, clockwise—are either fifths or
sixths, in the traditional musical sense of those intervals. The tables corre-
sponding to the diatonic circles indicate nothing about the qualities of those
intervals because we are only counting scale steps, not half steps, and the
qualities of the intervals surely impact how the triads will sound.
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Figure 3.2 Demonstration
of inversion for major and
minor friads. The major and
minor triads shown here are
the same as those in Solution
3.3; however, any pair of
major and minor friads are
inversionally related in the
same way.

a major friad

inverted around

a dashed line

On the other hand, the correspondence between the major and minor
triads in the chromatic tables (Exercises 3.3a and 3.3b) is perhaps more sur-
prising. In this case, we are counting half steps; therefore, these triads must
be even more closely related because they contain exactly the same inter-
vals, in terms of both type and quality, though they certainly do not sound
the same. This aspect of the direct relationship between these two chords
can be understood, in the traditional musical sense, by considering their in-
terval contents. The major triad is built from the root up with a major third,
then a minor third, and with a perfect fourth to complete the octave. Con-
versely, the minor triad is built from the root up with a minor third, then a
major third, and with a perfect fourth to complete the octave. The two tri-
ads, therefore, contain the same intervals, though the placement of these in-
tervals makes all the difference in the resulting sound.

Inversionally Related Triads

Figure 3.2 shows another, even stronger, aspect of the relationship between
major and minor triads. In addition to the fact that the two triads have the
same intervallic content, major and minor triads are also inversionally re-
lated.! The dots corresponding to a major triad (taken from Solution 3.3a,
and shown as the first circle diagram in the figure) are inverted (or flipped)
around a dashed line drawn vertically through the center of the first circle
diagram to produce the second circle diagram. Notice that the E at the top
of the first circle diagram stays in the same place after inversion around the
dashed line, as shown in the second circle diagram. However, the B moves
to A, and the G# moves to C as a result of this inversion. This new pattern of
dots can then be rotated (in this case, counterclockwise by a distance of
three lines, or, equivalently, clockwise by a distance of nine lines) to produce
the third circle diagram. Rotation of a circle diagram effectively amounts to
transposition in musical terms. The inverted (second) circle diagram dis-
plays an A minor triad, and transposing this inverted triad down three half
steps (or up nine half steps) produces the F¢ minor triad (taken from
Solution 3.3b), shown at the right of the figure.? Thus, the E major triad and
F# minor triad shown are inversionally related. And more generally, all
major and minor triads are inversionally related.? Rotating the inverted di-
agram by other distances would produce other minor triads. If you wish,
you can also verify on your own that inverting a minor triad will produce a
major triad by following the process shown in Figure 3.2.

produces a
minor triad
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Testing Seventh Chords for Maximal Evenness

Exercise 3.4 requires the same tasks as in Exercise 3.3 to be performed for
seventh chords. Plot the indicated seventh chords on the circles, using the
same seventh chord for each circle in the pair. As before, if any of the seventh-
chord qualities cannot be plotted using the given notes around a circle, place
a question mark in the center of its circle diagram, leave the table blank, then
answer the question. In this exercise, for the sake of variety, the diatonic col-
lection used corresponds to the B> major scale, rather than the E major scale
used in the previous exercise. Remember to count scale steps when using the
interval definition of maximally even for the ¢ distances in the diatonic cir-
cles, and to count half steps for the ¢ distances in the chromatic circles.

3.4 Plot an example of each of the following seventh chords on the provided
circles, if possible. Test each plotted seventh chord to see if it is maximally
even according to the interval definition, based on the diatonic collection
(the circles on the left) and the chromatic universe (the circles on the
right).

a. Major seventh chord

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?
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b. Minor seventh chord

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?

c¢. Dominant seventh chord

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?
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d. Half-diminished seventh chord

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?

e. Diminished seventh chord

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance

Maximally even? Maximally even?
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Maximally Even Seventh Chords

As in the previous exercise, there are several possibilities for the placement
of dots around the circles—except for the dominant seventh and half-
diminished seventh chords (Solutions 3.4c and 3.4d), each of which has
only one possible configuration; and the diminished seventh chord (Solu-
tion 3.4e), which cannot be plotted on the diatonic circle. Solution 3.4
shows one possible arrangement of dots for each circle. Regardless of which
particular seventh chords you chose to plot, your tables and answers to the
questions should match those provided in Solution 3.4. Major, minor, domi-
nant, and half-diminished seventh chords (shown in Solutions 3.4a, b, ¢, and
d) are all maximally even with respect to the diatonic collection and not max-
imally even with respect to the chromatic universe. They are second-order
maximally even. On the other hand, the diminished seventh chord (shown in
Solution 3.4e) is not maximally even with respect to the diatonic collection—
it cannot even be formed from the notes of the diatonic collection—but it is
maximally even with respect to the chromatic universe.

3.4 One possible way to plot an example of each of the following seventh
chords; other solutions are also possible. Also, a test to determine if each
seventh chord is maximally even, based on the diatonic collection (the
circles on the left) or the chromatic universe (the circles on the right)

a. Major seventh chord

d distance ¢ distance d distance ¢ distance
1 1,2 1 1,3,4
2 3,4 2 57
3 56 3 8,9, 11
Maximally even? Yes Maximally even? No
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b. Minor seventh chord

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance
1 1,2 1 2,3, 4
2 3,4 2 5,7
3 5,6 3 8,9, 10
Maximally even? Yes Maximally even? No

c¢. Dominant seventh chord

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance
1 1,2 1 2,3, 4
2 3,4 2 5,6,7
3 56 3 8,9, 10
Maximally even? Yes Maximally even? No
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d. Half-diminished seventh chord

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance ¢ distance d distance ¢ distance
1 1,2 1 2,3, 4
2 3,4 2 56,7
3 5,6 3 8,9, 10
Maximally even? Yes Maximally even? No

e. Diminished seventh chord

CLOCKWISE DISTANCE BETWEEN DOTS CLOCKWISE DISTANCE BETWEEN DOTS

d distance c distance d distance c distance
1 3
2 6
3 9
Maximally even? No Maximally even? Yes
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Interval Content of Seventh Chords

Again let us pause to examine some of the relationships among the chords
illustrated by the tables. As we observed regarding the triads in Exercise 3.3,
all diatonic seventh chords exhibit identical interval contents with respect
to the diatonic collection. By now it probably is clear that this correspon-
dence occurs simply because all of these chords are seventh chords drawn
from the diatonic collection and therefore are built with stacked thirds.

Perhaps more interesting are the relationships between intervals of the
different seventh chords in relation to the chromatic universe. First, con-
trary to what we observed with triads, the major and minor seventh chords
have different interval contents. Although the triad portions of these seventh
chords have the same interval contents, as we observed in Exercises 3.3a
and 3.3b, the addition of a seventh to each chord changes the interval con-
tent significantly. The fact that the major seventh chord (Exercise 3.4a) is
built with the interval of a major seventh above the root, whereas the minor
seventh chord (Exercise 3.3b) is built with the interval of a minor seventh
above the root can be seen in the chromatic tables by comparing the d
distances of three dots. The major seventh chord includes the value 11 (for
eleven half steps, or a major seventh), whereas the minor seventh chord
includes the value 10 (for ten half steps, or a minor seventh). This difference
is also seen in the d distance of 1 dot where the major seventh chord in-
cludes the interval of one half step, whereas the minor seventh chord
includes the interval of two half steps—in each case, from the seventh of the
chord up to the root above, an inversion of the interval of a seventh becomes
the interval of a second.

On the other hand, the dominant seventh chord (Exercise 3.4c) and the
half-diminished seventh chord (Exercise 3.4d) have the same interval con-
tents with respect to the chromatic universe, as exhibited in the tables.
Surely, these two chords have distinct sounds; again, verify this difference
for yourself by playing several examples of each of these two chord qualities
on the piano. However, the two chords are closely related by virtue of their
identical interval contents: The dominant seventh chord is built, from the
root up, with a major third, then a minor third, another minor third, and a
major second to complete the octave; the half-diminished seventh chord, on
the other hand, is built with a minor third, another minor third, then a
major third, and a major second to complete the octave. Hence, these
chords contain the same intervals, but the intervals are arranged in a differ-
ent order, making all of the difference in the sound of these two chords.

Inversionally Related Seventh Chords

Dominant and half-diminished seventh chords also are inversionally re-
lated, as demonstrated in Figure 3.3. The dots corresponding to the domi-
nant seventh chord (taken from Solution 3.3c and shown as the first circle
diagram in the figure) are inverted (or flipped) around a dashed line drawn
vertically through the center of the first circle to produce the second circle
diagram. Notice, at the bottom part of the first circle diagram, that inversion
around the dashed line moves the dot on F to Eb and the dot on E) to F,
effectively resulting in no change, as shown in the second circle diagram.
However, the dot on the A moves to B, and the dot on the C moves to Ab as a
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Figure 3.3 Demonstration
of inversion for dominant
and half-diminished seventh
chords. The dominant and
half-diminished seventh
chords shown here are the
same as those in Solution
3.4; however, any pair

of dominant and half-
diminished seventh chords
are inversionally related

in the same way.

I
a dominant
seventh chord

result of this inversion. Next, the pattern of dots resulting from this inver-
sion may be rotated (in this case clockwise by a distance of four lines, or
four half steps) to produce the third circle diagram. Thus, the F dominant
seventh chord and the A half-diminished seventh chord shown here are in-
versionally related.* Rotating the inverted diagram by other distances would
produce other half-diminished seventh chords; therefore, all dominant and
half-diminished seventh chords are inversionally related. Again, you may
wish to verify that inverting a half-diminished seventh chord will produce a
dominant seventh chord by following the process shown in Figure 3.3.

-
~~

inverted around then rotated

a dashed line

produces a
half-diminished

seventh chord

Maximally Even Triads and Seventh Chords

Exercises 3.3 and 3.4 have confirmed what we have already determined in
the first chapter of this book. The only maximally even triad with respect to
the twelve-note chromatic universe is the augmented triad, and the only
maximally even seventh chord with respect to the chromatic universe is the
diminished seventh chord. However, these chords are not drawn from the
diatonic collection. Regardless of how they are arranged, the notes of the di-
atonic collection cannot form augmented triads or diminished seventh
chords. Although both of these chords can be drawn from the harmonic
minor collection as well as from some other collections, these collections do
not exhibit all of the special properties the diatonic collection possesses. By
contrast, major, minor, and diminished triads—as well as major, minor, dom-
inant, and half-diminished seventh chords—are all second-order (or nested)
maximally even chords by means of the maximally even diatonic collection.

The Augmented Triad in Context

Students often wonder why the augmented triad, built on scale-step 3 in har-
monic minor, seems to be given scant attention in tonal theory texts.
Exercise 3.3 suggests why the major, minor, and diminished triads might be
favored over the augmented triad in diatonic music. Yet the exercise also
shows how all of these triads share an important structural element, as each
chord is maximally even in a particular context. However, only major, minor,
and diminished triads are maximally even in a diatonic context, and these
are the chords that appear most often in tonal music. The augmented triad
does not appear with frequency in diatonically oriented music; however, the
augmented triad began to play a much stronger role as the structural orien-
tation of music shifted toward chromaticism in the later nineteenth century.
Your work in Exercise 3.3d corroborates this pattern of usage in that the
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augmented triad is not maximally even in a diatonic context, but it is maxi-
mally even in a chromatic context.

The Diminished Seventh Chord in Context

On the other hand, the diminished seventh chord plays an increasingly im-
portant harmonic role—even in otherwise diatonically oriented music—
throughout the development of tonal music in the common-practice period.
Although this chord cannot be formed by the notes of the diatonic collec-
tion, it is related to those seventh chords that can be formed from the dia-
tonic collection in that all of these seventh chords are maximally even in one
way or another. Of course, these observations cannot explain composers’
choices regarding harmonic sonorities; many other factors certainly were
more directly involved. Nevertheless, our ability to recognize the funda-
mental properties of the structures of these chords will enhance our under-
standing of musical structure. Toward this end, the next section of this
chapter will explore some additional special properties of diatonic triads
and seventh chords.

(VARIETY AND MULTIPLICITY
OF DIATONIC CHORDS

In Chapter 2 we learned that any series of notes drawn from the diatonic
collection exhibits cardinality equals variety and structure implies multi-
plicity. In our investigation we studied series of notes that had varying num-
bers of notes and interval structures. In each case we identified the interval
patterns formed by transposing the initial series of notes so that the series
began on every note of the diatonic collection. In so doing, we demonstrated
that the number of notes in a series, or cardinality, equals the number of dis-
tinct interval patterns formed, or variety. Moreover, by observing how each
initial series appeared if placed on the circle of fifths (based on the genera-
tor), or structure, we were able to ascertain how many times the different in-
terval patterns occurred in each group of transposed series, or multiplicity.

In this section, we will examine triads and seventh chords for these
same properties. Whereas in the previous chapter we shaped the series of
notes as melodic lines, in this section we will build harmonic sonorities and
subject them to the same kind of scrutiny. Through this examination we will
have opportunities to learn essential aspects of the variety and multiplicity
of triads and seventh chords within the diatonic collection, as well as to
review some of the important properties we have been discussing.

Testing Diatonic Chords

Exercises 3.5a and 3.5b contain questions about cardinality equals variety
and structure implies multiplicity for diatonic triads and seventh chords, re-
spectively. In order to determine if structure implies multiplicity, the circle
diagrams with seven lines are labeled according to the generator (the circle
of fifths), as in Chapter 2, rather than in a scalar fashion as in the previous
section of this chapter. In addition to asking about the number of different
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3.5a

triad and seventh chord qualities that can be formed and the number of in-
dividual triads associated with each quality, the exercises also ask you to re-
veal how you obtained your answers. Rely only on your knowledge of the
two properties in determining the answers to these questions and in your
specific explanations. At this point, do not work out all of the transpositions,
as you did in Chapter 2; we will return to this manual procedure later in
conjunction with Roman numerals.

First, plot any triad of your choice using the given notes on the circle
diagram (arranged in the circle-of-fifths pattern). Then, answer the
questions that follow.

2. Based on cardinality equals variety for triads, how many different triad
qualities can be formed in the diatonic collection?

3. Explain how you determined the answer to question 2, without writing
out all of the triads.

4. Based on structure implies multiplicity (as illustrated by your plotted
chord above), how many individual triads will be associated with each
quality? (Describe in detail.)

5. Explain how you determined the answer to question 4, without writing
out all of the triads.
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3.5b  First, plot any seventh chord of your choice using the given notes on the
circle diagram (arranged in the circle-of-fifths pattern). Then, answer the
questions that follow.

2. Based on cardinality equals variety, how many different seventh-chord
qualities can be formed in the diatonic collection?

3. Explain how you determined the answer to question 2, without writing
out all of the seventh chords.

4. Based on structure implies multiplicity, how many individual seventh
chords will be associated with each quality? (Describe in detail.)

5. Explain how you determined the answer to question 4, without writing
out all of the seventh chords.

Answers to all of the problems posed in Exercise 3.5 can be determined
based on a knowledge of the two properties from Chapter 2. Compare your
results with those provided in Solution 3.5. Do not worry about the exact
wording of your answers (though the numbers should exactly match, of

VARIETY AND MULTIPLICITY OF DIATONIC CHORDS 133



154

3.5a

course); you may have explained how you determined your solutions in a
slightly different way. However, in any event your solutions should ac-
knowledge that the number of notes in a triad (three) and seventh chord
(four) equals the number of different triad and seventh-chord qualities that
can be formed. In addition, you should have indicated that the distances
around the circle of fifths determines the number of individual triads or sev-
enth chords that are associated with each quality. The assertions you have
made in Exercise 3.5 have involved a more refined application of these two
properties and have uncovered a fundamental fact about triads and seventh
chords in a diatonic context. We will verify these assertions empirically in
Exercise 3.6 to follow.

One possible way to plot a triad using the given notes on the circle
diagram (arranged in the circle-of-fifths pattern) and answers to the
questions in Exercise 3.5a

2. Based on cardinality equals variety for triads, how many different triad
qualities can be formed in the diatonic collection? 3

3. Explain how you determined the answer to question 2, without writing
out all of the triads.

Because there are three notes in a triad, cardinality equals variety

indicates that there will be exactly three different interval patterns

formed by transpositions of the triad. Therefore, exactly three

different triad qualities can be formed.

4. Based on structure implies multiplicity (as illustrated by your plotted
chord above), how many individual triads will be associated with each
quality? (Describe in detail.)

One triad of one quality, three triads of another quality, and three

more triads of another quality can be formed.

5. Explain how you determined the answer to question 4, without writing
out all of the triads.

The distances between the dots around the circle (as labeled

according to the circle of fifths) are 1, 3, and 3. These distances

indicate exactly how many of each different triad quality can be

formed.
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3.5b One possible way to plot a seventh chord using the given notes on the
circle diagram (arranged in the circle-of-fifths pattern) and answers to
the questions in Exercise 3.5b

2. Based on cardinality equals variety, how many different seventh-chord
qualities can be formed in the diatonic collection? 4

3. Explain how you determined this answer, without writing out all of the
seventh chords.

Because there are four notes in a seventh chord, cardinality equals

variety indicates that there will be exactly four different interval

patterns formed by transpositions of the seventh chord. Therefore,

exactly four different seventh-chord qualities can be formed.

4. Based on structure implies multiplicity, how many individual seventh
chords will be associated with each quality? (Describe in detail.)

One seventh chord of one quality, three seventh chords of another

quality, one seventh chord of another quality, and finally two

seventh chords of one more quality can be formed.

5. Explain how you determined this answer, without writing out all of the
seventh chords.

The distances between the dots around the circle (as labeled

according to the circle of fifths) are 1, 3, 1, and 2. These distances

indicate exactly how many of each different triad quality can be

formed.
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A Scale-Based View of Diatonic Chords

Exercise 3.6 provides an opportunity to test the assertions you made in the
previous exercise by examining each individual chord quality in diatonic
contexts. We will accomplish this test using a slightly different approach
than we used in Chapter 2. Because we are dealing here with harmonic
sonorities rather than melodic lines, we will proceed by writing chords on
each note of the major scale rather than by transposing the initial formation,
though essentially we still are just transposing the initial chord diatonically.
Although the results, of course, are identical to those of the procedure em-
ployed in Chapter 2, taking a scalar approach may seem more musically in-
tuitive in this case, particularly because theory students are often asked to
produce such catalogues of diatonic triads and seventh chords by writing a
chord on each note of a scale. Also, instead of labeling these chords with in-
tervals between each note, as we did with the melodic lines in Chapter 2, we
will identify these chords by chord root and quality. In so doing, we are sim-
ply generalizing the interval pattern of each chord. Finally, we will supply
Roman numerals for each chord formed. In this way, you will have a direct
opportunity to relate the work you will accomplish in this exercise to one of
the primary methods of chord identification that you are likely to use in your
further studies of music theory.

Roman Numerals for Triad Identification

Before embarking on this exercise, perhaps a brief introduction to or review
of the use of Roman numerals for chord identification would be useful.
First, the numerical value of a Roman numeral indicates the scale step on
which a chord is built. For example, a chord built on the first note of the
scale, or the tonic, is shown as I or i, and a chord built on the fourth note of
the scale is labeled IV or iv. We will use uppercase Roman numerals to indi-
cate major-quality chords and lowercase Roman numerals for minor quality
chords. A diminished chord will be shown in lowercase with a superscript
circle (o) to the right of the Roman numeral, and an augmented chord will
be shown in uppercase with a superscript plus sign (+) to the right of the
Roman numeral. Thus, a diminished triad built on the seventh note of the
scale will be shown as vii°, and an augmented triad built on the third note of
the scale will be shown as III*.
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Roman Numerals for Seventh Chord Identification

We will employ the same basic labeling scheme for seventh chords, except
that we will indicate the quality of the seventh in each chord in the follow-
ing way. A major seventh chord will be shown as an uppercase Roman nu-
meral with a superscript “M7” to indicate the major seventh above the root,
whereas a dominant seventh chord will be shown as an uppercase Roman
numeral with a superscript “7” to imply a minor seventh above the root.
Thus, a major seventh chord built on the first note of the scale will be shown
as I whereas a dominant seventh chord built on the fifth note of the scale
will be displayed as V7. In like manner, a minor seventh chord, which has a
minor seventh above the root, will be shown as a lowercase Roman numeral
with a superscript “7,” for example, ii’.

Diminished seventh chords and half-diminished seventh chords will be
treated separately. A diminished seventh chord will be shown as a lowercase
Roman numeral with a superscript “07,” implying that both the triad qual-
ity and the quality of the interval of a seventh above the root are diminished.
Finally, a half-diminished seventh chord will be shown as a lowercase
Roman numeral with a superscript “g7”—with the slash through the circle
representing the idea of half diminished: a diminished triad with a minor
seventh above the root. Thus, a diminished seventh chord built on the sev-
enth note of the scale would be shown as vii®/, and a half-diminished
seventh chord built on the same note would be shown as vii®’.

There are many other schemes for labeling chords with Roman numer-
als. You may use whatever system you have learned; however, using some
system that has distinct chord symbols for every different chord quality, such
as the labeling system described above, will be essential to our discussion.
Complete Exercise 3.6 using these identification guidelines (or some similar
alternative system). At the conclusion of each part of this exercise is a broad
question that gives you an opportunity to sum up your knowledge of cardi-
nality equals variety and structure implies multiplicity by describing how
these two properties apply to the triads and seventh chords that you have
constructed. Rather than having specific, leading questions to guide you, you
are left to make your own conclusions about what you are observing.
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A major:

To test the assertions you made in Exercise 3.5a (for triads), examine the
qualities of triads for the following indicated scales. First, write the triads
formed on each note of the ascending A major scale in bass clef, using the
appropriate key signature. Then, identify the root and quality of each
chord, and indicate the appropriate Roman numeral for each. Repeat
these steps with the other indicated scales and clefs.

Nt

root/qual.:
Roman num.:

Eb major:

=¥

Z

root/qual.:
Roman num.:

D major:

N

[ 72Y

A\

3}
root/qual.:
Roman num.:

Db major:

N

[ 722Y

A\

D)
root/qual.:
Roman num.:

How does your work with the triads and scales in this exercise relate to
cardinality equals variety and structure implies multiplicity? (Refer to Ex-
ercise 3.5a on p. 132.)
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A maijor:

3.6b

To test the assertions you made in Exercise 3.5b (for seventh chords),
examine the qualities of seventh chords for the following indicated scales.
First, write the seventh chords formed on each note of the ascending

A major scale in bass clef, using the appropriate key signature. Then,
identify the root and quality of each chord, and indicate the appropriate
Roman numeral for each. Repeat these steps with the other indicated
scales and clefs.

<:

Z

root/qual.:
Roman num.:

Eb major:

— D

Z

root/qual.:
Roman num.:

D major:

N

z
g

e

root/qual.:
Roman num.:

Db major:

N

|
ey

root/qual.:
Roman num.:

How does your work with the seventh chords and scales in this exercise
relate to cardinality equals variety and structure implies multiplicity?
(Refer to Exercise 3.5b on p. 133.)
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Variety, Multiplicity, and Chord Identification

As shown in Solution 3.6a, only three diatonic triads can be formed—
diminished, major, and minor. Thus, cardinality (three notes in a triad)
equals variety (three triad qualities can be formed). Furthermore, there is
one diminished triad (vii®), three major triads (I, IV, and V), and three minor
the dots associated with a triad (1-3-3). Therefore, structure (of a triad in
relation to the circle of fifths) implies multiplicity (the number of each triad
quality that can be formed). Consequently, the familiar pattern of Roman
vii®) is directly connected to the properties we have been learning in this
book. Cardinality equals variety indicates exactly how many triad qualities
will occur, and structure implies multiplicity indicates how many chords of
each quality will be formed. Play these triads on the piano, skipping freely
among the various chords, so that you can aurally experience the results of
this exercise.

As shown in Solution 3.6b, only four diatonic seventh chords can be
formed—dominant, minor, half-diminished, and major. Again, cardinality
(four notes in a seventh chord) equals variety (four seventh-chord qualities
can be formed). There is one dominant seventh chord (V7), three minor
seventh chords (ii’, iii’, and vi’), one half-diminished seventh chord (vii??),
and two major seventh chords (IM’, IVM")—as predicted in Exercise 3.5b by
the distances between the dots associated with a seventh chord (1-3-1-2).
Therefore, structure (of a seventh chord in relation to the circle of fifths)
implies multiplicity (the number of each seventh-chord quality that can be
formed). Here again, the familiar pattern of Roman numerals for seventh
chords formed on the notes of the major scale (IM7, ii’, iii’, IVM, V7, vi’, vii®’)
is directly connected to the properties at hand. Cardinality equals variety in-
dicates exactly how many seventh-chord qualities will occur, and struc-
ture implies multiplicity indicates how many chords of each quality will
be formed. Play these seventh chords on the piano, skipping freely among
the various chords, so that you can aurally experience the results of this
exercise.

Roman Numerals and Other Scales

As you have observed in these exercises, the properties we have tested and
the chord qualities resulting from building a chord on each note of the scale
are consistent, regardless of which major scale is used. Furthermore, the
same properties will hold true if the natural minor scale is used—or; in fact,
if any of the seven modes are used with chords built on each note. However,
because the harmonic minor scale is the primary context for building har-
monies in a minor key, and because this form of the minor scale does not
exhibit cardinality equals variety or structure implies multiplicity (as we dis-
covered in Chapter 2), we will not explore the Roman numerals associated
with minor scales here. Similarly, because chords built on the modes are
sometimes not labeled with Roman numerals in theoretical discourse, and
especially because further study in this manner would not reveal additional
facts about the diatonic collection, we will not explore the structure and con-
figuration of chords built on the modes either. If you wish, you can construct
chords on each note of any mode to verify that the same chord qualities that
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3.6a The triads formed on each note of the indicated scales in Exercise 3.6a and
the relationships among these triads and the concepts of cardinality equals
variety and structure implies multiplicity
A major:
LU o Q b:d ex
oy # U o [4] b24 ) b24 [¢]
F O Nl [¢] b4 [4] b24 [$] ~
yd Ll 1 [$] b2 4 [4] hd
b} [4) had
root/qual.: A maj B min Ci min D maj E maj F& min Gt dim
Roman num.: I ii iii v \Y% vi vii®
Eb major:
=5 > o) € o) <
4 by | O (4] 4 [$] b4 [§] hod
vV b4 (4] 24 [§] hid
p:s O hd
root/qual.: B> maj F min G min Ab maj Bb maj C min D dim
Roman num.: I ii iii I\Y% A% vi vii®
D maijor:
o ¥ o 0
i HIL o (4] b4 [4]
y R o [§] p24 [4] b24 [4]
| £22Y hil [4] h24 ) b24 [4] ~
A\S Y] [¢] b4 [4] hid
o) [Y hd
root/qual.: D maj E min F4 min G maj A maj B min Ctdim
Roman num.: I ii iii v A% vi vii®
Db major:
A | o Q
¥ 10D N o [4] b24 [¢]
V.4 | o [4] o (4] 24 [4]
s 7V D Q) b24 [§] p24 [4) hed
A\SY] 124 [4] b 24 [4] hd
3} [Y hd
root/qual.: Di maj Eb min F min G» maj Ab maj Bb min C dim
Roman num.: 1 ii iii v A% vi vii®

How does your work with the triads and scales in this exercise relate to
cardinality equals variety and structure implies multiplicity?

According to cardinality equals variety, three triad qualities can be

formed. The scales shown here each contain exactly three different

triad qualities. According to structure implies multiplicity, the number

of triads corresponding to each quality can be determined by the

distances between notes around the circle of fifths (shown in Exercise

3.5a). The scales shown here each contain exactly one diminished

triad, three major triads, and three minor triads, as indicated by the

distances of 1, 3, and 3 between notes around the circle of fifths.
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3.6b The seventh chords formed on each note of the indicated scales in
Exercise 3.6b and the relationships among these seventh chords and the
concepts of cardinality equals variety and structure implies multiplicity
A major:
- o Q b:d 4 %
oy # 1 [4] 24 ) bI4 q) S [4]
F OO . a7 [4] 24 [43 bi4 [4) hed
Z 1 [4] 14 (43 O
[4] had
root/qual.: A maj7 B min7 Ct min7 D maj” E dom7 M min7  Ct half-dim7
Roman num.: ™ i’ i’ M \'4 vi’ vii?”
Eb major:
o Q 9
o) O €y b4 [4)] S
F O O [4] b4 ) S [4)] b4
Z ] b4 [4] b4 [4) b14 [¢] hed
0] po 4 [ ] 5 [4] ~
© U b
root/qual.: Bbmaj7  Fmin7 G min7 Aymaj7  Bbdom7  Cmin7 D halfdim7
Roman num.: ™ i’ iii” ™ v/ vi’ vii?’
D major:
o4 o Q % uts
y i T 2 o] & o] g 4]
| £} ki [4] b2 4 [4] b2 4 [4] hid
N [4] h24 [4] had
3} (Y b
root/qual.: D maj/ E min7 F¢ min7 Gmaj7 Adom7  Bmin7 Cihalfdim7
Roman num.: m™m i’ iii” W A4 vi/ vii%”
Db major:
A | o fe) 9 '8'
i Ty Py [§] p24 (4] p24 (4]
V4 VT [4] 24 [4] b2 4 [4) b3 4 [4]
| £ ¥ | £) o [4] o {) F
A\SY |2 [41 b24 [4] had
3} O b
root/qual.: Db maj7 B min7 F min7 Gymaj7  Asdom7  Bymin7 C halfdim7
Roman num.: ™7 i7 i/ vM7 \4 vi/ vii?”
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How does your work with the seventh chords and scales in this exercise
relate to cardinality equals variety and structure implies multiplicity?

According to cardinality equals variety, four seventh-chord qualities

can be formed. The scales shown here each contain exactly four

different seventh-chord qualities. According to structure implies

multiplicity, the number of seventh chords corresponding to each

quality can be determined by the distances between notes around

the circle of fifths (shown in Exercise 3.5b). The scales shown here

each contain exactly one dominant seventh chord, three minor

seventh chords, one half-diminished seventh chord, and two major

seventh chords, as indicated by the distances of 1, 3, 1, and 2

between notes around the circle of fifths.
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we observed in this exercise will be formed, as stipulated by the properties
we have been discussing, except that the various chord qualities will appear
on different scale steps than those we observed in the major scale.

‘ SUMMARY AND EXTENSIONS
|

This chapter has focused on the primary harmonic building-blocks of dia-
tonic music. We have observed the second-order maximal evenness of
diatonic triads and seventh chords in relation to the diatonic collection, and
we have verified that cardinality equals variety and structure implies multi-
plicity for triads and seventh chords drawn from the diatonic collection. In
addition to offering an opportunity to explore these fundamental principles
further, this chapter has also provided a thorough introduction to the struc-
ture and configuration of diatonic triads and seventh chords in general.
Although we have worked with the same concepts and definitions as in
Chapters 1 and 2, we have focused exclusively on triads and seventh chords
in this chapter because these harmonic constructs are essential components
of diatonic music theory.

Augmented Triads and Diminished Seventh Chords
in Context

In contrast to diatonic triads and seventh chords, we again observed that
the augmented triad and diminished seventh chord are both maximally
even with respect to the chromatic universe but not with respect to the dia-
tonic collection. It is ironic that common-practice composers seem to have
saved the augmented triad for more chromatic contexts, whereas they
began to adopt the diminished seventh chord into their otherwise primarily
diatonic-based musical language much sooner. When you have the opportu-
nity to explore this apparent disparity further in later theory courses—
where the highly charged nature of the diminished seventh chords likely
will be examined in more detail and in musical contexts—the background
you have established here from working with these chords will be invalu-
able. For now, however, we must be content with the abstract observations
that we have made concerning the relationship among all of these chords,
based on the fact that they are all maximally even harmonic structures in
one way or another. As in the other chapters in this book, we have not ex-
amined triads and seventh chords in their musical contexts. However, in
general, having this opportunity to explore the abstract principles underly-
ing triads and seventh chords may help you to solidify your conceptualiza-
tion of the structure of these chords, before you embark on observations
about the nature and behavior of these chords in musical contexts through
your further studies in music theory.

Maximal Evenness and Physics

In this chapter, and especially in the first chapter, we have observed the im-
portance of maximal evenness for diatonic musical structures. We have seen
the nested structure of diatonicism, where triads and seventh chords are
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maximally even with respect to the diatonic collection, and where the
diatonic collection is itself maximally even with respect to the chromatic
universe. The musical import is clear—but what may be surprising is that
scholars have found that the concept of maximal evenness also can be em-
ployed in statistical mechanics, a subfield of mathematical physics.?

Maximal Evenness and the Ising Model

The Ising model is a useful construct for modeling the behavior of electrons,
though it may be applied in numerous other ways as well. Although it is not
restricted to this usage alone, “the Ising model is a widely used standard
model of statistical physics. Each year, about 800 papers are published that
use the model to address problems in such diverse fields as neural networks,
protein folding, biological membranes and social behavior.”® The one-
dimensional version of the model may be displayed in the form of a line
extending in both directions to infinity, or in the form of a closed circle dia-
gram.” In this model, electrons, placed around the circle, are spinning in
one direction or the other (called up-spins and down-spins). In one version
of the model, called antiferromagnetic, the up-spins and down-spins prefer-
entially alternate, thus minimizing the overall energy of the system based on
the configuration of up- and down-spins (called configurational energy). Be-
cause there may not be an equal number of up- and down-spins (for exam-
ple, there may be more down-spins than up-spins in a given model), the
electrons cannot simply line up with alternating spins. However, the opti-
mum arrangement of up- and down-spins can be determined by applying
the concept of maximal evenness from music theory scholarship to this
model.® A maximally even distribution of up- and down-spins minimizes the
configurational energy. Furthermore, with the application of an outside
magnetic field, a standard procedure in working with Ising models that
changes the spin behavior of the electrons substantially, the electron align-
ment that produces the minimum average energy is still maximally even.’

Although the history of the relationship between mathematics and
music is long and varied, as outlined in the introduction to this book, for the
most part this interaction has involved using mathematical constructs and
ideas to help explain music. But in this case, the roles are reversed, and
music theory is being used to help elucidate aspects of an important model
in mathematical physics.

CHAPTER 3 TRIADS AND SEVENTH CHORDS AND THEIR STRUCTURES
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‘ @O WE NOW HAVE ANY ANSWERS?
|

At this point it seems appropriate to reflect back on the questions posed at
the beginning of this book. Why does the major scale seem to work so well?
Why has diatonicism formed the backbone of Western music for so long—
in both classical and popular music? And, perhaps most acutely, why are
the black and white keys of the piano arranged in that way? By completing
the exercises in this book, you have shed some light on these important
questions, though we may never be able to answer them definitively and
totally.

Review of Chapter 1

Chapter 1 introduced maximally even collections with respect to the twelve-
note chromatic universe. The main goal of this chapter was to learn about
the structure of the diatonic collection and to contemplate its special
arrangement of whole and half steps. Another goal was to determine what
other musical structures have a comparable spatial layout to the diatonic
collection, or in other words, are maximally even. The chapter provided op-
portunities for you to explore an abstract representation of notes (a circle
diagram with dots strategically placed around it to represent various musi-
cal structures) and to work with intervals within that abstract representa-
tion, rather than primarily on a staff or a keyboard. In addition to your work
with maximally even structures, you also had a chance to consider interval-
lic relationships among the notes of the harmonic and melodic minor scales
in relation to maximal evenness, helping you to observe idiosyncratic as-
pects of these two collections. Finally, you were introduced briefly to the
deep scale property—another defining property of the diatonic collection,
where every interval appears within the collection a unique number of
times.

Review of Chapter 2

Chapter 2 introduced the properties of cardinality equals variety and struc-
ture implies multiplicity. In this chapter you learned that the diatonic, pen-
tatonic, and whole tone collections can be produced by a generator and are
well formed, whereas some other collections can be produced only by a
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bisector (a weaker surrogate). You worked with intervals among the notes of
the diatonic collection, further familiarizing yourself with the nature of the
pattern of whole and half steps intrinsic to this collection. In reference to
the diatonic collection, you observed that the number of notes contained in
any particular series drawn from this collection precisely indicates the num-
ber of distinct interval patterns that diatonic transpositions of that series
will form (or cardinality equals variety). Furthermore, you observed that the
number of times each interval pattern appears within a group of transposed
series of notes can be determined by computing the distances between the
notes of the original series, as placed around the (generated) circle of fifths
(or structure implies multiplicity). Finally, you observed that the diatonic
and pentatonic collections each have exactly two ¢ distances for every d dis-
tance (or Myhill’s property) and that this special intervallic structure yields
the other two properties.

In this chapter you also transposed collections of notes diatonically, ob-
tained practice in interval identification through exercises that had a collat-
eral goal, and developed your own hypotheses about what you observed in
your work. Furthermore, by considering the intervallic patterns formed by
various transpositions of a pattern and by noting the number of different
interval patterns that appear in each group, you had an opportunity to
develop a broader understanding of diatonicism. By exploring these ideas in
a self-directed way, you may have felt that you were able to grasp the theo-
retical ideas more firmly, and your resulting “ownership” of these ideas may
facilitate further exploration of such generalized concepts in your future
studies.

Review of Chapter 3

In Chapter 3 you applied the primary properties you learned in the previous
two chapters to triads and seventh chords, perhaps the two most important
and familiar harmonic sonorities to students of music theory. In this inves-
tigation you were asked to adapt the concept of maximal evenness to a
diatonic context to determine if diatonic triads and seventh chords are
maximally even with respect to the diatonic collection rather than to the
chromatic universe (or second-order maximal evenness). You also had an
opportunity to explore the configuration of triad and seventh-chord quali-
ties with reference to the major scale, using Roman numerals to identify
these chords. In so doing, you learned that cardinality equals variety and
structure implies multiplicity for diatonic triads and seventh chords with re-
spect to the diatonic collection. This nested configuration underlies one of
the primary foundations upon which diatonic music is based, with its heavy
reliance on triads and seventh chords for harmonic sonorities. Recognizing
that the three primary properties that we have studied in this book apply to
these chords is essential to our understanding of the fundamental impor-
tance of diatonic triads and seventh chords.

Toward Future Course Work

In addition to the immediate benefits of encountering these ideas at the be-
ginning level of music theory, you are likely to find that these ideas resurface
naturally in later theory courses. For example, understanding the maximally



even internal structure of the diminished seventh chord is indispensable to
the study of enharmonic modulation. Because you already have worked with
the basic configuration of this chord and have noted its maximally even
structure (and therefore, its inherent symmetry), you may be able to grasp
the concept of enharmonic modulation, based on reinterpreting the dimin-
ished seventh chord in various keys, more easily and quickly when you en-
counter this idea in an advanced music theory course.

The material you have studied also begins to prepare you for future
course work in twentieth-century music. By using an approach based on
pitch-class set theory, the material in this book has provided a general in-
troduction to some of the basic theoretical tools for the study of atonal
music. Although this text has focused primarily on diatonically oriented
structures, many of the basic procedures employed in these exercises—such
as working with circle diagrams, identifying intervals by counting half
steps, and reaching generalizations based on observation—are directly ap-
plicable to the study of pitch-class set theory in association with atonal
music. In addition, this book has shown how the concepts explored relate to
standard terminology from pitch-class set theory whenever possible.

More Questions

Do we now have any answers to our original questions? Is there something
special about the diatonic collection? And do you now have any ideas about
why the diatonic collection—and its characteristic representation in the ori-
entation of black and white keys on the piano keyboard—is arranged in the
way that it is? Clearly, the special status of the diatonic collection is due in
part to the fact that it is maximally even and that cardinality equals variety
and structure implies multiplicity for any group of notes found within this
collection. Further, the diatonic collection is a deep scale that is generated,
well formed, and has Myhill’s property. By working through this text you
have observed some fundamental characteristics of this significant collec-
tion, though certainly much room remains for investigation of additional
special properties. As you continue to contemplate the nature of the dia-
tonic collection, you may form your own ideas about what makes this
collection so special. Or, more importantly, you may begin to formulate
additional questions about the diatonic collection and other musical
constructs—questions that you may wish to try to solve yourself.
Do you have any questions?
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FOR FURTHER STUDY

Students who wish to delve deeper into the ideas that have been presented
in this text may wish to consult the original sources of this pedagogical ma-
terial. Introductory students, for whom this book is primarily intended,
should be cautioned, however. Much of the material presented in the arti-
cles noted here is couched in the formal language of mathematical dis-
course. Although this textbook has introduced you to the ideas contained
in some of these articles, it has not attempted to prepare you for the
very technical manner of presentation. Nevertheless, currently there is no
intermediate-level treatment of this material, and students who wish to
enrich their understanding of diatonic set theory would need to consult the
original scholarship, as outlined below.

‘]OHN CLOUGH
|

As mentioned in the Preface, the material in this textbook draws upon the
work of John Clough and his various collaborators. Clough continues to be
a leading voice in the field, and his list of articles that are relevant to the
study of diatonic theory is extensive. Clough’s work ranges from “Aspects
of Diatonic Sets,” where he laid out some initial observations following a
mathematically based approach to diatonic structures, to his recent collab-
orative work, “Scales, Sets, and Interval Cycles: A Taxonomy,” which draws
together numerous ideas and consolidates a wealth of information from

the field.

Suggested Reading

Clough, John. “Aspects of Diatonic Sets.” Journal of Music Theory 23 (1979):
45-61.

. “Diatonic Interval Sets and Transformational Structures.” Perspec-
tives of New Music 18, no. 1-2 (1979-80): 461-82.

Clough, John, and Gerald Myerson. “Variety and Multiplicity in Diatonic
Systems.” Journal of Music Theory 29 (1985): 249-70.

Clough, John, and Jack Douthett. “Maximally Even Sets.” Journal of Music
Theory 35 (1991): 93-173.
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Clough, John, Jack Douthett, N. Ramanathan, and Lewis Rowell. “Early
Indian Heptatonic Scales and Recent Diatonic Theory.” Music Theory
Spectrum 15 (1993): 36-58.

Clough, John. “Diatonic Interval Cycles and Hierarchical Structure.”
Perspectives of New Music 32, no. 1 (1994): 228-53.

Clough, John, John Cuciurean, and Jack Douthett. “Hyperscales and the
Generalized Tetrachord.” Journal of Music Theory 41 (1997): 67-100.
Clough, John, Nora Engebretsen, and Jonathan Kochavi. “Scales, Sets,
and Interval Cycles: A Taxonomy.” Music Theory Spectrum 21 (1999):

74-104.

‘ MAXIMAL EVENNESS
|
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Those who would like to discover the origins of the term maximal evenness
firsthand should consult “Maximally Even Sets,” written by Clough in
collaboration with mathematician Jack Douthett. The material in Chapter 1
and some of the material in Chapter 3 derive chiefly from this award-
winning article. (This groundbreaking article was recognized by the music
theory community with a Society for Music Theory Publication Award in
1995.) The article goes far beyond the presentation of the topic in this text-
book, both in scope and in its focus on mathematical proofs.

Other scholars have followed up on Clough and Douthett’s original
research. For example, Steven Block and Jack Douthett provided a geomet-
rically based definition of maximal evenness. Interested students may wish
to compare these two vastly different approaches to the same musical con-
cept. And as mentioned in Chapter 3, Jack Douthett, Richard Krantz, and
Steven Doty have expanded the reach of maximal evenness to forge rela-
tionships with another discipline. Their work has shown important correla-
tions between properties of diatonic music and models of electron behavior
in the physical sciences.

Suggested Reading

Clough, John, and Jack Douthett. “Maximally Even Sets.” Journal of Music
Theory 35 (1991): 93-173.

Block, Steven, and Jack Douthett. “Vector Products and Intervallic Weight-
ing.” Journal of Music Theory 38 (1994): 21-41.

Krantz, Richard, Jack Douthett, and John Clough. “Maximally Even Sets: A
Discovery in Mathematical Music Theory is Found to Apply in Physics.”
In Bridges: Mathematical Connections in Art, Music, and Science. Con-
ference Proceedings, ed. Reza Sarhangi, 193-200. Winfield, Kansas:
Central Plain Book Manufacturing, 2000.

Douthett, Jack, and Richard Krantz. “Energy Extremes and Spin Configura-
tions for the One-Dimensional Antiferromagnetic Ising Model with
Arbitrary-Range Interaction.” Journal of Mathematical Physics 37 (1996):
3334-53.

Krantz, Richard J., Jack Douthett, and Steven D. Doty. “Maximally Even
Sets and the Devil’s-Staircase Phase Diagram for the One-Dimensional
Ising Antiferromagnet with Arbitrary-Range Interaction.” Journal of
Mathematical Physics 39 (1998): 4675-82.
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‘ (VARIETY AND MULTIPLICITY
|

For a glimpse of the original conception of the other two primary principles
explored in this textbook, cardinality equals variety and structure implies
multiplicity, consult the pioneering article, “Variety and Multiplicity in Dia-
tonic Systems,” by John Clough and Gerald Myerson. Chapter 2 and parts of
Chapter 3 of this textbook draw primarily from this article, which presented
these concepts for the first time.

Subsequently, Eytan Agmon has explored these ideas independently, as
well as some other fundamental principles of diatonicism, by means of an
entirely new approach and using alternative terms. Later he attempted to
find some common ground among divergent terminologies and approaches
to diatonic theory. Although his work differs significantly from the termi-
nology adopted in this textbook, his articles present opportunities to view
some of the same basic concepts in a new light.

Suggested Reading

Clough, John, and Gerald Myerson. “Variety and Multiplicity in Diatonic
Systems.” Journal of Music Theory 29 (1985): 249-70.

Agmon, Eytan. “A Mathematical Model of the Diatonic System.” Journal of
Music Theory 33 (1989): 1-25.

. “Coherent Tone-Systems: A Study in the Theory of Diatonicism.”

Journal of Music Theory 40 (1996): 39-59.

‘ O THER DEVELOPMENTS

In addition to those scholars who have developed theories on maximal even-
ness, cardinality equals variety, and structure implies multiplicity—the pri-
mary concerns of this textbook—others have contributed significantly to the
development of the field. Scholars have been active in this field, as scholar-
ship on diatonic set theory grows and the number of theorists interested in
this area expands rapidly. For example, Norman Carey and David Clampitt
discovered some new properties of diatonicism—including generated and
well-formed scales, as discussed in Chapter 2 of this textbook. Although the
scholarship in the following list varies widely in approach and difficulty, all
of these articles reveal the same kind of curiosity about the diatonic collec-
tion that has been fostered throughout this textbook.

Suggested Reading

Carey, Norman, and David Clampitt. “Aspects of Well-Formed Scales.”
Music Theory Spectrum 11 (1989): 187-206.

Carey, Norman, and David Clampitt. “Self-Similar Pitch Structures, Their
Duals, and Rhythmic Analogues.” Perspectives of New Music 34, no. 2
(1996): 62-87.

Browne, Richmond. “Tonal Implications of the Diatonic Set.” In Theory
Only 5, no. 6-7 (1981): 3-21.
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Rahn, Jay. “Coordination of Interval Sizes in Seven-Tone Collections.” Jour-
nal of Music Theory 35 (1991): 33-60.

Balzano, Gerald J. “The Group-Theoretic Description of 12-fold and Micro-
tonal Pitch Systems.” Computer Music Journal 4 (1980): 66-84.

. “The Pitch Set as a Level of Description for Studying Musical Pitch
Perception.” In Music, Mind, and Brain: The Neuropsychology of Music,
ed. Manfred Clynes, 321-51. New York: Plenum Press, 1982.

Brinkman, Alexander R. “A Binomial Representation of Pitch for Computer
Processing of Musical Data.” Music Theory Spectrum 8 (1986): 44-57.

‘ SOME PRECURSORS
|

Students who wish to trace the historical development of diatonic set theory
might begin with Milton Babbitt, an important American composer and
theorist. He appears to have been the first to suggest that diatonic music
might be explored by means of mathematically oriented procedures that
previously had been limited to post-tonal music. Although his primary focus
was electronic music, his article has been enormously influential in this
field. Later, Carlton Gamer explored some fundamental aspects of the struc-
ture and nature of the diatonic collection—in particular, the notion of deep
scales, discussed at the end of Chapter 1 in this textbook. Other authors, in-
cluding Eric Regener and Jay Rahn, followed suit, eventually leading to an
explosion of interest in diatonic set theory that was fueled to a great extent
by the work of John Clough.

Suggested Reading

Babbitt, Milton. “Twelve-Tone Rhythmic Structure and the Electronic
Medium.” Perspectives of New Music 1, no. 1 (1962): 49-79.

Gamer, Carlton. “Deep Scales and Difference Sets in Equal-Tempered
Systems.” American Society of University Composers: Proceedings of the
Second Annual Conference (1967): 113-22.

. “Some Combinational Resources of Equal-Tempered Systems.”
Journal of Music Theory 11 (1967): 32-59.

Regener, Eric. “On Allen Forte’s Theory of Chords.” Perspectives of New
Music 13, no. 1 (1974): 191-212.

Rahn, Jay. “Some Recurrent Features of Scales.” In Theory Only 2, no. 11-12
(1977): 43-52.

‘@IATONIC THEORY AND HISTORICAL STUDIES
|
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Although diatonic set theory has had a very short history, many of the ideas
that have been developed are also relevant to music and musical discourse
of earlier times. A number of scholars have displayed a keen interest in ob-
serving examples of early music and early music treatises in the context of
diatonic set theory. Jay Rahn explored modal music of the fourteenth and
early fifteenth centuries through a mathematically oriented approach, and
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Robert Gauldin associated aspects of diatonic set theory with ancient
systems of tone relations. Norman Carey and David Clampitt likewise
expanded the historical scope of diatonic set theory by attempting to under-
stand the work of early medieval theorists in light of recent developments in
the study of diatonicism.

Suggested Reading

Rahn, Jay. “Constructs for Modality, Ca. 1300-1550.” Canadian Association
of University Schools of Music Journal 8, no. 2 (1978): 5-39.

Gauldin, Robert. “The Cycle-7 Complex: Relations of Diatonic Set Theory to
the Evolution of Ancient Tonal Systems.” Music Theory Spectrum 5
(1983): 39-55.

Carey, Norman, and David Clampitt. “Regions: A Theory of Tonal Spaces in
Early Medieval Treatises.” Journal of Music Theory 40 (1996): 113-47.

‘@IATONIC THEORY AND NON-WESTERN MUSIC
|

Scholars have begun to examine scale systems of non-Western cultures
using tools and approaches derived from diatonic set theory. For example,
John Clough and several others representing diverse backgrounds have col-
laborated to show that some of the principles observed in diatonic Western
scales are also present in scales of ancient and medieval India. In addition,
though their article focuses primarily on Western scales, Norman Carey and
David Clampitt asserted that concepts they developed in connection with
the twelve-note chromatic universe apply equally well to the seventeen-tone
Arabic and fifty-three-tone Chinese scalar systems. Clearly, much remains
to be known about the relationship between the theoretical concepts that
have been presented in this textbook and the scalar constructs of non-
Western cultures. Yet, the fact that at least some of these theoretical con-
structs seem to cross cultural borders strongly supports the idea that music,
at least on some level, is universal.

Suggested Reading

Clough, John, Jack Douthett, N. Ramanathan, and Lewis Rowell. “Early
Indian Heptatonic Scales and Recent Diatonic Theory.” Music Theory
Spectrum 15 (1993): 36-58.

Clough, John, John Cuciurean, and Jack Douthett. “Hyperscales and the
Generalized Tetrachord.” Journal of Music Theory 41 (1997): 67-100.
Carey, Norman, and David Clampitt. “Aspects of Well-Formed Scales.”

Music Theory Spectrum 11 (1989): 187-206.
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‘ ‘q‘NALYSIS
|

Finally, a largely untapped area of inquiry, in regard to diatonic set theory,
is musical analysis. The theoretical constructs presented in this textbook,
and in most of the research cited previously in this section, deal primarily
with abstract considerations. Few scholars have attempted to show how
these theoretical ideas might be applied to the analysis of musical literature,
and this textbook has been no exception in this regard as it has dealt with
foundations rather than applications of diatonic theory. On the contrary,
Matthew Santa, in an insightful article, studied diatonic, post-tonal music
by twentieth-century composers—including Igor Stravinsky, Samuel Barber,
and Sergey Prokofiev—through an approach based on diatonic set theory.
John Clough also provided some brief analytical remarks on works by
Mozart and Beethoven; however, his article, as with most of his writing, is
chiefly theoretical rather than analytical. As the field becomes more widely
known, beginning to a certain extent with the students who first encounter
some of the basic tenets of the theory in this textbook, it seems certain that
more analytical applications of diatonic set theory will begin to appear.

Suggested Reading

Santa, Matthew. “Analysing Post-Tonal Diatonic Music: A Modulo 7 Per-
spective.” Music Analysis 19 (2000): 167-201.

Clough, John. “Aspects of Diatonic Sets.” Journal of Music Theory 23 (1979):
45-61.

‘ COMING BACK TO DIATONIC SET THEORY

In addition to its primary objective, the study of music fundamentals in re-
lation to specific aspects of diatonic set theory, this textbook also may have
sparked a broader interest in exploring some of the highly specialized liter-
ature cited earlier or in finding creative new ways to contemplate music. Al-
though the scholars listed in this section of the textbook are operating at a
very high and intense level in many respects, developing a curiosity about
their work may pay dividends later as you continue your studies in music
theory. Delving into the history of ideas outlined in the suggested readings
can provide keen insights that otherwise might be missed. Likewise, coming
back to this textbook as you gain more knowledge and sophistication in
music theory may provide you with a new appreciation of the ideas that you
have developed by working through this material. In time, you may find
yourself drawn anew to these concepts, and perhaps you will look beyond
the abstract approach provided in this textbook to discover new theoretical
or analytical applications for the foundations of diatonic theory that you
have only begun to experience.
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NOTES

Introduction

1. Edward Rothstein, Emblems of Mind: The Inner Life of Music and Mathe-
matics (New York: Times Books, 1995). Rothstein provides a delightful, illuminat-
ing, and very accessible introduction to the interrelationship between mathematics
and music, and in this regard he mentions relevant aspects of number theory and
group theory, the subfields of mathematics upon which this textbook mainly relies.

2. Recent books that explore the connections between mathematics and music
in general include: Robin Maconie, The Science of Music (New York: Oxford Uni-
versity Press, 1997); and Charles Madden, Fractals in Music: Introductory Mathe-
matics for Musical Analysis (Salt Lake City: High Art Press, 1999).

3. Richard L. Crocker, “Pythagorean Mathematics and Music (Parts I & II),”
Journal of Aesthetics and Art Criticism 22, no. 2-3 (1963-64): 334; Reprint: Studies
of Medieval Music Theory and the Early Sequence (Brookfield, Vermont: Variorum,
Ashgate Publishing Company, 1997).

4. André Barbera, “Pythagoras,” in The New Grove Dictionary of Music and
Musicians, 2d ed., ed. Stanley Sadie (London: Macmillan Publishers, 2001); and
Mark Lindley, “Pythagorean Intonation,” in New Grove Dictionary.

5. For a historical overview of the various temperaments that have been used
with some regularity, see Mark Lindley, “Temperaments,” in New Grove Dictionary.

6. Likewise, Gerald Balzano makes the specific point that many important
properties of the diatonic and chromatic collections are independent of any con-
cerns about ratios (Gerald J. Balzano, “The Group-Theoretic Description of 12-fold
and Microtonal Pitch Systems,” Computer Music Journal 4 [1980]: 66-84; Gerald J.
Balzano, “The Pitch Set as a Level of Description for Studying Musical Pitch
Perception,” in Music, Mind, and Brain: The Neuropsychology of Music, ed. Manfred
Clynes [New York: Plenum Press, 1982], 321-51). On the other hand, Norman
Carey and David Clampitt attempt to reconcile Pythagorean concepts of octave,
fifth, and other intervals with some of their theories about diatonicism. But in so
doing, they too demonstrate the independence of their formal theories from any
particular tuning system employed (Carey and Clampitt, “Aspects of Well-Formed
Scales,” Music Theory Spectrum 11 [1989]: 194-200).

7. For example, see Carlton Gamer, “Deep Scales and Difference Sets in Equal-
Tempered Systems,” American Society of University Composers: Proceedings of the
Second Annual Conference (1967): 113-22; Carlton Gamer, “Some Combinational
Resources of Equal-Tempered Systems,” Journal of Music Theory 11 (1967): 32-59;
Richard J. Krantz and Jack Douthett, “A Measure of the Reasonableness of Equal-
Tempered Musical Scales,” Journal of the Acoustical Society of America 95 (1994):
3642-50; and John Clough, Nora Engebretsen, and Jonathan Kochavi, “Scales,
Sets, and Interval Cycles: A Taxonomy,” Music Theory Spectrum 21 (1999): 74-104.
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NOTES

8. This survey is based primarily on material from Claude V. Palisca and Ian
D. Bent, “Theory, Theorists,” in New Grove Dictionary. A more focused survey and
commentary on the history of the relationship between mathematics and music
appears in David Loeb, “Mathematical Aspects of Music,” in The Music Forum,
vol. 2., ed. William J. Mitchell and Felix Salzer (New York: Columbia University
Press, 1970), 110-29.

9. C. André Barbera, “Arithmetic and Geometric Divisions of the Tetrachord,”
Journal of Music Theory 21 (1977): 294-323.

10. Sigalia Dostrovsky, Murry Campbell, James F. Bell, and C. Truesdell,
“Physics of Music,” in New Grove Dictionary.

11. Martin Scherzinger, “The Changing Roles of Acoustics and Mathematics in
Nineteenth-Century Music Theory and Their Relation to the Aesthetics of
Autonomy,” South African Journal of Musicology 18 (1998): 21.

12. Dostrovsky, Campbell, Bell, and Truesdell, “Physics of Music.”

13. An interesting account of scientific aspects of sound and music, directed
expressly toward musicians rather than scientists, appears in Ian Johnston, Mea-
sured Tones: The Interplay of Physics and Music (New York: Adam Hilger, 1989). An-
other excellent book with similar aims, though currently out of print, is Siegmund
Levarie and Ernst Levy, Tone: A Study in Musical Acoustics, 2d ed. (Kent, Ohio: The
Kent State University Press, 1980). A more traditional scientific approach is taken
by Johan Sundberg, The Science of Musical Sounds (San Diego: Academic Press,
1991). A fascinating interdisciplinary presentation—involving physics, acoustics,
psychophysics, and neuropsychology—appears in Juan G. Roederer, The Physics
and Psychophysics of Music: An Introduction, 3d ed. (New York: Springer, 1995). In
Tuning, Timbre, Spectrum, Scale (New York: Springer, 1998), William A. Sethares
explores ways to interrelate alternative scales and tunings with the study of
acoustics. A good reference work for the study of acoustics, especially as associated
with the various families of instruments, appears in Malcolm J. Crocker, ed., “Part
XVI: Music and Musical Acoustics,” in Encyclopedia of Acoustics, v. 4 (New York:
John Wiley & Sons, 1997), 1615-95. This encyclopedia, in general, provides an
excellent overview of the wide range of subtopics within the field of acoustics,
ranging from basic theories of sound waves to architectural design.

14. Mathematics has been employed extensively in other areas besides pitch,
but since this book is devoted solely to pitch—rather than rhythm, timbre, propor-
tion, and other musical aspects—a survey of the relationship between these other
musical components and mathematics will not be undertaken here. However, the
interested reader might begin to explore some of these areas in Jonathan D.
Kramer, The Time of Music: New Meanings, New Temporalities, New Listening
Strategies (New York: Schirmer Books, 1988).

Chapter 1

1. A June 2000 issue of Mathematics Magazine challenged readers to prove that
such a rounding procedure will always produce the result shown in Figure 1.1¢ (or
one of its rotations shown in Solution 1.1c). The proposed proof uses white points
and black points on a circle instead of lines, and employs an algebraic formula to
produce the resulting figure, but the procedure is effectively the same (John Clough,
Jack Douthett, and Roger Entringer, “Problem,” Mathematics Magazine 73, no. 3
[June 2000]: 240).

2. John Clough has used a version of this analogy in a number of his lectures
and presentations.

3. Eytan Agmon, “Coherent Tone-Systems: A Study in the Theory of Diatoni-
cism,” Journal of Music Theory 40 (1996): 39-59.

4. In the diatonic set theory literature, these distances often are referred to as
specific and generic intervals, respectively.



5. In discussing the “largest” possible c or d distances, I am referring to clock-
wise distances between dots considered as ordered pairs.

6. Steven Block and Jack Douthett, “Vector Products and Intervallic Weight-
ing,” Journal of Music Theory 38 (1994): 35.

7. However, Block and Douthett identify this scale as the fourth-most maxi-
mally even seven-note collection, ranking just below the collection that contains
the whole-tone scale plus one additional note (Ibid.).

8. The complement of the augmented triad—a nine-note maximally even scale,
which is not discussed in this text—is mode 3 of twentieth-century French
composer Olivier Messiaen’s modes of limited transposition.

9. Inversionally related pairs of intervals are called interval classes, in terms of
pitch-class set theory, and are represented by the smaller interval of each pair.

10. In terms of pitch-class set theory, this table essentially constitutes an
interval-class vector.

11. Gamer, “Deep Scales and Difference Sets”; and “Some Combinational
Resources.” Gamer attributed his contributions on deep scales to an unpublished
paper by Terry Winograd (“An Analysis of the Properties of ‘Deep Scales’ in a
T-Tone System,” unpublished, n.d.). Later, Richmond Browne explored the signifi-
cance of this special property in the structure of the diatonic collection (Browne,
“Tonal Implications of the Diatonic Set,” In Theory Only 5, no. 6-7 [1981]: 6-10).

12. This phenomenon is called the common-tone theorem.

13. Although modulations within musical compositions typically do not
involve a literal change of key signature, new keys are implied by the chromatic
notes that appear, and these new keys may be considered to be represented by the
implied key signatures. The examples that follow are major keys, but comparisons
between pairs of minor keys (using notes of the natural minor scale to determine
common tones) work in the same way.

Chapter 2

1. Jay Rahn identifies three independent ways of approaching intervals in
seven-note collections: (1) by half steps, (2) by scale steps, or (3) by connecting
both half steps and scale steps (Jay Rahn, “Coordination of Interval Sizes in Seven-
Tone Collections,” Journal of Music Theory 35 [1991]: 34). The following exercises
involve all three of these approaches.

2. Proving cardinality equals variety with respect to this or any other collec-
tion could be accomplished by exhaustively checking the interval patterns formed
by every possible series of notes, or it could be accomplished mathematically. We
will not attempt to prove cardinality equals variety here, but we will consider the
examples solved as a sufficient demonstration of the property.

3. Eric Regener seems to have been the first to propose counting diatonic
distances in terms of fifths, though the circle-of-fifths pattern itself has been
well-known for centuries (Eric Regener, “On Allen Forte’s Theory of Chords,”
Perspectives of New Music 13, no. 1 [1974]: 199-201). His brief section on diatonic
chords in this article has been enormously influential in the development of the
field of diatonic set theory.

4. Eytan Agmon uses the term cyclic system (Agmon, “Coherent Tone-
Systems”).

5. Gamer, “Some Combinational Resources,” 41.

6. Carey and Clampitt, “Aspects of Well-Formed Scales.”

7. Similarly, the same diatonic collection generated by a circle of perfect
fourths would begin with B and work through the same series of notes in reverse
order (c distance of 5, d distance of 3).
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NOTES

8. The same could be said of the circle of fourths, where a single fourth is
augmented (c distance of 6, g + 1 or 5 + 1), and all of the other fourths are perfect
(c distance of 5).

9. By way of review, if GCD of (c, d) = 1, then ¢ and d are coprime. In this case
GCD (12,5) = 1.

10. The term bisector was introduced in Jay Rahn, “Some Recurrent Features
of Scales,” In Theory Only 2, no. 11-12 (1977): 43-52.

11. In his original conception of bisectors, Rahn applied the term to collec-
tions that are equally spaced, but I am adapting the term to apply to generic scale
steps (or d distances) (Ibid., 45). Clough has made a similar adaptation (Clough,
“Diatonic Interval Cycles and Hierarchical Structure” Perspectives of New Music 32,
no. 1 [1994]: 235).

12. Rahn uses the term aliquant bisector for bisectors that can be used to
produce every note of a collection. Only collections where the bisector (b) and the
number of notes (d) are coprime will work in this way—or GCD (b, d) = 1 (Rahn,
“Some Recurrent Features of Scales,” 46). Thus, bisectors can be used to produce
the diatonic, harmonic minor, and ascending melodic minor collections—GCD
(4,7 =10rGCD (3,7) = 1.

13. Ibid., 45.

14. Scales with equal intervals, such as the whole-tone scale, are called degen-
erate well-formed scales because the generator and the interval required to com-
plete the circle by returning to the initial note are equivalent (Carey and Clampitt,
“Aspects of Well-Formed Scales,” 200; and Clough, Engebretsen, and Kochavi,
“Scales, Sets, and Interval Cycles,” 79).

15. This property is named after John Myhill, a mathematician and associate
of Clough and Myerson.

16. Clough, Engebretsen, and Kochavi, “Scales, Sets, and Interval Cycles,”
78-84.

17. The interval patterns corresponding to these figures—2-7-3 for Figure 2.6a,
2-6-4 for Figure 2.6b, and 1-7-4 for Figure 2.6c—can be determined by writing out
these series of notes on staff paper and identifying the intervals between notes, or
the interval patterns can be calculated using the provided circles by means of
modulo 12 arithmetic. To use modulo 12 arithmetic with these circles, sum the
intervals of 7 (and the one 6 where applicable) that appear between each pair of
dots, and divide each result by 12. The remainders correspond to the interval
pattern for each circle. This procedure is left for you to explore on your own if you
wish. Modular arithmetic is an important tool in diatonic set theory but remains
primarily in the background in this textbook.

Chapter 3

1. This use of the term inversion is different from the one commonly associ-
ated with diatonic triads and seventh chords and is more closely aligned with the
use of the term in conjunction with intervals that was employed earlier in this text.
In traditional tonal theory, the inversion of chords involves revolving the notes by
moving the bottom note in the chord so that it appears above the previous top note
of the chord. For example, C-E-G becomes E-G-C. However, the application of the
term inversion here involves changing the perspective of the notes relative to each
other (or flipping). Thus, the bottom note in a chord maps into the top note, and
the top note maps into the bottom note, and so forth until all notes have changed
positions relative to each other.

2. Tt is conventional in set theory to invert around C—drawing the dashed line
through C, rather than vertically through the diagram as in this demonstration.
The line is drawn through E here because the principle is essentially the same, and
inversion around a vertical line may be easier to see. However, following the



conventional procedure (inverting around C) would change only the interval of
transposition (or rotation) to five half steps ascending (clockwise).

3. Inversionally related and transpositionally related chords, in terms of
pitch-class set theory, are considered together as members of a single family,
called a set class.

4. Although most musical structures that have identical interval contents are
either transpositionally or inversionally related (or both), some pairs of musical
structures with identical interval contents are not related in either of these ways.
Structures that have identical interval contents but that are not related by transpo-
sition or inversion are called Z-related. For example, the collections C-C¢-E-F¢
and C-Ci-Eb-G are Z-related because they have identical interval contents (one
instance of each interval from one to six half-steps), but these collections are not
related by transposition or inversion. On the other hand, major/minor triads and
dominant/half-diminished seventh chords, though they have identical interval con-
tents, are not Z-related because they are inversionally related (a stronger affiliation).
Musical structures that are Z-related likely will arise in your later studies of music
theory in connection with pitch-class set theory and atonal music.

5. Twould like to thank my colleague, James Conklin, Associate Professor
of Mathematics at Ithaca College, who helped guide me through the relevant
literature.

6. Conley Stutz and Beverly Williams, “Ernst Ising,” Obituary, Physics Today
52, no. 3 (March 1999): 106.

7. Using a circle instead of a line, called invoking periodic boundary conditions,
introduces a negligible degree of error into calculations for large numbers of sites
around the circle in statistical applications of this model.

8. Jack Douthett and Richard Krantz, “Energy Extremes and Spin Configura-
tions for the One-Dimensional Antiferromagnetic Ising Model with Arbitrary-
Range Interaction,” Journal of Mathematical Physics 37 (1996): 3334-53. Also, for a
summary of applications of maximal evenness in physics and music theory, see
Richard Krantz, Jack Douthett, and John Clough, “Maximally Even Sets: A
Discovery in Mathematical Music Theory is Found to Apply in Physics,” in Bridges:
Mathematical Connections in Art, Music, and Science, Conference Proceedings
2000, ed. Reza Sarhangi (Winfield, Kansas: Central Plain Book Manufacturing,
2000), 193-200.

9. Richard J. Krantz, Jack Douthett, and Steven D. Doty, “Maximally Even Sets
and the Devil’s-Staircase Phase Diagram for the One-Dimensional Ising Antiferro-
magnet with Arbitrary-Range Interaction,” Journal of Mathematical Physics 39
(1998): 4675-82.
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diatonic triads and seventh chords and, 131-143
maximal evenness and, 105
non-diatonic collections and, 68, 73, 94, 105-108, 157
pentatonic collections and, 73-81
Roman numerals, chord identification using, 137, 140-143
scale-based views of, 136-143
testing for, 68-73, 109-131
Carey, Norman, 151, 153, 155, 157
Checks, quantity, 24-25
Chromatic universe, 45
definition of, 45
Circle diagrams, 5-46, 73, 82-96, 110-115
2-dot, 5-7, 15-18, 22, 24
3-dot, 5-7, 16-18, 22, 24, 111-115
4-dot, 5-7, 11, 16-18, 22, 28-30, 111-115
5-dot, 5-9, 14-19, 23, 30-32
6-dot, 9-10, 12-13, 16-19, 23-24
7-dot, 9-18, 20, 23-25, 33-34, 39, 113
7-line, 82-96, 110-115
8-dot, 9-11, 13, 16-18, 21, 23-25
complements and, 11, 14
4-dot and 8-dot, 11
5-dot and 7-dot, 14
compromises and, 7-8, 11-12, 19
5-dot, 7-8, 19
7-dot, 11-12
for diatonic collections, 46

166 INDEX



dot placement calculations for, 112-115
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Engebretsen, Nora, 150, 155, 158
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Entringer, Roger, 156
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3-note series, 45-48, 52-53, 56, 59
4-note series, 49-51, 54-56, 59
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circle diagrams and, 46. See also Circle diagrams
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introduction to, 45
inversion and, 65
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transposed series, interval identification in, 45-67
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introduction to, 45
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testing of, 101-104
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Intervallic definition, 26-43, 157
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close (near) relation and, 43
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consecutive numbers, relationship to, 27
deep scale property and, 40-43
dinner table analogy and, 13-14, 27-28
distant (foreign) relation and, 43
interval inversion, 40
interval tables and, 28-30
maximal evenness and, 26-43. See also Maximal evenness
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piano black and white keys, relationship to, 39
stepping-stone analogy and, 38-39
Inversion, 28-29, 40, 65, 122-130, 158-159
introduction to, 28-29, 40, 65
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